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Abstract 

Recently, significant discoveries have been made in the use of layered materials in 

novel superconducting (SC) materials. In 2012, superconductivity was discovered in 

the layered compound Bi4O4S3 with SC transition temperature Tc = 8.6 K. Later, (Eu, 

Sr)3F4Bi2S4 was synthesized under high pressure with Tc = 10 K. Superconductivity 

was also discovered in LnO1-xFxBiS2 (Ln = La, Ce, Pr, Nd, Yb) compounds with Tc = 2–

10 K through fluorine substitution for oxygen. Further, S can be substituted by Se, and 

the doped Se preferentially occupies the in-plane S site in LaO1-xFxBiCh2 (Ch = S, Se) 

with maximum Tc = 4 K. In particular, the superconductivity of LaO1-xFxBiS2 

compounds has been studied intensively. These compounds have a characteristic 

structure with an alternate stacking of SC BiS2 layers and blocking layers (LaO/F) that 

supply electrons to the BiS2 layers. The layered crystal structure is analogous to those 

of high-temperature (high-Tc) cuprate and Fe-based superconductors. However, the 

mechanism underlying the superconductivity of BiS2 superconductors, which still 

remains unclear, is considered to be different from those of cuprate and Fe-based 

superconductors. 

The symmetry of the SC gap is well known to reflect the origin of the SC 

mechanism. Magnetic penetration depth measurements and thermal conductivity 

measurements for La- and Nd-based BiS2 superconductors have shown a full gap with 

an s-wave. However, transverse-field muon spin relaxation (TF-μSR) measurements 

have proposed that the SC gap is well described by two-gap s + s-wave model and 



 

anisotropic s-wave model. Soon after that, angle-resolved photoemission spectroscopy 

(ARPES) measurements indicated a large SC gap anisotropy and suggested the 

existence of accidental nodes in nodal s-wave symmetry. Recently, point contact 

spectroscopy measurements have suggested that the gap symmetry is an unconventional 

pairing symmetry. Thus, the SC gap symmetry of BiS2-based superconductors remains 

controversial. 

In this work, we investigated the SC gap symmetry and bulk nature of 

superconductivity in LaO1-xFxBiS2 superconductors, and the effect of Sb substitution on 

the layered superconductor LaO1-xFxBi1-ySbyS2 through XRD, specific heat, electrical 

resistivity, and magnetic susceptibility measurements. LaO1-xFxBiS2 (x = 0.5, 0.4) and 

LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20) were synthesized using the flux method under ambient 

pressure. LaO1-xFxBiS2 (x = 0.5, 0.4) show bulk nature of superconductivity, although 

Tc is slightly suppressed, and its transition is broad for x = 0.4. The electronic specific 

heat Ce of LaO1-xFxBiS2 (x = 0.5) below ~ Tc can be explained by s-wave 

superconductivity with either an anisotropic single gap or two gaps. The two-gap effect 

is more dominant for x = 0.4. The Ce/T at T<<Tc in LaO0.5F0.5Bi1-ySbyS2 below y = 0.06 

is hardly recovered by Sb substitution, indicating that the superconductivity is robust 

against the pair-breaking due to non-magnetic impurities, as expected in the fully 

gapped s-wave superconductivity. Tc is suppressed by the Sb-doping in both the specific 

heat and the electrical resistivity and magnetic susceptibility measurements. The slight 

decrease in Tc in Sb-doped samples can be ascribed to the enhancement of electron 



 

correlations due to the weak localization of carriers. Based on these experimental results, 

we conclude that LaO1-xFxBiS2 compound shows a fully gapped s-wave 

superconductivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

要 旨 

近年、様々な新しい層状超伝導体（SC）が発見され、注目されている。 そ

の一つに、2012年に発見された超伝導転移温度 Tc = 8.6 Kの層状硫化物超伝導

体 Bi4O4S3がある。この系は様々なバリエーションがあり、最も高い Tcをもつ

超伝導体は高圧下で合成された 10Kの Tcを持つ（Eu、Sr）3F4Bi2S4である。ま

た、LnO1-xFxBiS2（Ln = La、Ce、Pr、Nd、Yb）（Tc = 2–10 K）では、酸素のフッ

素置換によりキャリア数を変えることができる。さらに、S を Se に置き換え

た LaO1-xFxBiCh2（Ch = S、Se）も超伝導を示すことが報告された。ドープされ

た Seは、LaO1-xFxBiCh2（Ch = S、Se）の面内 Sサイトを優先的に占有し、最大

Tc = 4 Kとなる。これらの化合物は、伝導を担う BiS2層と BiS2層に電子を供給

するブロッキング層（LaO / F）が交互に積層した特徴的な構造を有する。この

層状結晶構造は、興味深いことに、高温（高 Tc）銅酸化物および Feベースの

超伝導体と類似している。BiS2超伝導体の超伝導のメカニズムは未だ不明のま

まであり、銅酸化物や Fe系超伝導体とは異なるメカニズムと考えられている。 

超伝導発現メカニズムの起源を反映するものとして、超伝導ギャップの対

称性がある。Laおよび Ndベースの BiS2超伝導体における磁気侵入長と熱伝

導率の測定から超伝導ギャップの対称性として、フルギャップの s波、あるい

は、異方的 s波と s++波、であることが報告されている。角度分解光電子分光

（ARPES）実験からは、超伝導ギャップの大きな異方性が報告され、超伝導ギ

ャップにノードが存在するノーダルギャップの可能性が示唆されている。また、

トンネル分光実験からは、超伝導ギャップの対称性が s波のような従来型とは



 

