
Saving Energy on Edge: In-Memory Caching for
Multi-Tier Heterogeneous Network

言語: English

出版者: IEEE

公開日: 2019-06-27

キーワード (Ja): 

キーワード (En): Servers, Edge computing, Cloud

computing, Energy consumption, Random access

memory, Heterogeneous networks, Wireless

communication, Energy efficiency

作成者: XU, Jianwen, 太田, 香, 董, 冕雄

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10258/00009929URL



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 1

Saving Energy on Edge: In-Memory Caching for
Multi-Tier Heterogeneous Network

Jianwen Xu, Kaoru Ota, and Mianxiong Dong

ABSTRACT

Recent years have witnessed billions of new manufactured
sensors, equipments and machines being connected to our
almost omnipotent Internet. While enjoying the comfort and
convenience brought by Internet of Things (IoT), we also have
to face tremendous energy consumption and carbon emissions
which even cause climate deterioration. Extended from cloud
computing, edge/fog computing and caching provide new
thoughts on processing big data generated from distributed
IoT devices. With the purpose to help deal with the data
explosion problem by edge caching, in this paper we apply
in-memory storage & processing to reduce energy consump-
tion. We design two kinds of Time to Live (TTL) in four
cache replacement policies to cache data at edge. We carry
out simulation experiment in a 3-tier heterogeneous network
structure using Random Waypoint (RWP) model and test the
performance of in-memory caching and traditional method.
The analysis results manifest that our in-memory method is
able to obtain better energy efficiency in edge caching and
has stable & low backhaul rate.

INTRODUCTION

From wearable devices to house furnishings, from vehicles
to industrial facilities, nearly all that we ever regarded as
things have been sharing the same comfort and convenience
brought by the Internet. As a result, we are already living
in a new Internet of Things (IoT) era. Since user/client
volume is generally taken as a metric to show the network
size, this time with the addition of devices and machines,
our Internet may have to face the network connections and
data quantity in the near future several times of the present.
Moreover, as big data generated by countless IoT devices is
in high demand on real-time processing, which means we
have to spend less time on much larger amount of data with
small single computations. Such condition calls for additional
requirement in data transmission & processing and brings huge
energy consumption and carbon emissions leading to climate
deterioration such as greenhouse effect.

Together with the development of big data, cloud com-
puting provides new thought of sharing computer processing
resources. Nowadays we are able to pay rental and use comput-
ing resources with not need to purchase high-priced servers or
data centers, just like borrowing books from library. However,
traditional cloud computing may not be suitable for handling
distributed computational tasks in IoT scenarios. Considered
as extension of cloud computing, edge/fog computing attaches
much importance to making real-time responses to massive

users in which most requests require no complex calculation
and can be processed by small devices at the edge of net-
work. While in conventional method all computing tasks are
allocated to a limited number of dedicated servers, with edge
computing we are able to rely on a mass of mobile devices,
routers and other dedicated edge devices to send immediate
feedback to nearby requests. Therefore, as wanted contents
have already been cached locally, edge computing can perform
tasks without visiting remote data centers and reduce time cost
and energy consumption in procedures of transmission and
propagation.

In computing, cache is a temporary place for information
or data storage, and caching refers to the process of storing
and reading in a cache. Just like modern CPU cache structure
and web cache technology, the cache can serve as an inherent
trade-off to help balance the gap between different processing
speeds and storage sizes. As a result, storage capacity pro-
vided by caching can improve computational performance by
reducing extra latency and energy consumption.

Although devices in edge computing scenario may not own
multi-level CPUs or web cache softwares, caching can still
occur in divided storage space with suitable strategies and
methods. In conventional ways we can cache data or contents
in disk, which means there is no need to forward it upwards
when a request asks for anything already saved in current edge
device.

In-memory, which is broadly regarded as the RAM (Ran-
dom Access Memory) inside a computer, stands for high-
speed operation capability compared to NVM (Non-Volatile
Memory) like hard disk drive (HDD). Processing through in-
memory can save a lot of time spent on I/O operations as well
as energy consumption. Since the common storage volume
of in-memory is much less than disk, we need better space
utilization and scheduling while designing caching method
with in-memory. Additionally in IoT scenarios we do not
need single edge device to cache too many contents since
IoT data is easy to be out of date. That is to say, in-memory
processing would be very appropriate for edge caching and
improve energy efficiency of edge computing.

