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Xiting Peng, Student Member, IEEE, Kaoru Ota, Member, IEEE, and Mianxiong Dong, Member, IEEE

Abstract—Vehicular fog computing (VFC) could provide fast
task processing services for vehicles. To make vehicles/fog nodes
willing to buy/sell resources, a double auction mechanism consid-
ering the interests of all parties is needed. However, few works
study the auction issue in VFC. Different from the existing
edge-related auction which only considers the price, some non-
price attributes (location, reputation, and computing power) are
also important for providing fair resource allocation in VFC.
In this paper, we propose a multi-attribute based double auction
mechanism in VFC, which considers both the price and non-price
attributes for constructing reasonable matching. To the best of
our knowledge, this is the first work to consider multi-attribute
based auction in VFC. Our auction mechanism could satisfy
computational efficiency, individual rationality, budget balance,
and truthfulness. To verify the proposed mechanism, we simulate
VFC using VISSIM and extract the driving data. Experimental
results show the effectiveness and efficiency of this mechanism.

Index Terms—Vehicular Fog Computing (VFC), Resource
Allocation, Multi-attribute Auction.

I. INTRODUCTION

With the development of Internet of Vehicles, more and
more vehicular applications are beginning to enter the lives
of people, including the safety and entertainment related
applications. While the emergence of numerous applications
could provide innovative and convenient services for drivers,
large-scale data processing is still a problem that needs to
be solved. Different from traditional networks, the vehicular
network has poor-quality wireless links. Therefore, moving
data to the cloud for processing is not feasible in the vehicular
network. Cloud-based data processing can no longer meet the
requirements of massive vehicular applications.

Vehicular fog computing (VFC) is a promising way to
provide fast task processing services for vehicles by offloading
these tasks to fog nodes close to vehicles [1]. VFC introduces
the idea of the edge computing paradigm [2] into traditional
vehicular network, as a supplement to cloud computing. Dif-
ferent architectures of VFC have been proposed, including
infrastructure-based VFC and vehicle-based VFC. Since some
infrastructures, such as RSU, are not deployed in reality,
vehicle-based VFC is regarded as more practical architecture.
In this architecture, fog nodes refer to vehicles with remaining
resources, especially slow-moving and parked vehicles. These
vehicles have sufficient resources and motivations to provide
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services to vehicles with resource needs [3]. For the conve-
nience of description, we refer to vehicles selling resources as
vehicular fog nodes, and vehicles that need resources as client
vehicles.

How to provide reasonable resource allocation is an impor-
tant issue in VFC. On one hand, fog nodes need to consume
their computing and storage resources when providing ser-
vices. On the other hand, not all vehicles are willing to pay
according to the wishes of fog nodes, which means different
vehicles will pay different amounts of money for their tasks.
Therefore, how to conduct fair trade between them is the key
issue for providing reasonable resource allocation.

Auction is a popular way to provide fair resource allocation
between buyers and sellers in the case of competition [4].
Since the interests of vehicles and fog nodes are usually
inconsistent, it is better to design a double auction mechanism
to consider the interests of all parties. Through double auction
mechanism, the price charged from vehicles and payment for
fog nodes could achieve a trade-off.

There are some works on edge-related auction mechanisms.
In [5], the authors proposed a truthful auction mechanism in
mobile cloud computing to achieve resource allocation be-
tween mobile devices and cloudlets. Sun et al. [6] considered
the industrial Internet of things scenario in which the edge
node is a resource-rich data center and extended the above
truthful auction mechanism. However, few works study the
resource auction issue in VFC scenario.

The existing edge-related auction mechanisms could not
be directly used in VFC, which only consider the price
information. Due to poor-quality wireless links, vehicular
network has a large delay when transmitting large-scale data
[7]. One fog node is difficult to provide large-scale data
processing services for vehicles who are far away. Therefore,
location information should be considered when determining
the matching in the VFC auction. Moreover, due to different
types of tasks and different computing capabilities of fog
nodes, vehicles have different preferences over fog nodes.
For example, vehicles want to choose fog nodes with higher
capabilities when processing safety-related tasks. Therefore,
other non-price attributes, such as reputation and computing
capability, also need to be considered in VFC auction.

In our study, we design a multi-attribute based double
auction mechanism in VFC scenario. The proposed auction
mechanism not only considers the price but also considers
non-price attributes when determining the winners, which
could construct more reasonable matching between fog nodes
and vehicles. To the best of our knowledge, this is the first
work to consider the multi-attribute based auction in the VFC
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scenario. In addition, our auction mechanism could satisfy
the following economic properties: computational efficiency,
individual rationality, budget balance, and truthfulness [5],
[8]. To verify our auction mechanism, we simulate the VFC
scenario using VISSIM, an open source framework for running
vehicle network simulation. Then we implement the proposed
auction system by JAVA, and verify the effectiveness and
efficiency of the double auction mechanism by the driving
data extracted from VISSIM.

The main contributions are summarized as follows:
• We consider multi-attribute factors and propose an

attribute-based matching model between fog nodes and
vehicles. In our model, vehicles send task requests with
bids and attribute requirements, and fog nodes process
these tasks by providing their asks and attributes.

• We propose a multi-attribute based double auction mech-
anism which meets budget balance, truthfulness, compu-
tational efficiency, and individual rationality.

