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Secure Tensor Decomposition for Big Data
Using Fully Homomorphic Encryption Scheme

Liwei Kuang, Laurence T. Yang, Jun Feng, and Mianxiong Dong

Abstract—As the rapidly growing volume of data are beyond the capabilities of many computing infrastructures, to securely process
them on cloud has become a preferred solution which can both utilize the powerful capabilities provided by cloud and protect data
privacy. This paper presents an approach to securely decompose the high-order tensor, a mathematical model widely used in big
data applications, to a core tensor and a certain number of truncated orthogonal bases. The unstructured, semi-structured, and
structured data are represented as low-order sub-tensors which are then encrypted to cipher counterparts using the RLWE-based
fully homomorphic encryption scheme. A unified high-order cipher tensor model is constructed on cloud by collecting all the cipher sub-
tensors and embedding them to a base tensor space. The cipher tensor is decomposed through a proposed Lanczos-based algorithm,
in which the non-homomorphic square root operation is eliminated. Theoretical analyses of the algorithm in terms of time complexity,
memory usage, decomposition accuracy, and data security are provided. Experimental results demonstrate that the proposed approach
is feasible and secure to perform high-order tensor decomposition on cloud for big data applications.

Index Terms—Tensor Decomposition, Fully Homomorphic Encryption, Big Data, Lanczos Method.
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1 INTRODUCTION

THe size of data in many fields is rapidly increasing
towards Terabyte level or even Petabyte level, as

well as the data structures are becoming more varied.
The large scale heterogeneous data have posed great
challenges on current computing infrastructures, and
new approaches are in urgent need to tackle the prob-
lems caused by big data. Cloud Computing [1] is a mod-
el that can enable ubiquitous and convenient network
access to a shared pool of configurable computing re-
sources such as platform, software and service. A cloud
infrastructure is the collection of hardware and software
which can provide capabilities to the consumers on a
pay-per-use or charge-per-use basis. It is a quite feasible
approach to upload big data to the cloud for deeply
processing and mining such as dimensionality reduction,
classification, and prediction [2]. However, carrying out
such types of analysis tasks on cloud may cause a series
of safety problems including loss of privacy, disclosure
of business information, data tamper, etc. Therefore, the
study of secure mining and analyzing of big data on
cloud is of great necessity as it is an efficient method
to extract valuable information from the large scale
heterogeneous data.
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The fully homomorphic encryption scheme allows
specific types of computations to be performed on the
cyphertext to generate an encrypted result, of which
the decryption is identical to the result obtained by
directly carrying out operations on the plaintext. The
ideal lattice based scheme [3] proposed by Gentry in
2009 solves the problem of limited number of opera-
tions of fully homomorphic encryption, which paves the
way for non-trusted computing on cloud. The Learn
With Errors (LWE) scheme reported in Ref. [4] is more
practical to be employed in data-intensive applications.
Although the mentioned schemes provide both additive
and multiplicative homomorphisms, they can cause de-
cryption errors when be used by algorithms including
non-homomorphic operation such as square root which
is a fundamental operation for big data processing.

Many heterogenous data are modeled as tensor [5, 6],
a type of high dimension matrix widely used in many
applications. Tensor decomposition is a powerful tool
to extract valuable information from large scale data.
The decomposition is computationally expensive and is
strongly suggested to be performed on cloud. Therefore,
it is necessary to investigate approaches of secure ten-
sor decomposition on cloud and address the challenges
caused by non-homomorphic operations. However, little
work has been done on such types of studies.

This paper presents a new computing approach which
can securely decompose on cloud the high-order tensor
generated from large scale heterogeneous data. The ma-
jor contributions are summarized as follows.

• We present a holistic framework to address the
problem of secure tensor decomposition on cloud.
The framework not only allows us to utilize the
powerful computational capabilities of the cloud,
but also can ensure data security during the process
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of tensor decomposition.
• We introduce a new Unified Cipher Tensor (UCT)

representation model. The detailed procedures of
how to encrypt the low-order sub-tensors construct-
ed from heterogeneous data as cipher counterparts
using the RLWE-based fully encryption scheme,
as well as how to embed them to a base tensor
space to generate a unified cipher tensor model are
illustrated in this paper.

• We propose to employ the Lanczos method to de-
compose the obtained cipher tensor model to a core
tensor and a certain number of truncated orthogo-
nal bases. A secure tensor decomposition algorithm
is designed in which the non-homomorphic square
root operation is removed. Theoretical analyses of
the algorithm in terms of time complexity, memory
usage, decomposition accuracy, and data security
are provided.

The remainder of this paper is organized as follows.
Section 2 recalls the preliminaries. In Section 3 the prob-
lem of secure tensor decomposition is formalized and the
corresponding solution framework is illustrated. Section
4 explores the method to represent the heterogeneous
data as a unified cipher tensor model. A Lanczos based
secure tensor decomposition algorithm is proposed in
Section 5. Section 6 evaluates the performance of the
proposed approach. After reviewing the related works
in Section 7, we conclude the paper in Section 8.

2 PRELIMINARIES

In this section, the preliminaries on tensor decom-
position, fully homomorphic encryption, and Lanczos
method are reviewed. Additionally, the symbols fre-
quently used in this paper are listed in Table 1.

2.1 Tensor Decomposition
Tensor is a type of high dimension matrix widely used
in many applications [5] such as computer vision, data
mining, graph analysis and signal processing. High-
Order Singular Value Decomposition (HO-SVD) is a
type of approach that can factorize the tensor to a
core tensor multiplied with truncated matrices. Let T ∈
RI1×I2×...×IN denote an N -th order tensor, S, T̂ refer to
the core tensor and approximate tensor respectively, then
the HO-SVD method is defined as

S = T×1U1
T×2U2

T...×NUN
T,

T̂ = S×1U1×2U2...×NUN .
(1)

The i-mode product T×iU, 1 ≤ i ≤ N , of a tensor by a
matrix in Eq. (1) is defined as

(T×iU)j1j2...ji−1kiji+1...jN

=
Ii∑

ji=1

(tj1j2...ji−1jiji+1...jN × ukiji),
(2)

where tj1j2...ji−1jiji+1...ji and ukiji refer to the elements
of tensor T and matrix U respectively.