異なるものであることが報告されている。このように、BiS2系超伝導体の超伝

導ギャップの対称性についてはまだ議論がつづいており、その解明はこの系の

超伝導発現メカニズムを解明する上で急務となっている。 

BiS2系超伝導体の中でも、特に LaO1-xFxBiS2化合物は系統的にキャリア数

を変化させることができることから、これまで集中的に研究されてきた。本研

究では、LaO1-xFxBiS2超伝導体の超伝導ギャップ対称性と超伝導性を明らかに

する目的で、XRD、比熱、電気抵抗率、磁化率測定を通じて、層状超伝導体 LaO1-

xFxBi1-ySbyS2に対する Sb置換の影響を調べた。LaO1-xFxBiS2（x = 0.5、0.4）およ

び LaO0.5F0.5Bi1-ySbyS2（y = 0–0.20）の単結晶試料は、大気圧下でフラックス法

により作製された。得られた LaO1-xFxBiS2（x = 0.5、0.4）単結晶はどれもバル

クの超伝導性を示し、その Tcは x = 0.5で約 2.5 K、x = 0.4ではわずかに抑制さ

れ、約 2.4 Kであった。LaO1-xFxBiS2（x = 0.5）の電子比熱 Ceは、異方的な単一

ギャップまたは 2 ギャップの s 波超伝導によってよく理解できるものであっ

た。x = 0.4の場合、特に 2ギャップ効果が顕著であった。また、非磁性不純物

として Sbを添加した LaO0.5F0.5Bi1-ySbyS2では、T << Tcでの Ce/Tが少量の Sb置

換によってほとんど回復しなかった。この結果は LaO1-xFxBiS2の超伝導が s-波

であることを意味する。さらに、比熱の温度依存性、電気抵抗率、磁化率測定

から決めた Tcは Sbドーピングによって抑制されるが、これは Sb不純物によ

る対破壊効果というよりは、キャリアの弱局在によって電子相関が強まったた

めと考えられる。以上の結果より、LaO1-xFxBiS2の超伝導はフルギャップの s波

超伝導であると結論した。 
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Introduction 
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Superconductivity is an amazing field of physics and has been attracted so much 

attention since its discovery in 1911. Today, superconductivity is being applied to many 

diverse areas such as: theoretical and experimental science, military, transportation, 

power production, electronics, medicine as well as many other areas. The remarkable 

phenomenon is famous for zero electrical resistance and Meissner effect. Scientists 

throughout the world have been striving to understand this remarkable phenomenon for 

many years. 

1.1 A century of superconductivity 

Superconductivity was observed for the first time by a Dutch physicist Heike 

Kamerlingh Onnes, a professor of physics at the University of Leiden. He had first 

liquefied helium in 1908 below 4.2 K, which gave him the refrigeration technique to 

reach temperature of a few degrees Kelvin. After 3 years later, he was discovered 

superconductivity in thin wires of mercury (Hg) by using liquid helium as a low 

temperature medium. He found the electrical resistivity of Hg abruptly dropped to zero, 

when the sample was cooled below 4.2 K in 1911. Thus, what he called as 

superconducting transition temperature Tc. [1] In 1913, he won Nobel Prize in Physics 

for his research in this field. 

After the discovery, the physicists all-around the world were very interested in 

searching for the possibilities of superconductivity. For decades, a fundamental 

understanding of this phenomenon included the many scientists who were working in 

the field. Major breakthroughs came from 1930s and summarized as follows: 
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Ø Meissner effect is the expulsion of a magnetic field from a superconductor 

during its transition from normal state to the superconducting state. German physicists 

Walther Meissner and Robert Ochsenfeld observed this phenomenon for the first time 

in 1933. [2] 

Ø London equations are constitutive relations for superconductors and provide 

simple but useful description of the electrodynamics of superconductivity. These 

equations were able to explain Meissner effect and developed by brothers Fritz and 

Heinz London in 1935. [3] 

Ø Ginzburg-Landau theory is a mathematical physical theory used to describe 

superconductivity based on general symmetry properties. It named after Vitaly 

Lazarevich Ginzburg and Lev Landau in 1950. [4] 

Ø BCS theory is the first microscopic mechanism of superconductivity and 

explains the superconducting phenomena by a condensation of paired electrons called 

Cooper pairs. It put forward by Bardeen, Cooper and Schrieffer in 1957. [5-6] 

Ø Josephson effect which was a mathematical prediction of relations between 

current and voltage across a weak link. It predicted by British physicist Brian David 

Josephson in 1962. [7] 

Ø Discovery of a barium-doped lanthanum copper oxide (La2-xBaxCuO4) 

superconductivity by J Georg Bednorz and K Alex Műller in 1986 [8] with Tc = 35 K, 

which led to a new flood of high temperature superconductors. After few years, Wu and 

Chu found a maximum Tc ~ 93 K from YBaCuO [9] and later Maeda group discovered 
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first 100 K superconducting transition temperature in BiSrCaCuO [10] compound.  