In this paper, we will focus on the solutions of edge caching
based on in-memory processing from mathematical modeling,
caching method designing to simulation and analysis. The
main contributions are as follows.

• Design a 3-tier heterogeneous network structure using
Random Waypoint (RWP) model;

• Design two in-memory edge caching methods based on
two kinds of Time to Live (TTL);



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 2

• Consider four cache replacement policies including First
In First Out (FIFO), Least Frequently Used (LFU), Least
Recently Used (LRU), Random Replacement (RR);

• Choose total energy consumption and backhaul rate as
metrics to compare and analyze experimental results of
in-memory edge caching and conventional disk method
under the same simulation setups.

This paper is divided into six sections to cover all aspects
of the research. We introduce the background and sort out
the whole work flow. We present related works on edge
caching and in-memory processing. We set up the mathe-
matical model and elaborate the details of raised problem.
We propose the designed in-memory edge caching methods
using four replacement policies. We give results of simulation
and comparative analysis between in-memory edge caching
method and conventional method. We summarize the previous
work and draw conclusions.

RELATED WORK

In this section, we present some related works about edge
computing, edge caching, and then introduce some researches
on in-memory storage and processing.

Edge Computing and Edge Caching

Cloud services have long remained a part of people’s lives,
ever since cloud computing became known in 2005 and was
quickly utilized in a wide variety of fields. Together with the
current IoT boom, in the come-at-able 2020, total amount of
data created by any device will reach 600 zettabytes (ZB) per
year while annual global data center IP traffic will only be
15.3 ZB at the end of this decade [1]. As a result, in the near
future, we are no longer able to put all computing tasks on the
cloud and pin our hopes on continuously updating hardware
levels, increasing the number of end equipments. We need
edge devices to share the workload and solve the bottleneck
in data transmission and processing [2].

Edge computing, before attracting wide attention and exten-
sively applied among research institutions, is already studied
by a number of technology companies, such as the key players
including Cisco Systems Inc. and HP, etc. Early in 2012,
Bonomi et al. from Cisco start from making clear the position
of edge computing in IoT era and prove that fog owns the
characteristics of serving as platforms for IoT services from
connected vehicle, smart grid to smart city. They define the
fundamental characteristics as low latency & location aware-
ness, widespread geographical distribution, mobility, large
numbers of devices, predominant role of wireless connection,
streaming and real-time applications and heterogeneity [3].
Vaqueroet al. from HP offer a comprehensive definition the fog
to include cloud, sensor network, peer-to-peer network, etc.
They also combine Network Function Virtualization (NFV)
and Software-Defined Networking (SDN) together to achieve
a new Softwareisation network management [4].

Many works on edge computing in recent years focus on
interdisciplinary researches and try to find the relation with
other fields to help promote common development. Liu et
al. design a device-to-device video recovery system based on

heterogeneous network for picocell edge users. In the paper
they discuss the possibilities of achieving the video on demand
(VoD) application to improve the current performance [5].
As a branch discipline, mobile edge computing pays more
attention on wireless communication among smartphones,
tablets and other hand-held devices. Sardellitti et al. consider a
multiple-input and multiple-output (MIMO) multicell system
and design a whole set of joint optimization algorithms for
mobile edge computing [6]. Research group from the European
Telecommunications Standards Institute (ETSI) regards mobile
edge computing to an independent field of study and combine
with the fifth generation (5G) mobile networks. They also
analyze the market drivers and business value of mobile edge
computing services [7].