TABLE 1
Table of symbols.

Symbol Definition
T initial tensor
S core tensor
T̂ approximate tensor
T(i) i-mode unfolded matrix
Sym(T(i)) symmetric matrix generated with T(i)

D diagonal matrix
L tridiagonal matrix
α, β elements of the tridiagonal matrix
U (V ) left (right) singular vector matrix
Σ (Λ) singular (eigen) value
×i i-mode product of a tensor by a matrix
R set of real numbers
Z set of integers
R (R[x]) ring (polynomial ring)
m plaintext
c = {ċ, c̈} ciphertext
χ discrete gauss distribution
e randomly selected error from χ

q, p big prime integer
Ec (Dc) encryption (decryption) function
ΨE cipher data of Ψ, namely ΨE = Ec(Ψ)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1615

41 42 43 44

45 46 47 48

49 50 51 52

53 54 5655

71 72 73 74

75 76 77 78

79 80 81 82

83 84 8685

-371.64 0.0259

0.0065 0.4622

-0.0013 -4.1201

-16.5575 -0.5813
-0.4515     -0.7044

-0.4830     -0.2583

-0.5145      0.1878

-0.5461      0.6339

U1=

-0.4882     -0.6795

-0.4960     -0.2323

-0.5038      0.2148

-0.5117      0.6620

U2=

T=

S=

-0.0949      0.9324

-0.5242      0.2510

-0.8463     -0.2600

U3=

Fig. 1. Decomposing a three-order tensor to a core tensor
and three truncated orthogonal bases.

For example, Fig. 1 demonstrates the obtained core
tensor S and the truncated bases U1, U2, U3 by decom-
posing the initial tensor T . The 4 by 4 by 3 tensor is
decomposed to a 2 by 2 by 2 core tensor, two matrices
of 4 by 2 and a matrix of 3 by 2. Generally, the core tensor
and the truncated bases are considered as a compressed
version of the initial tensor T , the reconstructed data in
the approximate tensor T̂ are more efficient as the noise
data and inessential data are removed.

2.2 Fully Homomorphic Encryption

Homomorphic encryption is a new type of scheme that
allows specific types of operations to be performed on
the cyphertext to obtain the encrypted result, of which
the decryption is identical to the result directly comput-
ed by performing operations on the plaintext. Two fully
homomorphic encryption schemes [3, 7] are proposed
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using ideal lattice and polynomial ring respectively. A
new approach without bootstrapping [8] is presented
by Brakerski and Gentry. The fully homomorphic en-
cryption scheme utilized in this paper is introduced by
Kristin Lauter etc. [4]. The four fundamental steps of this
scheme are as follows:

1) Setup(1λ, 1µ): Select a µ-bit modulus q to con-
struct a polynomial ring Rq and a discrete
gauss distribution χ, set d as the degree of
polynomial xd + 1, where d = d(λ, µ). Selec-
t R = Z[x]

/
(xd + 1), Rq = R/qR, then obtain the

public parameters params = {q, d, χ}.
2) KeyGen(params): Randomly select elements s← χ

and ä ← Rq , as well as an error e ← χ. Let ȧ =
−äs + 2e, then obtain the public key pk = {ȧ, ä},
as well as the private key sk = s.

3) Ec(pk m): To encrypt a message m, set u← χ, g ←
χ, r ← χ, compute ċ = ȧu + yg +m, c̈ = äu + yr,
and output the ciphertext c = {ċ, c̈}, where y is a
modulus parameter.

4) Dc(sk c): Obtain the plaintext m = ((ċ+ c̈×sk) mod
q) mod y using the private key sk.

The encryption scheme supports the homomorphism
of addition and multiplication, which can be described
as follows

Ec(m1) + Ec(m2) = Ec(m1 +m2),
Ec(m1 ×m2) = Ec(m1)× Ec(m2).

(3)

Let c1 = (ċ1, c̈1) and c2 = (ċ2, c̈2) be two encrypted
messages, according to Eq. (3), the homomorphic addi-
tion and multiplication operations are as follows

c1 + c2 = ċ1 + c̈1sk + ċ2 + c̈2sk
= (ċ1 + ċ2) + (c̈1 + c̈2)sk,

c1 × c2 = (ċ1 + c̈1sk)(ċ2 + c̈2sk)
= ċ1ċ2 + (ċ1c̈2 + c̈1ċ2)sk + c̈1c̈2sk

2.

(4)

Plaintext Ciphertext

m1
m2

c1
c2

m1+m2
c1+c2

Fig. 2. Illustration of the homomorphic encryption.

Fig. 2 demonstrates the homomorphic encryption of
an addition operation. Let m1, m2 be two elements in
the plaintext, c1, c2 in the ciphertext, and c1 = Ec(m1),
c2 = Ec(m2), then m1 +m2 = Dc(Ec(m1) + Ec(m2)).

2.3 Lanczos Method.
The Lanczos method [9] is efficient for computing the
eigenvalues and eigenvectors of a sparse symmetric
matrix A. It transforms the matrix A with an orthogonal

matrix W , where W = [w1, . . . , wk] and WTW = I , to
a tridiagonal matrix as follows

L =


α1 β2

β2 α2
. . .

. . . . . . βk

βk αk

 . (5)

Equating columns in the expression AW = WL, the
tridiagonal matrix L can be obtained by carrying out
the iteration procedures

αj = wT
j Awj ,

rj = Awj − αjwj − βjwj−1,
βj+1 = ∥rj∥2, wj+1 = rj/βj+1.

(6)

The components of α, β, r can be progressively cal-
culated. Let the eigenvalue decomposition of matrix L
be defined as L = QΛQT, then the eigenvalues and
eigenvectors of matrix A are Λ and WQ. In Eq. (6),
the matrix-vector product is the frequently called linear
transformation during the Lanczos iteration.