Ø Discovery of superconductivity in MgB2 by Akimitsu group in 2001 [11] with Tc 

more than 30 K. 

Ø Discovery of iron-based superconductors LaFePO layer compound by 

Kamihara group in 2006 [12] with Tc = 4 K. Since after, the maximum attained Tc = 26 

K in 2008 [13] has been observed from LaO1-xFxFeAs compound by the same group.  

Ø Discovery of BiS2-based superconductors by Mizuguchi group in 2012 [14] with 

Tc = 6 K. We will illustrate the BiS2-based superconductors in detail in 1.5 part. 

1.2 Significant phenomena and theories of superconductors 

1.2.1 Zero electrical resistivity  

Superconductivity manifests itself mainly as an absence of resistivity below some 

superconducting transition temperature Tc. It is one of two fundamentally important and 

intuitively startling properties are associated with superconductivity. The state of matter 

in which electrical resistivity is zero is known as the “superconducting state” as shown 

in Fig. 1.1(a). As is well-known, a superconductor is an element or metallic alloy, which 

when cooled to near absolute zero, dramatically lose all its electrical resistance. In 

principle, superconductors can allow electrical current to flow without any energy loss 

called perfect conductivity. 
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1.2.2 Meissner effect  

The next fundamental property of superconductivity is perfect diamagnetism 

called Meissner effect found in 1933. When a superconductor is cooled below its 

transition temperature in a magnetic field, it excludes the magnetic flux. In other words, 

the material becomes fully diamagnetic in the superconducting state as shown in Fig. 

1.1(b). The expulsion of magnetic field in a superconductor at room temperature and 

below Tc is shown in Fig. 1.2. 

 

r（
T）

Superconductor

Non-superconductivity metal

(a)
0

T (K)

c（
T）

T (K)

0

-1
(b)

Fig. 1.1 Basic phenomenon of superconductors: (a) zero electrical resistance, and (b) Meissner 
effect. 
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1.2.3 Critical parameters of superconductors  

The superconducting state of a material is decided by three parameters such as 

temperature, magnetic field and electrical current. That three parameters called critical 

temperature (Tc), critical magnetic field (Hc), and critical current density (Jc) 

respectively. Tc is the temperature below which the material becomes a superconductor. 

Hc is the maximum magnetic field which can be held out by a material in the 

superconducting state and Jc is the maximum current that can be tolerated by a 

superconductor in the superconducting state. These three parameters are coupled 

together to define the superconducting limits of a material as shown in Fig. 1.3 which 

shows that for the occurrence of superconductivity in a material. The phase diagram 

between these three parameters for a material gives a surface called as critical surface, 

beneath the surface the material is in superconducting state and above the surface the 

Fig. 1.2 Meissner effect in a superconducting in a constant applied magnetic field. 
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material is in normal state. 

 

 

 

1.2.4 The London equations  

In 1935, Fritz and Heinz London theoretically explained the Meissner effect by 

postulating two groups of electrons in a superconducting material, the superconducting 

electrons and the normal state electrons. They employed the Maxwell’s equations to 

develop a set of electrodynamics equations, called the London equations. The 

description is shown as follow:  

𝜕𝑱!
𝜕𝑡 =

𝑛!𝑒"

𝑚 𝑬 

∇ × 𝑱! = −
𝑛!𝑒"

𝑚 𝑩 

Fig. 1.3 Schematic phase diagram of critical surface for a superconductor. 
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Where Js is the superconducting current density, E and B are the electric and 

magnetic field within superconductor respectively, e is the charge of an electron, m is 

electron mass, and ns is a constant associated with a number density of superconducting 

carriers.  

According to the London equations, the magnetic field exponentially falls off with 

increasing distance from the surface of a superconducting sample. This characteristic 

decay length is called the London penetration depth (𝜆 = .
#

$!%"&#
): typical values are 

from 50 to 500 nm. 

1.2.5 The Ginzburg-Landau (GL) theory  

In 1950, V. Ginzburg and L. Landau developed a theoretical explanation for 

superconductors based on general symmetry properties. This theory was put forward 

before BCS theory, but it is crucial for next research. The GL theory introduces a 

characteristic length, now usually called the GL coherence length (𝜉 = . ℏ"

"#|)|
), which 

α is an expansion coefficient in a phenomenological model. The ratio of the two 

characteristic lengths defines the GL parameter: 

𝜅 =
𝜆
𝜉 

For type I superconductors, 0 < 𝜅 < 1 √2⁄ . 

For type II superconductors, 𝜅 > 1 √2⁄ . 