In order to further utilize edge devices to balance the
workload in the expanding network, caching on edge can make
a contribution on reducing bandwidth usage, server load and
so on. Researches on edge caching also have many different
directions. Early in 2005 before cloud computing entering the
public consciousness and widely applied in production and
living, Ramaswamy et al. propose the idea of building cache
clouds to deal with documents in edge networks. In the paper
they design a dynamic hashing scheme to improve document
placement in cache clouds [8]. Gabry et al. put forward a
maximum-distance separable (MDS) encoded caching scheme
to achieve energy-efficient edge computing in heterogeneous
network [9]. In recent years, with fast development of wireless
communication, caching on mobile/wireless edge becomes a
research hotspot. Liu et al. summarize the design aspects
and challenges of wireless edge caching. They focus on
two key features of content delivery traffic and compare the
performance of caching at base stations and users [10].

In-Memory Storage and Processing

Compared by disk storage like HDD, flash memory and faster
Solid-State Drive (SSD), in-memory or main memory mainly
refers to volatile RAM could spend the same amount of time
while reading/writing data regardless of physical location.
Even though still limited by fault-tolerance, consistent power
supply and high manufacturing cost, from all kinds of elec-
tronic equipments, personal computers, to large professional
servers, we still can not rely on main memory to store our
data for long time. However, the last decade has witnessed
rapidly decreasing cost of main memory and growing demand
of high-speed computing which makes it possible for turning
in-memory into the new disk.

Related works on in-memory storage and processing involve
different levels from application domain analysis, technical
breakthrough to business development prospect. Zhang et al.
introduce the recent years’ development in in-memory big
data management and processing. In the paper they classify
and summarize all existing commercial and academic man-
agement systems for in-memory operations [11]. Beneventi
et al. apply in-memory processing tools to help do machine
learning in High-Performance Computing (HPC) infrastructure
models [12].



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 3

Fig. 1. A 3-tier heterogeneous network structure

PROBLEM FORMULATION

In this section, we design a 3-tier heterogeneous network
structure as the experimental scenario for simulate in-memory
edge caching for big data. As shown in Fig. 1, from top to
bottom a 3-tier network model can be described as follows.
• Server Tier: in this tier multiple servers play the tole of

cloud data centers, each file is only stored in one of the
servers;

• Edge Tier: in this tier we use routers both as forwarders
and edge devices which can cache files in packets passed
by;

• User Tier: a tier made of user nodes that keep moving
randomly and requesting files originally stored in servers
or cached in routers.

System Outline

In our designed network structure, user nodes are moving in
the RWP model which is one of the most popular mobility
models applied in mobile ad hoc network (MANET) [13]. In
Fig. 1, user nodes (u1, u2, ..., un) in User Tier send packets
to request files at random time intervals and move to next
positions under normal distribution before next sending. Each
file, in an unfixed size, is randomly saved in one of the servers
(s1, s2, ..., sn) in Server Tier. Then in Edge Tier, routers (r1,
r2, ..., rn) as edge devices will check if the needed files are
already cached in storage before forwarding to neighbor r or
upward to s. Since information or contents are easy to be
outdated, once the original files in Server Tier being modified
or deleted, all cached copies become useless. That is to say,
edge caching need to consider Time to Live (TTL) to make
sure that most requests be satisfied with unexpired files [14].
Transmissions between User Tier & Edge Tier are wireless
broadcasting, those inside Edge Tier are wired broadcasting
and those between Edge Tier & Server Tier are wired point-
to-point.

Normally RAM is associated with volatile types of memory
whose data storage would be lost when power is off. That is
to say, in-memory may not support long time storage which
can be suitable for scenarios of edge caching. As a result,
we consider both TTL for cached data and consistency of in-
memory storage in designing caching methods.

Performance Metrics

In face of mass date generated by billions of IoT devices, we
always prefer less energy consumption on data transmission
and processing. For this reason, edge caching aims at reducing
repeated data transmission from original servers which means
unnecessary energy consumption on packet delivery between
Edge Tier and Server Tier can be saved. Moreover, caching
itself also consumes extra energy while keeping RAM or disk
memory running. To determine and sum up the overall cost
of the entire simulation on the 3-tier network architecture, we
may consider 3 parts. The part to maintain all devices in 3
tiers is not expressed in the equation since it is a fixed cost
and can only be reduced by shutting down some devices [9].
In summary, we use two equations to present the calculation
of total energy consumption.