3 PROBLEM DEFINITION AND SOLUTION
FRAMEWORK

This section formalizes the problem of secure tensor
decomposition on the bases of the fully homomorphic
encryption scheme, and provides an overview of the
proposed solution framework.

3.1 Problem Definition
Big data consist of unstructured data Du, semi structured
data Dsemi and structured data Ds. Let core denote the
core data including the core tensor S and the truncated
orthogonal bases U1, U2, . . . , UN , then the secure tensor
decomposition problem can be formalized as

fr : {Ec(Du), Ec(Dsemi), Ec(Ds)} → Ec(T ),
fd : Ec(T )→ {Ec(S), Ec(U1), . . . , Ec(UN )}. (7)

In Eq. (7), the data representation function fr integrates
all the encrypted data as a unified cipher tensor model
(UCT), on which the decomposition function fd is per-
formed to obtain the encrypted core tensor as well as the
encrypted truncated orthogonal bases.

As the decomposition operations are carried out on the
encrypted data, the user’s privacy are protected. In order
to guarantee the correctness of the decomposition result,
Eq. (7) satisfies S = T×1U

T
1 ×2U

T
2 . . .×NUT

N . According
to the fully homomorphic encryption scheme, the secure
decomposition process satisfies the following equation

Dc(sk, Ev(pk, Cfd , Ec(T ))) = Cfd(T ), (8)

where Ev, Ec, Dc refer to the evaluation, encryption,
and decryption function, pk and sk denote the public
key and private key, Cfd refers to the boolean circuits
according to the decomposition function fd defined in
Eq. (7).
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The homomorphism can be guaranteed by simply
adding, subtracting, or multiplying the cipher data dur-
ing the tensor decomposition process. However, new
challenges arise as the non-homomorphic operations
such as division, square root are adopted in some types
of decomposition methods, e.g. Lanczos-based algorith-
m. A secure tensor decomposition algorithm is proposed
in this paper to address these challenges.

For convenience, in the following sections this paper
adopts the symbol ΨE to denote the cipher data accord-
ing to the plain data Ψ, namely ΨE = Ec(Ψ). Therefore,
the encrypted tensor Ec(T ) is denoted as TE .

3.2 Overview of the Solution Framework
To address the problem defined above, this paper pro-
poses a secure tensor decomposition approach based
on the fully homomorphic encryption scheme. Fig. 3
provides an overview of the framework where the
unstructured, semi-structured, and structured data are
encrypted and represented as a unified tensor model
which are then securely factorized to a core tensor and
a certain number of truncated orthogonal bases. All
the processes are carried out on the encrypted data
without decryption. The four representative steps of the
framework are summarized as follows.

Cloud

Video Data: VD XML Document: XD

Client

.
.
.

Database: DB

...

Unified Cipher Tensor

E

VD
T

E

XD
T

E

DB
T

E
T

E
S

1 , ,E E

N
U U…

Fig. 3. Framework overview of the secure tensor decom-
position approach.

1) Data Representation, Encryption and Submission:
The heterogeneous data collected in the clients
are represented as low-order sub-tensors using the
method proposed in our previous work [6]. Then
the sub-tensors are encrypted using the RLWE-
based fully homomorphic encryption scheme and
the obtained cipher results are submitted to the
cloud for unification and decomposition. In Fig. 3,
the unstructured video data V D, semi-structured

XML document XD and structured database DB
are transformed to cipher sub-tensors TE

VD, TE
XD,

TE
DB respectively.

2) Construction of Cipher Tensor: The obtained sub-
tensors TE

VD, TE
XD, and TE

DB are then embedded
to a base tensor model Tbase ∈ RItim×Ispa×Iclt

to generate a unified cipher tensor model
TE using the tensor extension operation
TE = Tbase

⇀

×TE
VD

⇀

×TE
XD

⇀

×TE
DB . The three orders

Itim, Ispa, Iclt of the base tensor denote the time,
space and client characteristic.

3) Secure Tensor Decomposition: After unfolding the
unified cipher tensor TE to matrices TE

(1), . . . , T
E
(N),

where N is the number of orders of tensor TE ,
the symmetrization transformation is performed
on each tensor unfolding to obtain the symmetric
matrix sym(TE

(i)) = TE
(i)(T

E
(i))

T, 1 ≤ i ≤ N . The
eigen vectors of the symmetric matrix sym(TE

(i))
are corresponding to the left singular vectors of
matrix TE

(i). The Lanczos method is employed to
perform the eigen value decomposition, namely,
sym(TE

(i)) = UE
i ΛE(UE

i )T. The cipher core tensor
SE can be computed by applying Eq. (1) to the
truncated bases UE

1 , . . . , UE
N and the unified

cipher tensor TE .
4) Obtain the Plain Core Tensor and Bases: By de-

crypting the cipher core tensor and cipher truncat-
ed bases obtained in Step 3, the plain core tensor
S and plain truncated bases U1, . . . , UN can be
computed. As the homomorphism are supported
during the secure tensor decomposition, the ob-
tained results are correct and are identical to that
computed over the plain data.

This paper focuses on Step 2 and Step 3, which corre-
spond to the secure representation function fr and secure
tensor decomposition function fd.

4 CONSTRUCTION OF CIPHER TENSOR VIA
FULLY HOMOMORPHIC ENCRYPTION

This section illustrates the process of representing the
heterogeneous data as a unified cipher tensor model
via the fully homomorphic encryption scheme. New
concepts and operations closely related to the cipher
tensor are introduced.

4.1 Cipher Tensor and Nil Element
In order to clearly describe the process of representing
the unstructured, semi-structured, and structured data
as a unified cipher tensor model, this paper introduces
some definitions as follows.

Definition 1: Cipher Tensor. A cipher tensor TE is
obtained by encrypting the elements in the plain tensor
T using the fully homomorphic encryption scheme. The
number of orders of tensor TE is equal to that of
tensor T . The construction process is defined as TE =
{Ec(t)|t ∈ T}.
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1 0 3

T T
E0 6 0

5 0 0

0 2 0

0 4 0

0 0 7

8792, 960 2348, 376 8792, 960

8792, 960 8792, 960 3487, 384

3565, 544 3832, 576 3832, 576

3832, 576 4930, 648 3832, 576

6417, 880 5232, 1024 5131, 536

5232, 1024 8262, 1288 5232, 1024

I1

I2

I3

Fig. 4. A plain tensor and the corresponding cipher tensor.