• We implement the proposed auction system by JAVA, and
use the driving data extracted from VISSIM (vehicular
network simulator) to verify the effectiveness and effi-
ciency of the double auction mechanism. Experimental
results show that our mechanism could meet the proposed
properties.

The rest of this paper is organized as follows. Related work
about the double auction mechanism and VFC is introduced
in Section II. We briefly introduce the system model, auction
model and the economic properties in Section III. Section IV
detailed presents the proposed multi-attribute based double
auction mechanism. We discuss the experimental evaluation
in Section V. We conclude the paper in Section VI.

II. RELATED WORK

A. Resource Allocation in Vehicular Fog Computing

VFC is an emerging paradigm in recent year, which intro-
duces the idea of the edge computing paradigm into vehicular
network to solve limitations (e.g., latency and transmission
cost) in conventional vehicular network. Existing works on
VFC architecture are mainly divided into two categories:
infrastructure-based VFC which regards infrastructures close
to vehicles as the fog nodes [9], and vehicle-based VFC which
regards vehicles with the remaining resources as the fog nodes
[1], [10]. Compared with infrastructure-based VFC which
needs to deploy the additional infrastructure (e.g., Road Side
Unit), vehicle-based VFC is easier to deploy. For example,
Zhu et al. [11] proposed a VFC architecture which turns com-
mercial fleets with predictable driving routes into fog nodes.
Some applications in VFC have also been investigated, such
as real-time traffic management [1] and fog-based vehicular
crowdsensing [9].

As an emerging paradigm, existing works in VFC mainly
focus on its architecture [10]. Few works investigated the
resource allocation issue, which limits the development of
VFC. Feng et al. [12] designed a job scheduling method
according to ant colony optimization. In [13], the authors
proposed an adaptive resource scheduler for Fog Centers,
which can maximize system efficiency. However, these works

do not consider how to incentive vehicles and fog nodes to
participate in resource sharing. The design of an efficient
incentive mechanism in VFC scenario is still a great challenge.

B. Auction Mechanisms in Vehicular Network and Edge Com-
puting

Nowadays, auction issues in traditional vehicular network
have received the attentions from the academia. In [14],
the authors proposed a VCG-based reverse auction scheme
for cloud-based vehicular network, which can only meet the
properties of truthfulness and individual rationality. Kumar et
al. [15] studied the spectrum handoff issues in cognitive radio
vehicular network, and proposed a game theoretic auction
theory approach to select the optimal network for spectrum
handoff. In [16], [17], the authors studied the energy trad-
ing of electric vehicles, and proposed the efficient auction
mechanisms to incentive electric vehicles in the two-layer
vehicle-to-grid (V2G) system. However, these works study
the auction mechanisms in traditional cloud-based vehicular
network and do not consider the auction issues in the vehicular
fog computing scenario which contain many fog nodes with
different interests.

Although there is little work to design auction mechanisms
in VFC, some auction mechanisms in other edge computing
scenarios have been proposed [18], such as mobile cloud
computing [5], [19] and industrial Internet of things [6]. Sun
et al. [6] considered industrial Internet of things scenario
in which the edge node is a resource-rich data center and
proposed a double auction scheme which can fit one-to-
many scenario (one edge server can serve multiple devices).
However, this auction mechanism cannot be applied to the
VFC since vehicular fog nodes have fewer resources. In
[20], the authors solved the resource auction problem at the
edge/cloud levels. However, it cannot meet the property of
truthfulness. Kiani et al. [21] introduced a hierarchical mobile
edge computing which contains different types of cloudlets
and proposed a resource allocation mechanism with two-time
scale. However, this mechanism takes a long time, which is
not suitable for rapid changes of the network topology in
VFC. In [19], the authors proposed an incentive-compatible
auction mechanism in mobile cloud computing. Then they
extended it and proposed two auction mechanisms which can
meet desirable properties according to different needs [5].

Note that the above works only consider the price factor
when determining the winners, which could not be directly
used in the VFC. As discussed in the introduction, due to the
poor-quality wireless links which limit the range of data trans-
mission among vehicles [22] and different types of tasks in the
vehicular network which need to choose different fog nodes
based on the task requirements, some non-price attributes, such
as location, reputation and computing capability, also need to
be considered in VFC auction. Therefore, in this paper, we
consider these important non-price attributes to construct more
reasonable matching between vehicles and fog nodes when
designing the double auction mechanism for VFC scenario.
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Fig. 1: The Architecture of Vehicular Fog Computing

III. PROBLEM FORMULATION

In this section, we will introduce the system model, auction
model, and the design objective of the auction mechanism.

A. System Model

As depicted in Fig.1, VFC system includes a cloud-based
platform, some base stations (BSs), and massive vehicles serv-
ing as vehicular fog nodes (sellers) or client vehicles (buyers).
Due to the limitation of transmission distance, a vehicular
fog node can only provide services for its neighboring client
vehicles. Therefore, we divide the VFC system into some
subsystems according to the coverage of a base station, and
the auction is performed among vehicles covered by the same
base station [11]. The base station, a trusted third party, can be
used as an auctioneer to determine winners. In our model, the
base station only needs to perform the auction process (such
as matching and pricing), but it does not need to provide the
resources for executing client vehicles’ tasks. Note that we
only consider that one fog node can only serve one vehicle at
a time because the vehicular fog node has limited resources.