1.2.6 The BCS theory  

The next step in the evolution of our understanding of superconductors was the 

establishment of the existence of an energy gap D, of order kBTc between the ground 
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state and the quasi-particle excitation of the system. In 1957, three American Physicists-

John Bardeen, Leon Cooper and John Schrieffer produced their epoch-making pairing 

theory of superconductivity, known as the BCS theory. The BCS theory explains that 

even a very weak attractive interaction between electrons, mediated by phonons, creates 

a bound pair of electrons, called the Cooper pair, occupying states with equal and 

opposite momentum and spin. The formation of the bound states creates instability in 

the ground state of the Fermi sea of electrons and a gap ∆(T) opens at the Fermi level. 

The minimum energy Eg = 2∆(T) should be required to break a Cooper pair, creating 

two quasi-particle excitations. This ∆(T) was predicted to increase from zero at Tc to a 

limiting value 

𝐸* = 2∆(0) = 3.528𝑘+𝑇, 

For T <<Tc. This prediction provided one of the most decisively early verification 

of microscopic theory.  

The energy gap can be evaluation based on BCS theory in the weak-coupling limit 

N(0)V << 1, as follow: 

∆= 2ℏω-𝑒
. /
0(2)4 

where N(0) is the electronic density of states at the Fermi level and V is the 

attractive electron-phonon coupling potential and ℏ𝜔5 = 𝑘6Θ5 is Debye cutoff energy. 

The superconducting transition temperature Tc is the temperature at which ∆(T) ® 0. 

In this case: 

𝑇, = 1.13Θ-𝑒
. /
0(2)4 
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Tc is in part determined by the Debye temperature so that an observable shift in ΘD 

should accompany an alteration of Tc. Comparing this with energy, we can see that: 

Δ(0)
𝑘+𝑇,

=
2
1.13 = 1.764 

So that the gap at T = 0 is indeed comparable in energy to kBTc. The numerical 

factor 1.76 provided the number of the 2∆(0) above. The factor has been tested in many 

experiments and found to be reasonable. 

For weak-coupling superconductors, the reduced gap ∆(T)/∆(0) is a universal 

function of the reduced temperature T/Tc, which decreases monotonically from 1 at T = 

0 to zero at Tc, as shown in Fig. 1.4. Near T = 0, the temperature variation is 

exponentially slow since 𝑒!∆/$!% ≈ 0, so that ∆(T) » ∆(0) is nearly constant until a 

significant number of quasi-particles are thermally excited. Near the critical 

temperature Tc, the relation asymptotes to: 

∆(𝑇)
∆(0) ≈ 1.74(1 −

𝑇
𝑇,
)//" 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

∆(
T)
/∆
(0
)

T/Tc

∆(0)=1.76kBTc



Introduction 

11 

 

 

As a successful superconducting theory, BCS theory can explain the basic 

phenomenon of superconductivity with a unified microscopic mechanism, such as 

specific heat: 

𝐶89 = 𝑇
𝑑𝑆
𝑑𝑇 = 2𝛽𝑘+OP−

𝜕𝑓:
𝜕𝐸:

R
:

S𝐸:" +
1
2𝛽

𝑑Δ"

𝑑𝛽 U 

The first term is the usual one coming from the redistribution of quasi-particles 

among the various energy states as the temperature changes. The second term is more 

unusual and describes the effect of the temperature-dependent gap in changing the 

energy levels themselves. Near T = Tc, as ∆(T) ® 0, the first term then reduces to the 

usual normal-state electronic specific heat: 

𝐶8; = 𝛾𝑇 =
2
3𝜋

"𝑘+" 	𝑁(0)𝑇 

The jump of electronic specific heat DC at Tc is evaluated as Ces - Cen, as follows: 

Δ𝐶 = 9.4𝑁(0)𝑘+"𝑇, 

Comparing this with Cen, the normalized magnitude of the discontinuity is: 

Δ𝐶
𝐶8;

=
9.4

2𝜋" 3⁄ = 1.43 

For weak-coupling superconductor, it basically goes well with experiment value. 

1.2.7 The Josephson effect  

A Josephson junction is made by sandwiching a thin layer of non-superconducting 

material between two layers of superconducting material, which consists of two or more 

superconductors coupled by a weak link. The weak link can consist of a thin insulating 

Fig. 1.4 Variation of T/Tc with ∆(T)/∆(0) according to the BCS theory. 
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barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a 

short section of non-superconducting metal (S-N-S). The devices are named after Brian 

Josephson, who predicted in 1962 that pairs of superconducting electrons could “tunnel” 

right through the non-superconducting barrier from one superconductor to another, 

which is known as Josephson effect or Superconducting tunneling effect. He also 

predicted the exact form of the current and voltage relations for the junction of 

superconducting-non-superconducting-superconducting layers across the weak link. 

An experimental work proved that he was right, and hence Josephson was awarded the 

1973 Nobel Prize in physics for this work. 

1.2.8 Classification of superconductors  

Superconducting materials can be categorized in various ways which is 

schematically represented in Fig. 1.5. The classifications of superconductors are mainly 

based on their critical temperature, behavior in an applied field and the superconducting 

mechanism. 