Fig. 4 demonstrates a plain tensor and the correspond-
ing cipher tensor. In this instance, the public key is
pk = (141, 13) as well as the private key is sk = 31. The
parameter q is set to 78791, and the messages are of three
bit, namely m ∈ {0, 1, . . . , 7}. The encryption function
is formalized as ċ = ȧu+8g+m, c̈ = äu+8r, as well as the
decryption function is m = ((ċ+ c̈s)) mod q) mod 8. The
parameters u, g, r are randomly selected from a discrete
gauss distribution. The two tensors in Fig. 4 satisfy the
equation TE = Ec(pk, T ) = Ec({141, 13}, T ). This is a
simple example to illustrate the construction of a cipher
tensor. In practice, the fully homomorphic encryption
scheme chooses large integers for these parameters.

Definition 2: Nil Cipher Element. The element ob-
tained by encrypting the plain element 0 is called the Nil
cipher element. This paper adopts symbol 0E to denote
the Nil cipher element, namely 0E = Ec(0).

As three randomly selected parameters, i.e. u, g, r, are
employed during tensor encryption, the plain element 0
may be encrypted to different Nil cipher elements. For
example, in Fig. 4, the plain element t121 = t212 = t313 =
0, however the cipher element tE121 = (5232, 1024), tE212 =
(3832, 576), and tE313 = (8792, 960).

Definition 3: Sparse Cipher Tensor. A cipher tensor
containing a large portion of Nil elements is called a
sparse one. In this paper, a sparse tensor is assumed to
contain more than 60% Nil elements.

In Fig. 4, the cipher tensor TE consists of 18 elements,
of which 11 are Nil elements. Therefore, TE is deemed
as a sparse cipher tensor.

Definition 4: Reduced Cipher Tensor. A reduced ci-
pher tensor is obtained by removing all the Nil elements
from the cipher tensor model.

As the zero element in the plain data may be en-
crypted to different Nil elements in the cipher tensor,
special methods are needed to remove the Nil elements
to obtain the reduced cipher tensor. In the proposed
solution framework demonstrated in Fig. 3, the clients
are responsible for removing the zero elements from the
plain tensor models before encryption. This method can
reduce the communication traffic.

4.2 Constructing a Unified Cipher Tensor Model
In this paper, the heterogenous data are first represent-
ed and encrypted as cipher sub-tensors in the clients,
then they are submitted to the cloud for unification. To
integrate all the cipher tensors, a base tensor model is

proposed, which is defined as Tbase ∈ RItim×Ispa×Iclt ,
where Itim, Ispa, Iclt refer to the time, space and client
characteristic. The three orders serve as a basis to which
various types of encrypted sub-tensors can be appended
to generate a unified cipher tensor model.

For example, a unstructured video data V D can
be transformed to a four order tensor model TV D ∈
RIf×Ih×Iw×Ics , where the orders If , Ih, Iw, Ics refer to
the frame, image height, image width, and color space
respectively. A semi-structured data XD can be repre-
sented as a three order tensor model TXD ∈ RIia×Iib×Ir ,
where the orders Iia, Iib, Ir denote the XML elements
and relationships [6]. The two tensors can be encrypted
to TE

VD, TE
XD which then be embedded to the base

tensor model Tbase. The constructed unified cipher tensor
model can be defined as

TE ∈ RItim×Ispa×Iclt×Ih×Iw×Ics×Iia×Iib×Ir . (9)

The frame order of the video data is integrated to
tensor order Itim. This nine-order tensor includes all data
characteristics from the video, XML document and base
tensor. All elements in the cipher tensor TE are involved
in secure decomposition.

4.3 Tensor Unfolding and Memory Storage Scheme
When the unified cipher tensor is generated, the next
critical step is to obtain the tensor unfolding, which
are then transformed to symmetric matrices. For sparse
tensor, the Compressed Row Storage (CRS) [10] method
is employed to store the unfolded matrices. The CRS
scheme is efficient for matrix-vector product and can
reduce memory usage during tensor decomposition. Ad-
ditionally, to decrease time consumption of the secure
tensor decomposition algorithm, this paper employs
TE
(i)((T

E
(i))

T v) to perform the matrix-vector operation on
the symmetric matrix of the i-mode tensor unfolding,
namely, the vector v is first left multiplied with matrix
(TE

(i))
T to obtain a temp vector, which are then left

multiplied with matrix TE
(i).

In order to unfold a cipher unified tensor, the non-Nil
elements in the cipher tensor are rearranged along the
rows of the corresponding unfolded matrices. Given an
N -order tensor TE ∈ RI1×I2×...×IN , the tensor unfolding
[5] TE

(i) ∈ RIp×(Ii+1Ii+2...INI1I2...Ii−1) contains the element
tj1j2...jiji+1...jN at the position with the row number
ji and the column number that is equal to (ji+1 −
1)Ij+2 . . . INI1 . . . Ij−1 + (ji+2 − 1)Ij+3 . . . INI1 . . . Ii−1 +
. . . + (j2 − 1)I3I4 . . . Ij−1 + . . . + ii−1. For the i-mode
unfolded matrix TE

(i) of the cipher tensor TE , the number
of rows is equal to Ii, as well as the number of columns

is equal to
N∏

j=1,j ̸=i

Ii.

Fig. 5 demonstrates the 1-mode unfolded matrix of
a three order cipher tensor. The five none-Nil elements
in tensor TE are kept and rearranged to the unfolded
matrix TE

(1). This unfolded cipher matrix is employed
for singular value decomposition. The Compressed Row
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3487, 384

3565, 544

4930, 648

6417, 880

8262, 1288

6417,880                     3565,544                                                      

8262,1288                    4930,648             

3487,384

I1

I2

I3

E
T

(1)

E
T

val

col-ind

row-ptr

6417,880 3565,544 8262,1288 4930,648 3487,384

Storage Scheme

1 3 2 4 6

1 3 5 6

Fig. 5. The 1-mode unfolded matrix of a 3-order cipher
tensor and the corresponding storage scheme.