To construct more reasonable matching between vehicular
fog nodes and client vehicles, we consider the non-price
attributes in this paper. We choose three kinds of important
attributes as the examples and explain the rationality of using
them in the VFC auction mechanism. Note that it is easy to
extend to other attributes. If we want to add one attribute,
the auction system will notify client vehicles to submit their
attribute requirements and fog nodes to submit their attribute
values before the auction process begins.

(A.) Location: The poor-quality wireless links make the ve-
hicular fog nodes can only serve the nearby vehicles [23], [24].
Therefore, the location should be considered when establishing
the matching between them in the VFC auction scenario.

(B.) Reputation: It is difficult to ensure vehicles can honestly
publish or perform tasks. For example, some sellers may forge
calculation results or reduce the performing speed, which
affects the buyer’s service experience. Therefore, a reputation
system is needed to ensure trust services.

(C.) Computing Power: Client vehicles have different re-
quirements for the execution time of different tasks. For
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Fig. 2: The Multi-attribute based Double Auction Framework
for Vehicular Fog Computing

example, some safety-related tasks need to be processed in
a very short time, which need more computing power. On
the contrary, vehicles do not have such high requirements for
entertainment-related tasks. Therefore, computing power also
needs to be considered to provide flexible services for different
needs of vehicles.

At the begin of each auction round, vehicles dynamically
join a sub-auction system using different identities (vehicular
fog node or client vehicle) and register with the auctioneer
within the communication range using their personal infor-
mation (ID, type of the vehicle, location, reputation and
computing capabilities). At the same time, the information
about all vehicular fog nodes will be distributed to each client
vehicle under the same sub-auction system.

At the bid submission phase, each client vehicle computes
its bids for all vehicular fog nodes, which are different values
according to sellers’ attributes (resources) and the buyer’s
preferences (the calculation method is shown in Section III-B).
At the same time, the client vehicles also submit minimum
attribute requirements in order to construct reasonable match-
ing. Similarly, the vehicular fog nodes submit their asks to the
auctioneer. After receiving the bids and asks, the auctioneer
executes the auction algorithm and determines the winners
based on information provided by buyers and sellers. The
concrete auction process is shown in Fig. 2.

B. Auction Model

Considering m vehicular fog nodes provide resources for
n client vehicles, we model our problem as a single-round
double auction:

• Let B = {b1, b2, ..., bn} be the set of client vehicles (buy-
ers), and |B| = n. We denote minimum attribute require-
ments of i-th buyer as qb

i = {(q11i , q12i ), q2i , q
3
i , ..., q

k
i },

where q11i and q12i represent the location and acceptable
distance with a vehicular fog node, while q2i , q3i , and
qki represent the acceptable reputation, computing power,
and the requirement of k-th attribute.

• Similarly, S = {s1, s2, ..., sm} is m vehicular fog nodes
(sellers). qs

j = (q1j , q
2
j , q

3
j , ..., q

k
j ) are the attribute values

owned by the j-th vehicular fog node, which represent
location, reputation, computing power, and the value of
k-th attribute respectively.
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• For each bi, its bids for every seller sj is Hi =
(h1i , h

2
i , ..., h

m
i ). As different fog nodes have different

attributes (resources), buyers are willing to pay different
prices. Moreover, buyers have preferences over these
attributes according to tasks, which can be defined as the
attribute weights ωi = (ω1

i , ω
2
i , ω

3
i , ..., ω

k
i ). For example,

buyers processing safety-related tasks will give a larger
weight to reputation. Based on attributes of fog nodes
and attribute weights, one buyer could give different bids
for sellers. We could compute the weights based on the
attribute requirements qb

i , and assign greater weight for
the attribute which has more demand.

• For all sellers in S, they give asks according to their
resources, which is defined as A = (A1, A2, ..., Am). A
seller requests the same ask for different buyers since it
provides all resources for one client vehicle in one round.

According to resource attributes qs
j of the fog node (ob-

tained from the auctioneer) and the buyer’s attribute weights
ωi = (ω1

i , ω
2
i , ω

3
i , ..., ω

k
i ), the buyer bi could compute the

valuation V j
i (ωi, q

s
j ) for having services from the fog node

sj :

V j
i (ωi, q

s
j ) = Φi + ω1

i ∗ (dc − d(q11i , q1j )) +
k∑

a=2

ωa
i ∗ qaj (1)

where Φi is the fixed valuation. dc is the diameter of the
base station’s coverage and d(·, ·) is the distance between the
buyer and the seller. Note that these attribute values should be
mapped to a unified non-dimensional interval firstly.