Based on critical temperature, superconductors are classified into high temperature 

superconductors (HTS) if it has a Tc > 77 K and low temperature superconductors (LTS) 

if it has a Tc < 77 K. But this classification is not rigid, many other materials with Tc 

higher than 30 K also belong to HTS group such as MgB2 and iron-based 

superconductors. 
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Based on superconducting mechanism superconductors are classified as 

conventional superconductors and unconventional superconductors. Superconductors 

which fit into the BCS framework are known as conventional superconductors. 

Superconductors whose behavior cannot be explained by BCS theory are known as 

unconventional superconductors. Formation of Cooper pairs by electron-phonon 

interaction is depicted in the Fig. 1.6. The Cooper pair state is responsible for 

superconductivity. When an electron moves in a crystal lattice, it will attract positive 

charges on the adjacent lattice points, causing local distortion of the lattice points, 

forming a localized region with high positive charges. This local region of high positive 

charge will attract electrons with opposite spins and pair with the original electrons with 

a certain binding energy. At very low temperatures, this binding energy may be higher 

than the energy of the lattice atom vibration. In this way, the Copper pair will not 

Fig. 1.5 Schematic representation of the superconductor classification. 
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exchange energy with the lattice, and there is no resistance, forming the so-called 

"superconductivity". 

 

 

 

Based on the behavior of a superconductor in an external magnetic field, 

superconductors are classified into two categories type I and type II superconductors as 

shown in Fig. 1.7. For type I superconductors, its superconducting properties will be 

lost at moment. Type I superconductors expel the external magnetic field from its core 

up to a critical field (Hc). For external fields above Hc, the superconductor becomes 

normal material. For type II superconductors, it has superconducting electrical 

properties up to a field denoted by Hc2. Between the lower critical field Hc1 and the 

upper critical field Hc2 the Meissner effect is incomplete, and this region called as mixed 

state.  

An important difference between type I and type II superconductors is the mean 

Fig. 1.6 Formation of Cooper pair in a superconducting material- BCS mechanism. 
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free path of the conduction electrons in the normal state. If the coherence length x is 

longer than the penetration depth l, the superconductor will be type I, with 𝜅 < 1 √2⁄ ; 	

𝜅 = 𝜆 𝜉⁄ . But when the mean free path is short, the coherence length x is short and the 

penetration depth l is great with 𝜅 > 1 √2⁄ , and the superconductor will be type II. 

Type I superconductors are conventional superconductors and they are well described 

by the BCS theory. 

 

 

 

 

1.3 Superconducting materials and applications  

1.3.1 Superconducting materials  

Ever since the invention of superconductivity in 1911, researchers around the 

world tried to raise the superconducting transition temperature by different methods 

under different conditions. Even though there are thousands of superconductors known 

today, only a very small number of them are used for practical applications. The first 
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Fig. 1.7 Magnetization versus external magnetic field for type I and type II superconductors. 
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element to display superconductivity is Hg following which many materials including 

metals, compounds, cuprates, iron-based and chalcogenides et.al turned out to be 

superconductors at critical temperatures ranging from a few kelvins to 164 K under 

different conditions. Some of superconducting materials are listed in Table 1.1. [15-35] 

 

 

Type  Example  Tc (K) 

Elements 

Al 1.2 

In 3.4 

Sn 3.7 

Pb 7.2 

Nb 9.3 

α-Hg 4.2 

α-La 4.9 

Ta 4.5 

Compounds 

MgB2 [11] 30 

Nb3Ge [15] 23.2 

V3Ga [16] 16.5 

Nb3Sn [17] 18.05 

V3Si [18] 17 

Cuprates  La1.85Ba0.15CuO4 [8] 35 

Table 1.1 List of some superconducting materials.  
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YBa2Cu3O7 [9] 93 

Bi2Sr2Ca2Cu3O10 [10] 100 

HgBa2CuO4 [19] 94 

HgBa2Ca2Cu3O8 [20] 135 

Tl2Ba2Ca2Cu3O10 [21] 125 

Iron-based 

LaFeAs(O, F) [13] 26 

CeFeAs(O, H) [22] 48 

SmFeAs(O, F) [23] 55 

FeSe [24] 65 

Na(Fe, Co)As [25] 20 

Chalcogenides 

AuTe2 [26] 2.3 

(Ir, Rh)Se2 [27] 10 

(Ir, Pt)Te2 [28] 3.1 

BiS2-based layered 

Bi4O4S3 [14] 6 

La(O, F)BiS2 [29] 10.6 

(La, Sm)(O, F)BiS2 [30] 10.3 

Yb(O, F)BiS2 [31] 5 

Nd(O, F)BiS2 [32] 6.4 

Ce(O, F)BiS2 [33] 6.7 

Pr(O, F)BiS2 [34] 8.7 

La(O, F)BiSe2 [35] 6.7 
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1.3.2 Application of superconductors  

