2020-08-10T11:50:59Zhttps://muroran-it.repo.nii.ac.jp/?action=repository_oaipmhoai:muroran-it.repo.nii.ac.jp:000102592020-06-25T06:57:01Z0004600216:00489
A Note on Harmonious Coloring of CaterpillarsengcaterpillarsEulerian trailharmonious coloringharmonious chromatic numberpathwidthhttp://hdl.handle.net/10258/00010200Journal ArticleTAKAOKA, AsahiOKUMA, ShingoTAYU, SatoshiUENO, ShuichiThe harmonious coloring of an undirected simple graph is a vertex coloring such that adjacent vertices are assigned different colors and each pair of colors appears together on at most one edge. The harmonious chromatic number of a graph is the least number of colors used in such a coloring. The harmonious chromatic number of a path is known, whereas the problem to find the harmonious chromatic number is NP-hard even for trees with pathwidth at most 2. Hence, we consider the harmonious coloring of trees with pathwidth 1, which are also known as caterpillars. This paper shows the harmonious chromatic number of a caterpillar with at most one vertex of degree more than 2. We also show the upper bound of the harmonious chromatic number of a 3-regular caterpillar.IEICE TRANSACTIONS ON INFORMATION AND SYSTEMSE98D12219922062015IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENGinfo:doi/10.1587/transinf.2015EDP71135481745-1361Copyright © 2015 IEICEhttps://search.ieice.org/index.htmlpublisherapplication/pdfhttps://muroran-it.repo.nii.ac.jp/?action=repository_action_common_download&item_id=10259&item_no=1&attribute_id=24&file_no=12020-06-25