Etotal = Ecache(t) + Etrans

Ecache(t) = ω
n∑
i=1
(scachei ti)

in which Ecache(t) and Etrans respectively stands for caching
energy cost and transmission energy cost. Ecache(t) is running
time correlated and can be calculated by energy consumption
per byte ω. n represents the times when the current caching
size of all r in Edge Tier is changed. Thus we sum up the n
products of variational caching sizes scachei and their duration
ti .

Etrans =Esend + Erecv

=

x∑
j=1
(msendstransi + bsend + mrecvstransi + brecv)

Comparatively, Etrans has no relation to time and only
depends on size of data being transmitted stransi . Here we
separately calculate the energy consumption while devices
in three tiers sending and receiving packets. Moreover, as a
heterogeneous network model, communications between User
Tier & Edge Tier and among r inside Edge Tier are regarded
as wireless while those from Edge Tier to Server Tier and
backward are Ethernet transmissions. m and b are linear
coefficients obtained from experimental results [15].

To figure out the total energy cost as close as possible
to the practical situation, we take some more details into
consideration. First, different bit rates of wireless and Ether-
net transmissions. Second, the wave propagation speed, we
respectively choose speed of light and thick coax as the
communication media for wireless and wired.

Besides energy consumption, we also pay attention to how
edge caching help reduce workload on end servers. We add



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 4

a backhaul rate as another metric to test what is percentage
may in-memory edge caching takes in completing the task of
fetching files from servers across tiers.

IN-MEMORY EDGE CACHING METHOD

In this section, we propose two caching methods based on
different TTL designs, TTL of requested times (TRT) and
caching time (TCT).

TRT is counting how many times a cached file being
requested by u in User Tier. When the needed file being found
at any s in Server Tier and sent back, each r in the full path
may check if it already has the copy of the file. If not, r will
cache the file in its in-memory or disk. Later once a r receives
request and finds the needed file in cached data, it may send
back the copy and count the requested times of the cached
file. If number of requested times reaches the maximum value
being set, the cached file will be dropped. Accordingly in
the calculation equation of Ecache(t) of last section, scachei
is changed and a scache

i+1 is needed.
Rather than counting requested times, the other caching

method TCT keeps a timer for each cached file. Caching and
routing follow the same rules of the first method, similarly
when any timer reaches the maximum value, the cached file
will be dropped.

In addition, both methods consider the volume of in-
memory/disk storage, that is, if the next file to be cached
exceeds the memory volume of r , before caching the newcome
data we have to free up some space by popping out cached
data. As result, to decide which one to drop when the volume
of disk or in-memory is full, we apply four common cache
replacement policies based on different ideas on how to
improve the performance of edge caching. Another point to
note is, the drop behaviors in cache replacement policies have
no relation to TTL designs since both are needed to guarantee
the usability of cached data, that is, still alive and within the
capacity of the current r .

First, First In First Out (FIFO) policy regards volume
disk/in-memory as a FIFO queue and drops the head of queue
that gets pushed in the earliest when queue is full. Second,
Least Frequently Used (LFU) policy does not consider the
order of cached files and chooses the cached file with the
least requested times currently. Third, similar to LFU, Least
Recently Used (LRU) also focus on the cached files which
are not so popular but chooses the least recently used one to
drop. Last, the Random Replacement (RR) policy serves as a
contrast to compare the performance of TTL designs with the
other policies.

SIMULATION AND ANALYSIS

In the section, we carry out experimental simulations to
compare the performance of edge caching in in-memory and
conventional disk memory under two TTL designs.