Soon after Kamerlingh Onnes discovered superconductivity, scientists began 

dreaming up practical applications for this strange phenomenon. The two properties of 

superconductors, zero resistivity and perfect diamagnetism, can be used to enhance the 

performance of many devices. In general, applications of superconductor can be divided 

into small scale and large scale categories. Small scale applications include Josephson 

devices, Superconducting Quantum Interference Devices (SQUID), microwave devices 

and resonators. Large scale applications include electric power transmission, 

superconducting magnets, magnetic resonance imaging (MRI), energy storage devices, 

magnetic levitation devices, magnetic confinement in fusion reactors and particle 

accelerators. Small scale applications are expected to be commercialized earlier than 

large scale applications due to the complexity in fabricating these materials suitable for 

commercial applications. Cooling superconductors much below room temperature is 

the main hurdle which restricts their use in day to day life. A superconductor which can 

be operated at a temperature close to room temperature is a dream of any one in this 

research area because of its potential to change the world. 

1.4 Brief introduction of cuprates and iron-based 

superconductors 

1.4.1 Brief introduction of cuprates  

Since the discovery of high temperature superconductivity in La2-xBaxCuO4, the 
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following few years saw a surge of novel superconductors with related crystal structure. 

They are collectively called ‘cuprates’, because they share a common structural and 

functional unit, a layer constituted of Cu and O atoms. The schematic image of the 

crystal structure of cuprates Bi2Sr2CuCa2O8 (Bi2212) is shown in Fig. 1.8. The Cu-O 

surface of the conductive layer where superconductivity is developed and the blocking 

layer that supplies carriers to the conductive layer have a layered structure in which the 

volume is increased in the c-axis direction. Another point to note in the crystal structure 

is that the Cu-O plane, which is the superconducting layer, forms a two-dimensional 

square lattice with CuO2 as a unit. The Tc of the cuprates exceeded those known at the 

time by an order of magnitude. The physical properties of cuprates were studied with 

increased sensitivity over time. However, it quickly became clear that much of the 

theory used to explaining the electric and magnetic properties of cuprates and 

unconventional d-wave paring with strongly correlated electron system was identified, 

instead of conventional s-wave paring.  
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The superconductivity in cuprates depends heavily on temperature and doping 

concentration. Shown in Fig. 1.9 is the schematic phase diagram of hole doped cuprates. 

The horizontal axis denotes the doping level controlling the electron concentration in 

the Cu-O planes. The parent compound in which carriers are not doped, it becomes a 

Mott insulator due to the repulsion of two electrons on the same atom and exhibits anti-

ferromagnetism. Superconductivity develops when holes are doped, but on the 

underdoped side is mysterious pseudogap characterized by T *at temperatures above Tc. 

In the superconducting state, an energy gap called a superconducting gap opens on the 

Fermi surface and many studies have revealed that the symmetry of this gap is d-wave 

symmetry. The mechanism of superconductivity in cuprates has not been fully clear, 

and elucidation of the mechanism is an important issue in physics. At present, it is 

Fig. 1.8 The crystal structure of cuprates Bi2Sr2CuCa2O8 (Bi2212). 
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thought that unique properties such as pseudogap and charge order are the key to 

elucidating the mechanism of superconductivity. 

 

 

 

1.4.2 Brief introduction of iron-based superconductors  

For over twenty years cuprates stood as the sole class of high Tc superconductors, 

until the advent of iron pnictide material LaFeAsO1-xFx. Iron-based superconductors 

have the highest Tc next to cuprates, and quickly attracted so much attention at that time. 

Iron-based superconductors have attracted attention because of their high Tc and the 

fact that the superconducting layer contains iron, which is considered incompatible with 

superconductivity because of its magnetic properties. As for the crystal structure is 

shown in Fig. 1.10, LaO1-xFxFeAs superconductor also has a layered structure in which 

Fig. 1.9 The schematic phase diagram of hole doped cuprates. 
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the superconducting layer (Fe-As) and the blocking layer (La-O/F) have a volume in 

the c-axis direction like cuprates. The Fe-As layer has a structure in which iron atoms 

are tetrahedral coordinated with arsenic atoms and is characterized by forming a two-

dimensional square lattice like cuprates. However, iron-based superconductors are 

different from cuprates, and the constituent elements of the superconducting layer may 

be different. Such as the superconducting layers will be Fe-P in the LnO1-xFxFeP (Ln = 

La, Ce, Pr, Nd, Sm) superconductors. LaO1-xFxFeAs superconductor supplies a carrier 

by partial defect of the O site of the blocking layer or fluorine substitution of the O site, 

and superconductivity is developed. The parent compound exhibits anti-

ferromagnetism in a low temperature region and does not have a superconducting 

transition. In many iron-based superconductors other than LaO1-xFxFeAs, the possibility 

of unconventional superconductivity due to antiferromagnetic fluctuations has been 

pointed out. Although the gap symmetry of some iron-based superconductors also 

proposed to be s-wave, so far there is not common understanding. 
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1.5 Introduction of BiS2-based superconductors  