Storage scheme [10] of the unfolded matrix is demon-
strated at the bottom table in Fig. 5, where the val array
consists of the five non-Nil elements, col-ind contains the
column indices, row-ptr stores the four locations that start
new rows. For example, the element 3 in array row-ptr
indicates that (8262, 1288) starts a new row.

4.4 Cipher Tensor Representation Algorithm

Based on the above mentioned methods, this paper
proposes Algorithm 1 to represent the heterogeneous
data as a unified cipher tensor (UCT) model.

Algorithm 1 Cipher Tensor Representation. TE =
fr(Du, Dsemi, Ds)

Input:
Heterogeneous data Du, Dsemi, Ds.

Output:
The unified cipher tensor model TE .

1: Represent local data as low-order sub-tensors, and
encrypt them to cipher sub-tensors in clients.

2: Upload the obtained cipher sub-tensors to cloud.
3: Embed the uploaded cipher sub-tensors to the base

tensor model Tbase, and obtain the unified cipher
tensor model TE .

4: Unfold the cipher tensor to matrices and obtain the
symmetric matrices for decomposition.

In Line 1 of the proposed Algorithm, the unstructured,
semi-structured, and structured data are transformed to
low-order sub-tensors, which are then encrypted using
the fully homomorphic encryption scheme. In this paper,
the zero elements of the plain data are removed during
the encryption procedure. The cloud embeds all the
cipher sub-tensors to the base tensor model in Line 3
to obtain the unified cipher tensor model TE . Line 4

obtains the symmetric matrices of each tensor unfolding
for secure decomposition.

5 SECURE TENSOR DECOMPOSITION

This section presents a secure tensor decomposition al-
gorithm to obtain the core tensor and the truncated or-
thogonal bases. Theoretical analyses of the algorithm in
terms of time complexity, memory usage, decomposition
accuracy and data security are provided in this section.

5.1 Non-Homomorphic Operations During Lanczos-
based Decomposition

TABLE 2
Utilized Operations in Lanczos Method.

Operation Homomorphic Step
+ yes αj = wT

j Awj

− yes rj = Awj − αjwj − βjwj−1

× yes αj = wT
j Awj

÷ no ωj+1 = rj/βj+1√
x no βj+1 = ∥rj∥2

Table 2 shows the five types of operations utilized in
the Lanczos iteration, namely, addition +, subtraction −,
multiplication ×, division ÷, and square root

√
x. The

first three operations are homomorphic, while the last
two are non-homomorphic. To guarantee the correctness
of the decomposition results of the cipher tensor, new
methods need to be developed to address the challenges
of non-homomorphic operations on cipher tensor, which
can be depicted as follows:

Challenge 1: Non-Homomorphic Square Root Op-
eration on Cipher Data. This challenge is to perform
the operation βj+1 = ∥rj∥2, which is responsible for
obtaining the second norm of the vector rj .

Challenge 2: Non-Homomorphic Division Operation
on Cipher Data. The division operation is utilized to
obtain the normalized orthogonal vectors using the fol-
lowing equation ωj+1 = rj/βj+1

.

5.2 Removing the Non-homomorphic Operations
Theorem 1: Lanczos-based Cipher Tensor Decomposi-
tion without Square Root Operation. Let TE denote
an N -order cipher tensor, SE refer to cipher core ten-
sor, UE

1 , . . . , UE
N be the truncated orthogonal bases,

then with the Lanczos method, the core data coreE =
{SE , UE

i } can be obtained without performing the non-
homomorphic square root operation on the cipher data.

Proof. During the decomposition process, the square
root operation only occurs during computing the second
norm of a vector, namely, βj+1 = ∥rj∥2. We loosen
the orthogonal unitary matrix W to an orthogonal but
non-unitary matrix to remove the square root opera-
tion. Let W be orthogonal vectors, WTW = D, where
D = diag(δ1, δ2, . . .). Then multiplying the symmetric
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matrix of the i-mode tensor unfolding with matrices WT

and W , we obtain

WTTE
(i)(T

E
(i))

TW =


δ1
δ2
δ3

. . .




α1 β2

1 α2 β3

1 α3
. . .

. . . . . .

 .

(10)
Let βj = δj/δj−1

, Eq. (10) can be transformed to

WTTE
(i)(T

E
(i))

TW =


α1δ1 δ2
δ2 α2δ2 δ3

δ3 α3δ3
. . .

. . . . . .

 .

(11)
Left-multiplying the two parts of Eq. (11) with matrix
W and selecting the j-th vector of the result matrix, we
obtain the following equation

TE
(i)(T

E
(i))

Twj = δjwj−1 + αjδjwj + δj+1wj+1. (12)

As the vectors of matrix W are orthogonal, according to
Eq. (12), all the parameters in the tridaigonal matrix can
be computed as

αj = wT
j T

E
(i)(T

E
(i))

Twj

/
δj ,

wj+1 = vj − αjwj ,
δj+1 = wT

j+1wj+1,

βj+1 = δj+1/δj ,

vj+1 = TE
(i)(T

E
(i))

Twj − βj+1wj .

(13)

In the above procedures, parameter i denotes the i-
mode unfolded matrix of the cipher tensor TE , j refers
to the j-th iteration of the Lanczos method. δj is a
non-zero element prematurely. Based on the tridiago-
nalized matrix, we can compute the left singular matrix
UE
i of the cipher tensor unfolding TE

(i). Therefore, the
core tensor SE can be obtained with equation SE =
TE×1(U

E
1 )T×2(U

E
2 )T . . .×N (UE

N )T. In Eq. (13), the non-
homomorphic square root operation is removed.

Note that the parameters α, β, δ, w, v are all in
ciphertext format. For convenance, the superscripts are
omitted during the proof procedure in this paper. The
division operation is transferred to client. In each Lanc-
zos iteration, the cloud send wT

j T
E
(i)(T

E
(i))

Twj , δj+1, δj to
client where the results of the divisions are computed
and passed back in ciphertext format.