As a truthful auction mechanism, we will ensure that a
buyer/seller has the maximum utility if it submits the bid hji
and ask Aj which are equal to the true valuation V j

i (ωi, q
s
j )

and cost Cj(q
s
j ) for providing the resources (the proof is shown

in Section IV-D). Cj(q
s
j ) is fixed, which will not change even

if this seller sj provides services for different buyers. Based
on bids/asks, the auctioneer determines winning client vehicles
Bw and vehicular fog nodes Sw. Then it will determine the
price P b

i charged from bi and the reward P s
j for sj . We define

U b
ij as the utility of the buyer bi if this vehicle is matched

with sj and Us
j as the utility of sj :

U b
ij =

{
V j
i (ωi, q

s
j )− P b

i ; , if bi ∈ Bw
0, otherwise

(2)

Us
j =

{
P s
j − Cj(q

s
j ), if sj ∈ Sw

0, otherwise
(3)

C. Economic Properties and Design Objective

A feasible and fair double auction mechanism usually meets
the following basic properties:

• Individual Rationality: Individual rationality means the
bid of a winning buyer should be greater than the charge
(hji ≥ P b

i ) and the ask of a winning seller should be less
than the payment (Aj ≤ P s

j ).
• Computational Efficiency: The muti-attribute based dou-

ble auction mechanism is computational efficiency if it
has polynomial time complexity.

• Budget Balance: Total payments that the auctioneer pays
to winning fog nodes should be less than total prices that
the auctioneer charges from winning buyers.

• Truthfulness: As a truthful buyer/seller, it will honestly
provide its bid/ask which is equal to its valuation/cost.
However, it is reasonable to assume that the buyer/seller
is selfish, and the buyer/seller has the enough motivation
to increase its utility by submitting a bid/ask different
from its true valuation/cost, which will affect the fairness
of the auction. Therefore, our mechanism must ensure:
the buyer/seller could obtain the maximum utility if
they honestly provide a bid/ask which is equal to its
valuation/cost. That means ∀bi ∈ B, U b

i is maximum
when the bid Hi = Vi, and ∀sj ∈ S, Us

j is maximum
when the ask Aj = Cj , where U b

i is a vector representing
the utilities of client vehicle i when it is matched by each
fog node and Vi is the true valuations when client vehicle
i is served by each fog node.

Moreover, system efficiency also needs to be considered
for constructing an efficient auction mechanism. Since fog
nodes have different resources and client vehicles have dif-
ferent resource requirements, it is better to increase resource
utilization as much as possible on the basis of meeting buyers’
needs. Therefore, we choose resource utilization (allocate
more resources to the buyer who has higher requirements)
as the measurement of system efficiency.

Although an auction mechanism that meets these five prop-
erties is a perfect auction mechanism, unfortunately, there is no
double auction mechanism can satisfy these five properties at
the same time [5], [8]. Therefore, we design a feasible auction
mechanism that can strictly satisfy the first four properties,
which can provide a fair and reasonable auction environment.
At the same time, our mechanism can partly ensure system
efficiency by allocating reasonable weights, as described in
the following section.

IV. MULTI-ATTRIBUTE BASED DOUBLE AUCTION
MECHANISM

The proposed multi-attribute based double auction mecha-
nism (MADA) includes three main stages: Matching Stage,
Assignment Stage, and Winner Determination and Pricing
Stage. We will introduce these three stages in detail and
demonstrate that the proposed auction mechanism could sat-
isfy the basic properties in this section.

A. Attributes based Buyer-Seller Matching

The first step of the buyer-seller matching is to build the
connection between client vehicles and vehicular fog nodes
based on the attributes since not all fog nodes could meet
client vehicles’ requirements. Moreover, our design objective
includes increasing resource utilization as much as possible
on the basis of meeting buyers’ needs. Therefore, we should
set a reasonable weight for every connection to construct the
optimal matching between them.

In this paper, we model our problem as a weighted bipartite
graph to represent the matching. The vertices are buyers and
sellers, and the edges represent whether the sellers can provide
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Algorithm 1: One-to-One Assignment Algorithm
Input: Weighted Bipartite Graph T = (B ∪ S,B ↔ S)
Output: One-to-One Assignment M

1 Adding some virtual vertices and edges with a weight
of −1 to T to make it a balanced bipartite graph T

′
.

2 Setting the initial labelling l() for every vertex in T
′
:

3 for each bi ∈ B do
4 l(bi) = maxsj∈S{λ(bi, sj)}
5 end
6 for each sj ∈ S do
7 l(sj) = 0
8 end
9 Generating the equality graph T

′

l which meets:
10 T

′

l = {(bi, sj) : l(bi) + l(sj) = λ(bi, sj)}
11 Selecting a random matching M in T

′

l ;
12 “Result” is a boolean variable; “L ⊂ B, R ⊂ S” are

the sets of unsaturated and saturation points of “M”
when the Hungarian algorithm terminates,
respectively.

13 Result, L, R← Hungarian algorithm (M , T
′

l );
14 if Result == True then
15 M ← Remove the virtual vertices and edges in M ;
16 return M ;
17 end
18 else
19 βl = minbi∈L,sj∈S−R{l(bi) + l(sj)− λ(bi, sj)};
20 updating the labelling:

21 l
′
(u) =

 l(u)− βl, u ∈ L
l(u) + βl, u ∈ R

l(u), others

22 updating the equality graph T
′

l based on the new
labelling. Go to line 11.

23 end

services to the buyers. Then we set a reasonable weight for
each edge to ensure assigning a larger weight to an edge
who connects a buyer with greater requirements and a seller
with more resources. Therefore, our design objective can
be converted to find the maximum weighted matching in a
weighted bipartite graph.