The simulation scenario is a 10 km2 square open area, and
we set 2,000 user nodes in User Tier with random initial
positions. Each user node randomly moves to next position
under normal distribution after sending request packet to fetch
one of the 200 files originally stored in one of the five servers

TABLE I
EXPERIMENT SETUPS

Bit Rate of Transmission

Wireless (802.11ad) 6.8 Gbps

Ethernet 10 Gbps

Wave Propagation Speed of Transmission

Wireless (air) c (speed of light)

Ethernet (thick coax) 0.77 c

Device Settings of Edge Tier

MTR of Disk (SSD) 2500 MB/s

MTR of In-Memory (DDR3) 6400 MB/s

Disk Volume 256 MB

In-Memory Volume 25 MB

Energy Consumption Coefficients

10−8 J/MB 10−6 J

Broadcast Send 2.1 × size + 272

Point-to-Point Send 0.48 × size + 431

Broadcast Receive 0.26 × size + 50

Point-to-Point Receive 0.12 × size + 316

Power Consumption of Caching 8 ×10−3 W/MB

1 2 3 4 5 6 7 8 9 10

Round of Request Sending

310

320

330

340

350

360

370

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

FIFO In-Memory

FIFO Disk

LFU In-Memory

LFU Disk

LRU In-Memory

LRU Disk

RR In-Memory

RR Disk

Fig. 2. Total Energy Consumption of Edge Caching in TTL of Requested
Times (TRT)

in Server Tier. We use 100 routers in Edge Tier as edge devices
to cache the files locally. Four cache replacement policies are
applied in designing edge caching methods.

As shown in Table I, the setups of experiment include bit
rate & wave propagation speed of packet transmission, Edge
Tier’s device settings and energy consumption coefficients of
both transmission and caching. As a result, to calculate the
total energy consumption Etotal , we have to count the number
of packets and sum up their sizes, then compute the time cost
from transmission and reading/writing from disk/in-memory.
We carry out 10 rounds of simulations in two designed edge
caching methods & four cache replacement policies. We repeat
the part of each method & policy 10 times and get the average
results. The simulation environment is MATLAB R2017b.



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 5

Fig. 2 shows the simulation result of total energy consump-
tion of TRT method in four cache replacement policies. Blue,
red, green and yellow represent the policies of FIFO, LFU,
LRU and RR. The solid lines and dotted lines respectively
stand for caching in in-memory storage and disk storage.
From the patterns of eight broken lines, we can know that
the overall energy consumption of traditional disk caching is
larger than in-memory caching. In our 10 rounds of simulation,
the trends of disk and in-memory methods are also different.
Energy consumption of disk in TRT varies like a checkmark
symbol which firstly falls down a little and then after a smooth
transition period increases rapidly to a high value. Our in-
memory method in TRT shows a similar trend at the first half
from round 1 to 5 but become steady after then which means
energy consumption on edge caching may finally turns into a
stable state. The differences of the trends are in line with our
expectation since disk which own larger storage volumes and
lower MTR call for more unit energy consumption and longer
operation time. The positive correlation of the two factors lead
to the continuing growth of total consumption.

Different cache replacement policies also have respective
functions on the results of total energy cost. From the four
lines of disk caching in the top half of the figure we can see
three of them, LFU, LRU and RR fluctuate until coinciding
in the end. Only blue line of FIFO policy shows a slight
advantage in total energy consumption which means a simpler
rule maybe more suitable for disk caching by TRT. Then from
the other four colorful lines of in-memory caching, although
still some changes in order of energy cost values, we may
get the overall order of four policies as RR, LRU, FIFO and
LFU. RR policy does suffer from random choice of dropping
cached files which costs more energy in total. The special
case of round 4 when LRU exceeds RR may be explained by
some occasional error when RR just drops the right files which
are not requested much later. LFU policy seems to own the
optimal performance in in-memory caching by TRT because of
the most suitable dropping choice which focuses on reserving
popular files probably from the server directly connected to
the current router with only one hop and dropping a most
unpopular one which may come from a remote server after
several hops of forwarding. Green line applying LRU also pays
attention to the popularity of cached files but directly considers
the caching time and drops the one not being requested of
the longest interval. However, compared to LFU, the practice
of LRU may face exceptions like some popular files being
dropped due to the timing that the other files are just being
cached or requested.