1.5.1 The crystal structure of BiS2-based superconductors  

In 2012, layered superconductors Bi4O4S3 with a BiS2-type superconducting layer 

were discovered by by Mizuguchi group. [14] Because the similar crystal structure with 

cuprates and iron-based superconductors, it become the popular topic quickly. The 

common crystal structure in these superconductors is an alternate stacking of the 

superconducting (SC) layer and blocking (BL) layers by forming a two-dimensional 

square lattice in the c-axis direction. The crystal structure of the Bi4O4S3 

superconductor is composed of alternate stacks of the BiS2 SC layer (Bi2S4 bilayer) and 

the Bi4O4(SO4)0.5 BL layer as shown in Fig. 1.11. By replacing the BL layer by a simple 

REO layer (RE: rare earth), REO1-xFxBiS2 superconductors were discovered as shown 

in Fig. 1.12. [29-34] 

Fig. 1.10 The crystal structure of LaO1-xFxFeAs. 
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Fig. 1.11 The crystal structure of Bi4O4S3. 

Fig. 1.12 The crystal structure of REO1-xFxBiS2. 
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Band calculation suggested that the conduction band of BiS2-based 

superconductors are mainly composed of Bi 6px and 6py orbitals hybridized with S 3p 

orbitals; so that, the BiS2 layer acts as a SC layer in the BiS2-based superconductors. 

The space group of Bi4O4S3 compound is tetragonal I4/mmm and almost all REOBiS2 

compounds are tetragonal P4/nmm. For Bi4O4S3 superconductor, the electron carriers 

are generated by the SO4 defects: the valence states can be described as 

(Bi3+2O2−2)2(SO42−)0.5(Bi3+S2−2)2 • e-, where e- denotes a doped electron. Among the 

BiS2-based superconductors, the REOBiS2-based phases have been mostly studied 

owing to their simple structure to grow and easy carrier doping control. The first report 

on the superconductivity in the REOBiS2-based superconductor was LaO1-xFxBiS2. The 

parent phase (x = 0) is a band insulator. F substitution is effective to make the phase 

metallic, and superconductivity is observed in the doped phases. Electron doping in 

LaOBiS2 can be achieved by F− substitution for the O2− site or cation substitution 

(cation with a valence higher than 3+, such as Ti4+) for the La3+ site. In addition, various 

of REOBiS2-based superconductors can be synthesized by replacing La by Ce, Pr, Nd, 

Sm, or Yb. [29-34] Also, the S site can be substituted by selenium and the doped Se tends 

to occupy the in-plane site in LaO1-xFxBiCh2(Ch: S, Se). [35-36] Because of the presence 

of a van der Waals gap between the BiS planes, the plate-like single-crystal can be easily 

exfoliated in REOBiS2-based superconductors. The transport measurements with 

single-crystal revealed a huge anisotropy of electronic conductivity and 

superconductivity (Hc2) in the BiS2-based compounds. 
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1.5.2 The pressure effect of BiS2-based superconductors  

When pressure is applied to a substance, its crystal structure or electronic state 

changes, which may affect physical properties. BiS2-based superconductors are 

pressure-sensitive superconductors, such as external pressure and chemical pressure, 

and it is known that Tc greatly changes with pressure. 

The temperature dependence of electrical resistance and XRD patterns are shown 

in Fig. 1.13 and Fig. 1.14 by Mizuguchi group, [29, 37] Tc markedly increases in 

LaO0.5F0.5BiS2 by annealing the as-grown crystal under high pressure (HP). The 

shielding volume fraction (superconducting phase) also markedly enhanced by HP 

annealing from magnetic susceptibility measurement by the same group. This change 

in superconductivity is related to the introduction of strain in the grains. The X-ray 

diffraction peaks are broadened after HP processing. There is a pressure-induced 

structure phase transition from tetragonal to monoclinic. Basically, BiS2-based 

compounds possess a structural instability, [38] probably due to the presence of lone-pair 

electrons of Bi. [39] From the pair distribution function (PDF) analysis, the intrinsic 

nature of in-plane structural fluctuations and the possibility of charge fluctuations 

linked to the superconductivity were proposed. [40] Furthermore, the LaO0.5F0.5BiS2 

sample prepared by single-step HP synthesis showed the highest Tc of 11.5 K among 

the BiS2-based compounds. [41]  

 



Introduction 

27 

 

 

 

 

Fig. 1.13 Temperature dependences of electrical resistivity for as-grown and HP-annealed 
samples of LaO0.5F0.5BiS2. 