1) Constructing the Unweighted Bipartite Graph: We say
bi and sj have a matching (bi ↔ sj) if the resources of sj
is greater than the requirements of bi. Based on the matching
between them, we can construct an unweighted bipartite graph
T = (B ∪ S,B ↔ S), where B and S are two sets of
vertices representing n vehicles and m vehicular fog nodes,
respectively. B ↔ S represents the matching between them.

A buyer bi has the minimum attribute requirements qb
i , and

sj has the resources qs
j . If there exists a matching (bi ↔ sj)

between bi and sj , they should meet the non-price attribute
constraints:

(d(q11i , q
1
j ) ≤ q12i ) ∩ (q2j ≥ q2i ) ∩ (q3j ≥ q3i ) ∩ · · · (4)

where q11i and q12i represent the location and acceptable
distance with a vehicular fog node, while q2i and q3i represent

the acceptable reputation and computing power. Similarly, q1j ,
q2j , and q3j are the attribute values owned by the j-th vehicular
fog node, which represent location, reputation and computing
power respectively. After satisfying the above constraints, we
can establish the unweighted matching (coined as an edge)
between bi and sj .

2) Setting the Weight for Each Edge: According to our
design objective, we want to allocate more resources to the
buyer who has higher demand for providing better services.
Therefore, we define the weight as the product of the buyer’s
requirements and the seller’s resources if there exists a match-
ing between them, which could ensure assigning a larger
weight to an edge who connects a buyer with greater demand
and a seller with more resources. Then we give the definition
of the weight λ(bi, sj) for an edge (bi ↔ sj):

λ(bi, sj) = (dc − q12i ) ∗ (dc − d(q11i , q1j )) +
k∑

a=2

qai ∗ qaj (5)

Then we can obtain the weighted bipartite graph T = (B ∪
S,B ↔ S) by setting the weight for every matching.

B. One-to-One Assignment by the Weighted Bipartite Graph

We have converted the problem of maximizing resource
utilization into finding the maximum weighted matching in
a weighted bipartite graph by setting reasonable weights. In
this section, we use the idea of Kuhn-Munkres (KM) algorithm
to find maximum weighted matching from weighted bipartite
graph T = (B∪S,B ↔ S). The concrete procedure is shown
in Algorithm 1: Firstly, we add some virtual vertices and edges
with the weights of “−1” (which means it is not a normal
matching) to T to make it a balanced bipartite graph T

′
.

Secondly, we set the initial labelling l(·) for every vertex, and
generate the equality subgraph T

′

l which meets the equation
in line 10 of Algorithm 1:

T
′

l = {(bi, sj) : l(bi) + l(sj) = λ(bi, sj)} (6)

Thirdly, we execute the Hungarian algorithm (Line 13) to find
the perfect matching (maximum weighted matching) in T

′

l .
If there is no perfect matching, we will relax the labelling
(Line 18-21) for introducing new edges into T

′

l and repeat this
algorithm until we find the perfect matching M . After relaxing
the labelling, the original feasible edge is still feasible, and
the edge that was not feasible becomes a feasible edge now,
which means we can definitely find the perfect matching after
performing multiple relaxations. For each edge (bi ↔ sj) in
M , it means the task from vehicle bi can be processed by the
vehicular fog node sj .

Based on the above steps, we could obtain the maximum
weighted matching “M”, which is the one-to-one assignment
(sj = M(bi)) between fog nodes and client vehicles. In
the next section, we will show how to design a reasonable
winner determination and pricing scheme based on one-to-one
assignment “M”.

C. Winner Determination and Pricing

In the previous step, algorithm 1 outputs one-to-one assign-
ment “M”. Since part of assignments between buyers and
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Algorithm 2: Winner Determination and Pricing
Input: The matching set M , the candidate client

vehicles Bc and vehicular fog nodes Sc in M
Output: The winning buyers Bω and sellers Sω; the

charge P b and payment P s

1 Sorting all buyers in Bc according to the bids by an
descending order: hM(i1)

i1
≥ hM(i2)

i2
...;

2 Sorting all sellers in Sc according to the asks by an
ascending order: Aj1 ≤ Aj2 ...;

3 Searching for the largest g (Aligned Boundary) from
the first element in sorted buyers/sellers:
h
M(ig)
ig

≥ Ajg ;
4 Searching for the largest a from the (g+1)th buyer

such that hM(ia)
ia

≥ Ajg and the largest b from the
(g+1)th seller such that hM(ig)

ig
≥ Ajb ;

5 (θ, η)← (a− 1, g− 1) or (g− 1, b− 1): Choosing one
pair with more matchings from (Ba−1,Sg−1) and
(Bg−1,Sb−1); // Ba−1 means first “a− 1” elements
in sorted Bc

6 The subscript of Boundary Pair: (θ, η)← (θ+1, η+1)
7 // Pricing
8 P b ← h

M(iθ)
iθ

, P s ← Ajη ;
9 Bω ← Choosing the first “θ− 1” elements in sorted Bc;

10 Sω ← Choosing the first “η− 1” elements in sorted Sc;
11 Bω,Sω ← Removing all buyers/sellers who do not

have the matching in Sω/Bω;
12 return (Bω,Sω, P b, P s)

sellers do not have a consistent price, these assignments do
not represent final winners. Therefore, a reasonable winner
determination and pricing algorithm is needed. McAfee double
auction is a classical auction mechanism to price the homo-
geneous items. However, the simple pricing which does not
consider the assignments between buyers and sellers will miss
some winning buyers/sellers. Therefore, we refer to another
truthful and computationally efficient pricing scheme [8].