The experimental result of the other TTL design is shown
in Fig. 3. In comparison with TRT, the trend of disk’s
four colorful lines of different cache replacement policies is
relatively smoother, gaps between each two of the policies are
visible. However, the order of lines in different policies us
some kind of abnormal. Green line applying LRU shows the
highest total energy consumption and RR policy even achieve
high performance in value. In our point of view, since disk
have far larger storage volume than in-memory, although more
files are cached live for enough time, not many of them finally
waited for a request or even get a remote request which may

1 2 3 4 5 6 7 8 9 10

Round of Request Sending

310

320

330

340

350

360

370

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

FIFO In-Memory

FIFO Disk

LFU In-Memory

LFU Disk

LRU In-Memory

LRU Disk

RR In-Memory

RR Disk

Fig. 3. Total Energy Consumption of Edge Caching in TTL of Caching Time
(TCT)

save no time than fetching the original file from servers. As
a result, replacement policies trying to delay the time for
dropping popular files may in turn cause more energy cost.

The patterns of in-memory by TCT are similar with TRT.
RR policy fluctuates more violent. LRU seems to improve
its performance compared to TRT and even shows a certain
degree of convergence with FIFO. In our point of view,
replacement policy here share the same method with TCT by
dropping cached files by keeping check the their timestamps.
The collective effect may lead to some promotion in efficiency.

To make clear how TRT and TCT methods may help
reallocate the whole workload and achieve energy efficient
caching, we add the experimental results of backhaul rates.
As the values of results in different cache replacement policies
are similar to each other, here we choose FIFO as an example.
We change the set maximum requested times & caching time
of each single file being cached in routers as edge devices and
get two 3-D surface graphs (values of maximum caching time
are corresponding values in simulation).

Under the same coordinate axis, Fig. 4 shows the variation
of backhaul rates by rounds of packet sending and maximum
requested times/caching time. First in Fig. 4a, when number of
requested times is small, regardless of which round of packet
sending, about more 70 percent of requests still have to reach
Server Tier to get needed files. The other side, numerical range
of the same maximum times in 10 rounds changes not so great
which means although stay high in value with small requested
times number, backhaul rate of TRT method can rapidly reach
steady state as number increases. Finally more than 70 percent
of requests can be satisfied by in-memory edge caching.

Then in Fig. 4a, the main difference of the pattern is the
variation when we continue to send packets. That is, no matter
how long the caching time is set, Server Tier still has to take
charge of most workload at the first rounds. However, with
more and more files being fetched originally from end servers
and then cached in in-memory of passed routers, TCT method
also can reach a comparatively ideal low backhaul rate, though
higher in value than TRT as well as some fluctuations.



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 6

Maximum Requested TimesRound of Request Sending

20

30

0

40

50

0

B
a
c
k
h
a
u
l 
R

a
te

 (
%

)

60

70

2

80

24 4
6 6

8 8
10 10

20

30

40

50

60

70

80

(a) TTL of Requested Times (TRT)

Round of Request Sending Maximum Caching Time

20

30

0

40

50

B
a
c
k
h
a
u
l 
R

a
te

 (
%

)

60

0

70

2

80

24 46 6
8 8

10 10
20

30

40

50

60

70

80

(b) TTL of Caching Time (TCT)

Fig. 4. Backhaul Rate of In-Memory Edge Caching in 2 TTL Designs

CONCLUSION

In this paper, we focus on how to improve energy efficiency of
edge caching using in-memory storage and processing. Here
we build a 3-tier heterogeneous network structure and propose
two edge caching methods using different TTL designs &
cache replacement policies. We use total energy consumption
and backhaul rate as the two metrics to test the performance
of in-memory caching method and compare with conventional
method based on disk storage. The simulation results show
that in-memory storage and processing can help save more
energy in edge caching and share considerable workload in
percentage.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number JP16K00117, JP15K15976, and KDDI Foundation.
Mianxiong Dong is the corresponding author.

REFERENCES

[1] Cisco Public White Paper, "Cisco Global Cloud Index:
Forecast and Methodology, 2015-2020," [Online]. Available:
www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-
cloud-index-gci/white-paper-c11-738085.pdf, accessed Sep. 2017.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and
Challenges," IEEE Internet of Things Journal, vol. 3, no. 5, Oct. 2016,
pp. 637-646.

[3] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog Computing and Its
Role in the Internet of Things," Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, no. 4, 2012, pp. 13-16.