5.3 Secure Tensor Decomposition Algorithm
In this paper, Algorithm 2 is presented for secure tensor
decomposition. The numbers defined in real fields in raw
data are multiplied with 10k to obtain the corresponding
integers. Hence, all the operations are defined in the
integer field. The non-homomorphic operations, square
root and division, are replaced.

In Line 1, the unified cipher tensor TE is unfolded to
N matrices which are transformed to symmetric matrices

Algorithm 2 Secure Tensor Decomposition on Cloud
{SE , UE

1 , . . . , UE
N } = fd(T

E).
Input:

The reduced cipher tensor TE .
Output:

The cipher core tensor SE and cipher truncated
orthogonal bases UE

1 , . . . , UE
N .

1: Unfold the cipher tensor to matrices and obtain the
corresponding symmetric matrices TE

(i)(T
E
(i))

T.
2: for each matrix TE

(i)(T
E
(i))

T, 1 ≤ i ≤ N do
3: Initialize the parameters by setting j = 1, wj =

random vector, δj = wT
j wj , β1 = 1, vj =

TE
(i)(T

E
(i))

Twj .
4: while δj ̸= 0 do
5: Compute wT

j T
E
(i)(T

E
(i))

Twj and obtain the param-
eter αj by receiving the division result comput-
ed in client.

6: Compute vector wj+1 = vj − αjwj .
7: Increase j by 1, j+ = 1.
8: Replace δj with wT

j wj .
9: Send δj+1 and δj to client and receive the divi-

sion result βj .
10: Compute vector vj = TE

(i)(T
E
(i))

Twj − βjwj−1.
11: end while
12: Construct the tridiagonal matrix L using the ob-

tained αj , βj , and compute the eigen pair.
13: Compute the left singular vector matrix and obtain

the truncated orthogonal basis UE
i .

14: Obtain the cipher core tensor SE using the equa-
tion SE = TE×1(U

E
1 )T×2(U

E
2 )T . . .×N (UE

N )T

15: Return tensor SE and the bases UE
1 , . . . , UE

N .
16: end for

TE
(i)(T

E
(i))

T. The left singular vector matrix of TE
(i) is

equal to the eigen vector matrix of TE
(i)(T

E
(i))

T. From
Line 3 to Line 14, Algorithm 2 computes the truncated
orthogonal bases using the Lanczos method. The non-
homomorphic operation, square root, is removed during
the iterations, and the division challenge is addressed by
transferring the operations to client in Line 5 and Line
9. The tridiagonal matrix L is obtained in Line 12, which
is utilized for eigen value decomposition. The truncated
orthogonal bases are computed in Line 13 as well as the
cipher core tensor is obtained in Line 14.

5.4 Algorithm Analysis
The performance of the proposed secure tensor decom-
position algorithm is theoretically analyzed in this paper
in terms of time complexity, memory usage, decomposi-
tion accuracy and data security.

Time Complexity: Execution time of the proposed
secure decomposition algorithm consists of matrix un-
folding, Lanczos-based singular value decomposition of
each unfolded matrices, and product of a tensor by the
truncated bases. Let Timeunf , Timelan and Timeprod
denote the time used by the above processes respectively,
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then the total time consumption Time can be computed
with the following equation

Time = Timeunf + Timelan + Timeprod. (14)

Tensor unfolding is a simple transformation with O(1)
time complexity. Timelan is equal to Time1 + Time2 +

...+TimeN =
∑N

i=1 Timei, where Timei refers to the de-
composition time consumed by unfolded matrix TE

(i). The
time complexity of decomposing one cipher symmetric
matrix generated from a tensor unfolding is O(n2). For
a truncated orthogonal basis U with k column vectors,
time complexity of the product of a tensor by a matrix is
O(kn), where k is the number of vectors in the truncated
basis UE

i . Hence, to decompose a N -order cipher tensor
TE with N unfolded matrices, the time complexity of
the proposed secure tensor decomposition algorithm is
O(1) + O(Nkn) + O(Nn2), namely O(Nn2) in general,
where N refers to the number of tensor orders, n denotes
the dimensionality of the tensor unfolding.

Memory Usage. The memory usage of the secure
decomposition algorithm is related to the number of
non-Nil elements in the ciper tensor TE . Let mi

nz denote
the number of rows that contain nonzero elements in
the symmetric matrix Sym(TE

(i)), then the total memory

usage is equal to 2N × nnz(TE) +
N∑
i=1

mi
nz . Based on

the Compressed Row Storage (CRS) scheme described
in Section 4.3, the proposed secure tensor decomposition
algorithm can significantly save computer memory.

Decomposition Accuracy. The reconstruction error be-
tween the initial tensor and the obtained approximate
tensor can be computed using the Frobenius Norm [11]
which is defined as∥∥∥T − T̂

∥∥∥
F
= (

I1∑
i1=1

, ...,

IP∑
ip=1

(ai1,...,ip − âi1,...,ip)
2
)

1
2 . (15)

For the unfolded matrix T(i) of initial tensor T , the
approximate matrix is T̂(i) = UiΣiV

T
i . The reconstruction

error is caused by approximation of all unfolded matri-
ces. To clearly analyze tensor dimensionality reduction
degree and tensor approximation degree, this paper
presents two ratios. The reduction ratio is defined as

ρ =
nnz(S)+

N∑
i=1

nnz(Ui)

nnz(T ) , where S denotes the core tensor,
and Ui is the i-mode truncated orthogonal basis. The
core data set of tensor T consists of the core tensor
S and truncated bases U1, U2, ..., UN . As only nonzero
elements of the core data set are stored, ratio ρ can
accurately reflect the dimensionality reduction degree.

The approximation ratio is ϑ =
∥T−T̂∥

F

∥T∥F
, which reflects

the degree of reconstruction error with tensor Frobenius
Norm. In this paper, the pair (ρ, ϑ) is employed to
describe the dimensionality reduction degree and recon-
struction error degree. Obviously, the ratio ρ is inversely
proportional to ratio ϑ.