The core idea of our pricing algorithm is shown as follows:
We firstly sort the bids of buyers in descending order and asks
of sellers in ascending order for finding the aligned boundary
(Line 3). Then we fix the aligned boundary of one part (buyer
or seller) and relax the boundary of another part for finding the
extended boundary pairs, which have more candidate buyers
and sellers. The boundary pair with more matchings will be
regarded as the final price boundary. The concrete process is
shown in Algorithm 2.

D. Theoretical Analysis

We will prove that our scheme satisfies the properties of in-
dividual rationality, computational efficiency, budget balance,
and truthfulness.

Theorem 1. MADA satisfies individual rationality.

Proof. As shown in Line 1 and 2 of Algorithm 2, we sort the
buyers and sellers by the descending and ascending order, and

the winning buyers/sellers are the first “θ−1/η−1” elements in
sorted Bc/Sc. That means each winning buyer has the higher
bid h

M(i)
i than the charge P b = h

M(iθ)
iθ

, and each winning
seller has the lower ask Aj than the payment P s = Ajη ,
which can ensure the individual rationality.

Theorem 2. MADA is budget-balance for the auctioneer.

Proof. The muti-attribute based double auction mechanism
meets the property of budget balance if the total rewards that
the auctioneer pays to all winning fog nodes are not less than
the total price the auctioneer charges from all winning client
vehicles. For each bi and the corresponding sj , the utility that
the auctioneer could obtain is P b

i − P s
j = P b − P s ≥ 0.

Therefore, the overall utilities of the auctioneer are greater
than zero, which can meet the property of budget balance.

Theorem 3. The total time complexity of MADA is polynomial
in the order of O(χ3), where χ is the larger one of m and n.

Proof. In the Matching stage, we need to set the weight
between each buyer and seller. Therefore, the time complexity
is O(nm). In the Assignment stage, the KM algorithm always
can be achieved in the time complexity of O(χ3) [25], where χ
is max{m,n}. In the final stage, the sorting operations need a
time complexity of O(χ log(χ)). Then the searching operation
needs a time complexity of O(ψ), where ψ is less than
min{m,n}. Finally, the removing operations need to traverse
each buyer/seller before the boundary pair, which needs a time
complexity of O(ψ2). Therefore, the total time complexity of
MADA is polynomial in the order of O(χ3).

Theorem 4. our mechanism can ensure the truthfulness,
which means the buyer/seller could not improve its utility by
providing a bid/ask which is not equal to its real valuation.

Proof. Firstly, we prove that buyers/sellers cannot submit fake
attributes. Location can be obtained from GPS, which is easy
to detect if they submit a fake location [26]. As for the
reputation, it is evaluated by another entity (buyers/sellers).
When a fog node completed a client vehicle’ task, the client
vehicle will evaluate the fog node in terms of execution time
and accuracy of the results. Similarly, the fog node will eval-
uate the client vehicle in terms of payment time. Then these
information (score) will be uploaded to a reputation server,
and the distributed auctioneers will download and update this
information in time. Therefore, they cannot modify it since
reputation information cannot be controlled by themselves.
Computing power is related to the type of vehicles, which
will be provided when registering with the auction system.
Since the type of vehicles is difficult to fake, it is easy to
ensure drivers will submit the real computing power based on
the registration information. Therefore, buyers/sellers cannot
submit fake attributes. Then the matching and assignment
algorithm will output a deterministic and bid/ask-independent
assignment results, which means the changing of bids/asks will
not affect assignment results.

Then we will prove that the changing of bids/asks will
not affect the pricing stage. We use the proof of sellers’
truthfulness as the example, and the truthfulness of buyers
can be proved in similar ways. We define ÃM(i) as an ask
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different from the cost and AM(i) is equivalent to the cost
CM(i). Ũs

M(i) and Us
M(i) represent their utilities respectively.

We will discuss the following two cases separately:
1) ÃM(i) > AM(i): There are four sub-cases.
• The seller sM(i) is the winner when submitting both
ÃM(i) and AM(i). Without loss of generality, we assume
the boundary pair is (big , sjb) when submitting AM(i) for
auction. Note that another boundary pair (bia , sjg ) has the
similar deduction processes. We define y, x as the posi-
tion numbers of sM(i) and the corresponding buyer bix ,
where Ajy = AM(ix). Similarly, ỹ is the position number
of sM(i) when submitting ÃM(i), where ÃM(i) = Ãjỹ

and ỹ > y. Therefore, we have：Ajy < Ãjỹ < Ajb or
Ajy < Ajb < Ãjỹ .
For the first situation, we have: 1⃝ y < ỹ < g < b; 2⃝
g < y < ỹ < b; 3⃝ y < g < ỹ < b. For the sub-case 1⃝,
it will not affect the ask at/behind position g, which can
obtain the same aligned boundary g and boundary pair.
For the sub-case 2⃝, since hiy ≤ hig+1

< Ajg+1
≤ Ajy ≤

Ajy+1
in the original order (submitting AM(i)) and sjy+1

in the original order will be moved to the position y when
submitting ÃM(i), position g is still the aligned boundary
(hig ≥ Ajg , hig+1 < Ajg+1). Therefore, we can obtain
the same g and boundary pair since hig ≥ Ajb > Ãjỹ .
Sub-case 3⃝ has the same deduction process as sub-case
2⃝.