[4] L. M. Vaquero and L.Rodero-Merino, "Finding Your Way in the Fog: To-
wards a Comprehensive Definition of Fog Computing," ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, Oct. 2014, pp. 27-32.

[5] Z. Liu, M. Dong, H. Zhou, X. Wang, Y. Ji and Y. Tanaka, "Device-
to-device Assisted Video Frame Recovery for Picocell Edge Users in
Heterogeneous Networks," 2016 IEEE International Conference on Com-
munications (ICC), May. 2016, pp. 1-6.

[6] S. Sardellitti, G. Scutari and S. Barbarossa, "Joint Optimization of Radio
and Computational Resources for Multicell Mobile-Edge Computing,"
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, Jun. 2015, pp. 89-103.

[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, "Mobile Edge
Computing: A Key Technology towards 5G," ETSI White Paper, vol. 11,
no. 11, 2015, pp. 1-16.

[8] L. Ramaswamy, L. Liu and A. Iyengar, "Cache Clouds: Cooperative
Caching of Dynamic Documents in Edge Networks," 25th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS’05), Jun.
2005, pp. 229-238.

[9] F. Gabry, V. Bioglio and I. Land, "On Energy-Efficient Edge Caching in
Heterogeneous Networks," IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 12, Dec. 2016, pp. 3288-3298.

[10] D. Liu, B. Chen, C. Yang and A. F. Molisch, "Caching at the Wireless
Edge: Design Aspects, Challenges, and Future Directions," IEEE Com-
munications Magazine, vol. 54, no. 9, Sep. 2016, pp. 22-28.

[11] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan and M. Zhang, "In-Memory
Big Data Management and Processing: A Survey," IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 7, Jul. 2015, pp. 1920-
1948.

[12] F. Beneventi, A. Bartolini, C. Cavazzoni and L. Benini, "Continuous
Learning of HPC Infrastructure Models using Big Data Analytics and
In-Memory processing Tools," Design, Automation Test in Europe Con-
ference Exhibition (DATE 2017), Mar. 2017, pp. 1038-1043.

[13] C. Bettstetter, G. Resta and P. Santi, "The Node Distribution of the
Random Waypoint Mobility Model for Wireless Ad Hoc Networks," IEEE
Transactions on Mobile Computing, vol. 2, no. 3, Jun. 2003, pp. 257-269.

[14] Z. Zhou, K. Ota, M. Dong and C. Xu, "Energy-Efficient Matching
for Resource Allocation in D2D Enabled Cellular Networks," IEEE
Transactions on Vehicular Technology, vol. 66, no. 6, Jun. 2017, pp.
5256-5268.

[15] L. M. Feeney and M. Nilsson, "Investigating the Energy Consumption
of a Wireless Network Interface in an Ad Hoc Networking Environment,"
Proceedings of IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No.01CH37213), vol. 3, 2001, pp.
1348-1557.

Jianwen Xu received the B.Eng degree in Electronic
and Information Engineering from Dalian University
of Technology (DLUT), China, in 2014, and M.Eng
degree in Information and Communication Engi-
neering from Shanghai Jiaotong University (SJTU),
China, in 2017. He is currently pursuing the Ph.D.
degree in Electrical Engineering at Muroran Institute
of Technology, Japan. His main fields of research
interest include distributed system, Internet of things.



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XX 2018 7

Kaoru Ota received her M.S. degree in computer
science from Oklahoma State University in 2008,
and her B.S. and Ph.D. degrees in computer science
and engineering from the University of Aizu in
2006 and 2012, respectively. She is currently an
assistant professor with the Department of Informa-
tion and Electronic Engineering, Muroran Institute
of Technology. She serves as an Editor for IEEE
Communications Letters.

Mianxiong Dong received his B.S., M.S., and Ph.D.
in computer science and engineering from the Uni-
versity of Aizu. He is currently an associate profes-
sor in the Department of Information and Electronic
Engineering at Muroran Institute of Technology.
He serves as an Editor for IEEE Communications
Surveys & Tutorials, IEEE Network, IEEE Wireless
Communications Letters, IEEE Cloud Computing,
and IEEE Access.