Data Security. The fully homomorphic encryption
scheme employed in the proposed secure tensor de-
composition algorithm is based on the assumption of
Ring Learning with Errors (RLWE) [12]. The assumption
is parameterized by the polynomial f(x) ∈ Z[x] of
degree d, a prime integer q ∈ Z , as well as an error
distribution χ over Z [4]. According to this assumption,
given any polynomial number of samples of the form
ai, ci = ai · sk + ei, ai ∈ Rq, ei ∈ χ, it is very difficult
to compute ci in polynomial time. It is equivalent to
a variant of which the noise ei are multiples of some
integers that are relatively prime to the modulus q.

6 PERFORMANCE EVALUATION

This section illustrates some evaluation results of the
presented secure tensor decomposition approach. We
performed the experiments on commodity computers,
each of them is of Intel(R) Core(TM) i5−3470 CPU @3.20
GHZ, 8 GB RAM, and is running CentOS 6.4 Operating
System. We adopted the software library which imple-
ments the BGV fully homomorphic encryption scheme.
The NTL-6.2.1 mathematical library was compiled and
installed in the experimental machines. The experimental
data are from our university including the unstructured
video data collected with fixed cameras, semi-structured
XML documents about staffs and students in our univer-
sity, and structured trajectory data collected by mobile
phones. All the various types of data are encrypted
and integrated as a unified cipher tensor model for
secure decomposition. We have implemented a number
of secure algorithms on cipher data including singular
value decomposition, eigen value decomposition, ten-
sor construction, but due to space constraints, we only
present some representative results.

6.1 Operation Performance on Cipher and Plain Data
We performed the addition and multiplication opera-
tions on the cipher tensor and plain tensor constructed
from unstructured video data and semi-structured XML
documents. We set value 999983 and 1 to integer p and r
respectively for the encryption process. The experiments
were carried out many times and the average results
are demonstrated in Fig. 6. We also normalized the data
size and execution time for convenient comparison. The
operation in the experiment was matrix-vector product
which is frequently called during the Lanczos iteration.
The number of addition operations was about equal to
that of multiplication operations.

In Fig. 6, the normalized execution time of the op-
erations performed on plain data increase generally. It
increased by 0.12 from the normalized data size 0.4
to 1. For the cipher data, there is a considerable in-
crease occurred from the normalized data size 0.2. The
normalized execution time increased by 0.53 from the
normalized data size 0.4 to 1, which is about 4.42 times
that of the plain data. The experimental results show that
the BGV fully homomorphic encryption scheme is lack
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Fig. 6. The operation performance of matrix-vector prod-
uct carried out on cipher and plain data.

of performance. This is caused by the noise expansion
during the multiplication operations which need more
time to tackle them. The problem has been investigated
in Refs [3, 7, 8].

As the addition and multiplication operations are car-
ried out on the non-zero elements of the cipher tensor
and plain tensor, the sparsity is one of the critical factor
that can greatly influence the execution performance.
In many fields, the constructed unified tensor model
contains large amount of zero elements, this can decrease
the execution time. In addition, the multiplication opera-
tions may cause more noise than the addition operation
and subtraction operation, therefore in practice, the big
data applications can try to employ more addition and
subtraction than multiplication.

6.2 Performance of Cipher Tensor Construction
We evaluated the performance of constructing high-
order cipher tensors using the collected heterogenous
data. Two types of experiments are carried out, of
which the first employed the parameters p = 999983,
r = 1 as well as the second used p = 797, r = 2.
According to the software library of BGV homomorphic
encryption scheme, the parameter r was set with value
1 for ordinary homomorphic computation, while 2 for
bootstrapping [13]. The plain space in the implemented
PAlgebraMod class of the software has the form Apr =
A/prA. As the plaintext slots are different according
to the polynomials degree, we utilized different sizes
of data during the encryption experiments. The data
are partitioned to 1G and 7G chunks respectively for
cipher tensor construction, and the EncryptedArry class
was called to perform the encryption process.

The graph presented in Fig. 7 shows that the nor-
malized encryption time increases linearly as the nor-
malized tensor size increase. The time consumption in
the experiment with parameters p = 797 and r = 2 is
about threefold of that in experiment with parameters
p = 999983 and r = 1. This reveals that the adjustments
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Fig. 7. The time used for construction of cipher tensors.

of security parameters as well as the conversion to new
encryption procedures are time-consuming.

6.3 Effects of Dimensionality Reduction

To evaluate the effects of dimensionality reduction of
secure tensor decomposition, we utilized a three-order
tensor formed by gray video clips, which is of MPEG4
format, 15 frames per second. The tensor was unfolded
to three matrices, which were transformed to symmetric
matrices and then factorized using the Lanczos method.
We adopted different truncation ratios to preserve the
left singular vector spaces which contain the unitary
orthogonal vectors of the the tensor unfolding. This sec-
tion separately demonstrates some experimental results
of the singular values, orthogonal bases, core tensor,
and decomposition ratio that includes dimensionality
reduction ratio and tensor approximation ratio.

6.3.1 Singular Values of Unfolded matrices

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Experiment

Si
ng

ul
ar

 V
al

ue
 &

 C
or

e 
T

en
so

r 
V

al
ue

 

 

Singular Values of T
(1)

Singular Values of T
(2)

Singular Values of T
(3)

Diagonal Values of S

Fig. 8. The singular values of unfolded matrices and the
diagonal values of the core tensor.
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Fig. 8 demonstrates the singular values of the three
unfolded matrices T(1), T(2), and T(3). We also drew the
super-diagonal values of the core tensor in the figure
for comparison. The graph shows that the first singular
values of the three tensor unfolding are generally greater
than the others. In our experiments, the first singular
values are 6.559, 5.856, and 6.652 times of the second
singular values of the tensor unfolding respectively.
In addition, there is obvious declining trend from the
second singular value to the eight singular value. From
the ninth singular value, the rate of decrease slows
down. The scaling ratios of the first singular values
to the thirtieth singular values are 48.00, 51.73, and
103.35 respectively. Compared to the singular values, the
diagonal values of the core tensor are so small that they
are located at the bottom of the graph.