For the second situation, we have: 1⃝ y < g < b < ỹ;
2⃝ g < y < b < ỹ. For the sub-case 1⃝, we have
hig ≥ Ajb ≥ Ajg+1 and hig+1 < Ajg+1 < Ajg+2 since
the boundary pair is (big , sjb). When submitting Ãjỹ ,
sjg+1

and sjg+2
will be moved to position g and g + 1.

Therefore, position g is still the aligned boundary since
hig ≥ Ajg+1

and hig+1
< Ajg+2

. Since hig ≥ Ajb and
hig < Ajb+1

, the boundary of seller is located at position
b − 1 when we fix the boundary of buyer (Line 4 in
Algorithm 2), which could not include the new ask Ãjỹ

into final winners. Therefore, this sub-case is impossible.
We could derive the same result for the sub-case 2⃝.
Therefore, we could obtain the same boundary pair when
ÃM(i) > AM(i). The seller will be paid the same price
P s and these two asks have the same utility: Ũs

M(i) =
Us
M(i) = P s − CM(i).

• sM(i) only wins when submitting ÃM(i); If the ask ÃM(i)

wins and we submit a bid AM(i) which is less than ÃM(i),
it must be a winning seller as discussed in the first sub-
case. Therefore, this sub-case is impossible.

• sM(i) only wins when submitting AM(i); Us
M(i) ≥ 0 =

Ũs
M(i) since the seller only wins when submitting AM(i).

• sM(i) is not the winner when submitting both ÃM(i) and
AM(i); In this sub-case, Ũs

M(i) = Us
M(i) = 0.

2) ÃM(i) < AM(i): there are also four sub-cases.
• sM(i) is the winner when submitting both ÃM(i) and
AM(i). we also assume the boundary pair is (big , sjb)

when submitting AM(i). Therefore, we have Ãjỹ <
Ajy < Ajb . Then we have: 1⃝ ỹ < y < g < b; 2⃝
ỹ < g < y < b; 3⃝ g < ỹ < y < b. For the sub-case
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Fig. 3: The Individual Rationality and Budget Balance

1⃝, it will not affect the ask at/behind position g, which
can obtain the same g and boundary pair. For the sub-
case 2⃝, we have hig ≥ Ajg ≥ Ajg−1

in the original
order. When submitting ÃM(i), sjg will be moved to
position g + 1. If hig+1

≥ Ajg , g + 1 will be the new
aligned boundary since hig+2 < hig+1 < Ajg+1 . Since
Ajg ≤ hig+1 < Ajg+1 , the new boundary of seller will be
located at position g+1 (sjg is moved to position g+1).
Therefore, the new payment P̃ s = Ajg ≤ Ajb = P s. If
hig+1

< Ajg , the position g is still the aligned boundary
and the boundary pair is still (big , sjb). For sub-case 3⃝, it
will not affect the ask before position g, which can obtain
the same g and boundary pair. Overall, we could obtain
a new payment P̃ s ≤ P s or the same price P̃ s = P s

when the boundary pair has not changed. Therefore, the
new utility Ũs

M(i) = P̃ s − CM(i) ≤ Us
M(i).

• sM(i) only wins when submitting ÃM(i). Since sM(i)

only wins when submitting ÃM(i), we could obtain a new
payment P̃ s = Aj̃η

, which is less than AM(i) = CM(i)

since sM(i) loses by submitting AM(i). Therefore, we
have Ũs

M(i) = P̃ s − CM(i) ≤ 0 = Us
M(i).

• sM(i) only wins when submitting AM(i). This sub-case
is similar to the second sub-case when ÃM(i) > AM(i).

• sM(i) is not the winner when submitting both ÃM(i) and
AM(i). In this sub-case, Ũs

M(i) = Us
M(i) = 0.

Considering the above situations, we always have the
Us
M(i) ≥ Ũs

M(i), which can prove that sellers cannot improve
its utility by providing a fake ask. The truthfulness of buyers
can be proved in similar ways.

V. EVALUATION

A. Experiment Setup

We simulate the VFC using VISSIM, a classic open source
framework for vehicular network simulation. It can analyze
the operation of urban traffic and public transportation under
various traffic conditions. With VISSIM, we can construct dif-
ferent scales of vehicular network, and obtain the driving data
in real time, such as location, speed, vehicle type, power, and
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Fig. 4: Truthfulness of buyers and sellers

so on. We initialize the Luxembourg map and randomly load
multiple vehicles to implement the scenario of the vehicular
network. After the simulator has been running for a while,
we select an urban-intersection with a radius of 500m in this
map and extract the driving data (location, speed, and vehicle
type/power) of vehicles driving in this urban-intersection at
this moment.

Then we divide these vehicles into two types (client vehicles
and vehicular fog nodes) based on the driving speed and
vehicle type/power. It is reasonable since fog nodes always
refer to vehicles with the remaining resources, especially slow-
moving and parked vehicles in VFC architecture. We consider
three attributes (location, reputation, and computing power) in
our auction system. Since reputation could not be obtained
from VISSIM, we randomly generate them in our experiment.
In practice, the auctioneer has enough ability to collect the
reputation using another server in real time [27].

In our experiments, we select 150 client vehicles and 150
vehicular fog nodes from the candidate vehicles, and record
their attributes. The bids and asks are computed based on
these attributes. We also vary the number of buyers or sellers
for evaluating the performance of the auction mechanism
under different number of buyers/sellers. We conduct multiple
experiments on the window PC with 64-bit intel-core i5-
6200U CPU at 2.3 GHz and 8 GB memory, and average the
experimental results. The experimental setting and parameters
are shown in Table I.

B. Individual Rationality/Budget Balance
Individual rationality means the winning buyers will not

pay the charges more than their bids, and the winning sellers
will not obtain the payment less than their asks. Therefore,
we run the auction mechanism between 50 client vehicles
and 50 vehicular fog nodes, and output the final charges and
payments, as shown in Fig. 3. The abscissa represents the i-
th winning buyer-seller pair, and the ordinate represents the

TABLE I: Experimental Setting and Parameters

Parameters Value
Vehicular network Simulator VISSIM
The duration time of simulator 30 mins
The radius of simulation area 500m
Number of vehicles in simulation area 1000
Running by Windows PC
Auction system implementation JAVA
Number of client vehicles (n) 150
Number of vehicular fog nodes (m) 150
The range of bid/ask (50, 100]
The value of attributes (50, 100]
The range of weights (0, 1]
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Fig. 5: Computational Complexity

price. We can see that the bid of the winning buyer is always
higher than the final charge, and the ask is always less than
the final payment, which can prove the individual rationality.

As for the budget balance, we can see that the line represent-
ing the charge is higher than the line representing the payment.
Therefore, the auctioneer will obtain additional income from
the auction, which can prove the budget balance.

C. Truthfulness

We verify the truthfulness of the proposed multi-attribute
double auction mechanism by the following experiments, as
an auxiliary way to theoretical analysis (Section IV-D). We
randomly select a buyer/seller from the final winning set
and a buyer/seller who is not in the winning set. Then we
change the bid/ask of this buyer/seller, containing the value
greater than and less than the true valuation/cost. To provide a
consistent environment for comparison, we keep all parameters
unchanged in addition to the bid/ask of this buyer/seller.

Fig. 4 shows utilities when buyers/sellers provide different
bids/asks. Fig. 4(a) is the result when bi is the final winning
buyer. We can see that bi has the maximum utility when it
bids by the true valuation (76), and other bids will not bring
more utilities. Fig. 4(b) shows the utilities when bi is not the
final winning buyer. The maximum utility of bi is zero since
they are not the final winner if it truthfully submits the bid
(64). Although it can be the final winner when it changes the
bid, it also cannot obtain the utility which is greater than zero.

Fig. 4(c) and Fig. 4(d) are two cases of sellers. From Fig.
4(c) and Fig. 4(d) we can see that these sellers have the
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Fig. 6: Performance under Different Number of
Buyers/Sellers

maximum utilities when they offer the real cost (59, 71). In
summary, we can verify the truthfulness of our mechanism.

D. Computational Complexity

We evaluate the impact of the number of buyers/sellers on
running time by choosing a different number of buyers/sellers.
In this experiment, we fix buyers/sellers at 100 and change the
number of sellers/buyers from 50 to 150, respectively. Fig. 5
shows the results of the running time under a different number
of buyers/sellers. The purple bar shows the running time when
we fix the sellers, and the other is the results when we fix
the buyers. We can see that both of them have a polynomial
computation time, which can show the stability of our system
under different scale of data.

E. Performance Comparison with Other Auction Mechanisms

We compare the proposed mechanism with McAfee auction
and another edge-related double auction mechanism (STGA).
To provide a consistent comparison environment, we use same
dataset and parameters when running these mechanisms. We
use the number of winning pairs as the performance metric to
conduct the comparative experiment, as described in Section
IV-C. we fix the number of buyers/sellers at 100 and vary the
number of sellers/buyers from 60 to 150, respectively. The

compare results are shown in Fig. 6(a) and Fig. 6(b), where
the yellow bar represents the winning pairs of our system, the
blue bar represents the STGA, and the pink bar represents the
McAfee auction. We can see that our scheme always has more
winning pairs than other auction mechanisms, which can show
the superiority of the proposed system’s performance.

VI. CONCLUSION

In our study, we design a multi-attribute based double
auction mechanism in VFC scenario. The proposed auction
mechanism not only considers the price but also considers non-
price attributes when determining the winners. In addition, our
auction mechanism could satisfy the following economic prop-
erties: computational efficiency, individual rationality, budget
balance, and truthfulness. To verify our auction mechanism,
we simulate the VFC scenario using VISSIM (a framework for
running vehicle network simulation), and extract the driving
data (location, speed, and vehicle type/power) of vehicles for
the auction. Experimental results show the effectiveness and
efficiency of our auction mechanism. In the future work, we
will study dynamic/online auction mechanism， which allows
client vehicles and vehicular fog nodes to join the auction
process in real time.
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