6.3.2 Unfolded Matrix and Truncated Orthogonal Basis

(a)

(b)

Fig. 9. (a) The 1-mode unfolded matrix. (b) The left
singular matrix.

Fig. 9 shows an example of the 1-mode tensor unfold-
ing T(1) and the truncated left singular vector matrix
U1. The number of rows in matrix T(1) is equal to
the dimensionality of order I1, as well as the number
of columns is equal to I2 × I3. The singular vector
matrices are composed of unitary orthogonal vectors, the
elements of the orthogonal vectors are normalized which

are between −1 and 1. The maximum elements of matrix
U1 is 0.53, as well as the minimum value is −0.73. The
elements that between (−0.2, 0.2) are account for 98.54
percent. About 33.96 percent of the elements are from
(−0.01, 0.01).

6.3.3 Matrices of The Core Tensor
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Fig. 10. Illustration of four matrices of the core tensor.

The projection coordinates are contained in the core
tensor which has the same number of orders as the
initial tensor. We illustrate the structure of the core tensor
with some representative matrices. Four matrices of the
core tensor are demonstrated in Fig. 10. The matrix
S(:, :, 3) has more larger elements than matrix S(:, :, 30).
The maximum element of matrix S(:, :, 3) and S(:, :, 30)
are 6286.07 and 156.27 respectively. The elements in
matrix S(:, :, 12) are between −936.40 and 893.84, as well
elements in matrix S(:, :, 21) are between −1085.67 and
539.93. In this experiment, the mean values of the four
matrices are −0.87, 0.41, −0.69, and 0.65 respectively.

6.3.4 Reduction Ratio and Reconstruction Ratio
We decomposed the unified tensor model to core ten-
sor and truncated orthogonal bases. The dimensionality
reduction ratio and approximation ratio which is equal
to the subtraction of the reconstruction error ratio from
100%, are utilized for evaluation. From the first exper-
iment to the thirty-fifth experiment, the dimensionality
reduction ratio increases from 0.28% to 78.19% in Fig.
11, as well as the tensor approximation ratio increases
slowly from 79.21% to 98.56%. In the fourteenth exper-
iment, 14.72% core data can guarantee 92.66% approx-
imation accuracy. In the eighteenth experiment, 23.41%
core data can guarantee 94.20% approximation accuracy.
The line graph of dimensionality reduction ratio in Fig.
11 increases sharply than the tensor approximation ra-
tio. Averagely, about 21% core data can guarantee 94%
approximation accuracy.
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Fig. 11. The relationship between the dimensionality re-
duction ratio and the tensor reconstruction ratio.

7 RELATED WORK

This section reviews some previous studies on tensor
decomposition, fully homomorphic encryption scheme
and Lanczos method..

7.1 Tensor and HO-SVD
A tensor model is used to illustrate the linear relations
between the scalars, vectors, and other tensors. Tensor
[5, 14] is a generalization of a matrix model, which is
usually called multidimensional array. It can effectively
represent the heterogeneous data as a concise model
with which the valuable information can be extracted
using the High Order Singular Value Decomposition
(HO-SVD) [15] method. As the HO-SVD method impos-
es orthogonal constraint on the truncated vector bases,
it is considered as a special case of the commonly
used TUCKER [16] decomposition. HO-SVD has been
adopted for data analysis and mining in many fields
such as tag recommendations [17] and hand-written digit
classification [18].

7.2 Fully Homomorphic Encryption
The concept of fully homomorphic is first introduced in
1978 [19]. The encryption schemes reported in Refs. [20–
24] support either addition homomorphism or multipli-
cation homomorphism. However, none of them can sup-
port both operations in a single scheme. A new approach
is presented in Ref. [25] which constructs a scheme
capable of carry out both addition and multiplication
operations, it handles an arbitrary number of additions
but one multiplication. In 1999, Gentry [3] constructed a
fully homomorphic encryption scheme (FHE) which can
evaluate an arbitrary number of additions and multipli-
cations on the encrypted data. From then on many works
[4, 7, 8, 26, 27] have been carried out in order to present
new efficient fully homomorphic encryption schemes.

7.3 Lanczos Method
The Lanczos method [28], an adaptation of power meth-
ods, is efficient for finding several extreme eigenvectors
and eigenvalues of a large scale sparse symmetric matrix.
In Ref. [29] a block Lanczos type algorithm is introduced
to compute the tridiagonal matrix. Parallel implementa-
tion of Lanczos algorithms [30, 31] are studied to im-
prove the efficiency. Those algorithms aim to effectively
parallelize the matrix-vector or vector-vector operations.
Ref. [32] reports a new algorithm that can remove the
square root operation from the Lanczos iteration. An
implicitly restarted method is explored in Ref. [33] for
obtaining the smallest singular triplets. In Ref. [34], a
new error bound for Lanczos method is introduced.

Many studies on tensor decomposition, fully homo-
morphic encryption and Lanczos method have been
performed over the past few decades. However, all
the investigations mentioned above are concentrated on
special topics, no systematic research has been dedicated
to secure tensor decomposition of big data on cloud.
The present study was undertaken to propose a holistic
approach to process the large scale heterogeneous data
on cloud while protect the privacy of user data.

8 CONCLUSION

Aiming to propose a new computing approach that can
securely process big data on cloud, this paper formalizes
the secure tensor decomposition problem, and proposes
a holistic solution framework to address it. A unified
cipher tensor model is presented to integrate all the en-
crypted sub-tensors as a unified model, concise examples
are provided for illustrating the process of cipher ten-
sor construction and unfolding. A Lanczos-based secure
tensor decomposition algorithm is introduced, in which
the non-homomorphic square root operation is replaced.
Theoretical analyses in terms time complexity, memory
usage, decomposition accuracy, and data security are
provide. Experiments are carried out to evaluate the per-
formance of the presented methods. The results support
that the proposed approach is efficient and can pave a
way for secure processing of big data on cloud.
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