Fig. 1.14 X-ray diffraction patterns for as-grown and HP-annealed samples of LaO0.5F0.5BiS2. 
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For REOBiCh2 system superconductors, Tc also increases due to the chemical 

pressure (CP) effect accompanying elemental substitution. Using the CP effect, we can 

obtain effects like those obtained using the HP technique. There are two typical CP 

effects for these superconductors: one is the RE-site substitution with RE3+ that the 

ionic radius smaller than La3+, the other is the in-plane S site substitution with Se2- that 

the ionic radius larger than S2- as shown in Fig. 1.15. The CP can be induced by lattice 

shrinkage and expansion respectively in both two ways, and Tc increases with 

increasing in-plane CP. [42] In order to compare the magnitude of in-plane CP, the 

equation CP = (RBi+RCh1)/(Bi-Ch1(in-plane) distance) was proposed by Mizuguchi 

group, where RBi and RCh1 are the ionic radius of Bi and Ch in the Bi-Ch1 plane as 

shown in Fig. 1.16. It has been confirmed that the superconductivity of this system is 

affected by the crystal structure, but the relationship between the crystal structure and 

superconductivity is not clear yet, although the in-plane Bi-Ch bond distance and the 

Ch-Bi-Ch bond angle are important.  
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1.5.3 Bulk superconductivity and filamentary superconductivity of 

LaO0.5F0.5BiS2  

If the superconducting phase volume fraction of materials is lump, it will be bulk 

superconductors, otherwise will be filamentary superconductors. In the case of a 

superconducting material, a melt-grown material obtained by melting and then growing 

crystals is referred to as a bulk. The superconducting bulk has properties like those of a 

permanent magnet and has a stronger magnetic force than a permanent magnet. 

Therefore, a wide range of application is considered. As 1.5.2 part has mentioned, the 

superconductivity of LaO0.5F0.5BiS2 has proposed as filamentary under ambient 

pressure, and as bulk under HP technique. [29, 43] Similarly, the superconductivity is bulk 

in nature from both the two typical CP effects. The number of in-plane CP ~ 1.011 is 

Fig. 1.15 Schematic image of in-plane CP effect in REO0.5F0.5BiS2 and LaO0.5F0.5BiS2-xSex. 

Fig. 1.16 Schematic image of the Bi, Ch1 and Ch2 sites, and three Bi-Ch distances: Bi-Ch1 (in-
plane), Bi-Ch1(inter-plane), and Bi-Ch2. 
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estimated boundary of bulk superconductivity and non-superconductivity. [42] As 

described above, it has been reported that LaO0.5F0.5BiS2 has a filamentary 

superconductivity from the discussion of the absolute value of Meissner diamagnetism 

and the in-plane chemical pressure. However, the jump of specific heat accompanying 

the superconducting transition was observed by Yazici group [31] from the specific heat 

measurement of LaO0.5F0.5BiS2 polycrystal as shown in Fig. 1.17. Specific heat 

measurement is one of the most powerful means of examining the bulk properties of 

superconductivity compared to Meissner diamagnetism. Thus, from this result, 

LaO0.5F0.5BiS2 has the potential to essentially become bulk superconductivity. Whether 

the observed superconductivity is bulk or occurred in surface, it is crucial to elucidate 

the mechanism of superconductivity. 

 

 

 

Fig. 1.17 The plot of electronic specific heat Ce divide T versus temperature. 
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1.5.4 The superconducting gap symmetry of BiS2-based 

superconductors  

The superconducting gap can be defined as the energy difference between the 

ground state of the superconductor and the energy of the lowest quasiparticle excitation. 

As is well known, the symmetry of the superconducting gap reflects the origin of the 

superconducting mechanism. According the results already reported in literature, we 

consider the possibility of three types as shown in Fig. 1.18. [44] The first one is the 

conventional s-wave with energy gap D isotropic in k-space; D(k) = D0, also means the 

superconducting gap has no dependence in k-space that so called a full gap. The second 

one is the unconventional d-wave with energy gap D has nodes and anti-nodes 

dependence of k-space; D(k) = D0 (cos kx – cos ky), such as cuprate superconductors. 

The third one is the conventional s-wave with energy gap D anisotropic in k-space; D(k) 

= D0 + D2 (cos kx – cos ky)4, also means the superconducting gap has large gap and small 

gap dependence of k-space. In unconventional superconductivity, nodes do not always 

exist, such as the superconducting gap of iron-based superconductors, which is 

considered as unconventional superconductivity, has been proposed as s± wave with 

full gap. Strictly speaking, even in conventional superconductivity, the superconducting 

gap is not completely isotropic due to the symmetry of the crystal structure. 
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For BiS2-based superconductors, discussions on superconducting gap symmetry 

have been made from both theoretical and experimental studies. It suggested that 

superconducting gap has various symmetries such as s-wave, s± wave, d-wave, g-wave 

from theoretical research. [45-51] On the other hand, the superconducting gap symmetry 

of LaO0.5F0.5BiS2 polycrystal synthesized under high pressure by transverse-field muon 

spin spectroscopy measurement and the Bi4O4S3 polycrystal by magnetic penetration 

depth measurement were supposed as s-wave with full gap. [52-53] The superconducting 

gap symmetry of NdO1-xFxBiS2 single-crystal was proposed as s-wave with full gap by 

magnetic penetration depth and thermal transport measurements. [54-55] The 

superconducting gap of LaO0.5F0.5BiS1-xSex was found to be full gap by specific heat 

measurement. [56] Se-isotopic effect of LaO0.6F0.4BiSSe also indicates that phonons do 

not mediate the pairing interaction and suggest unconventional superconductivity. [57] 

However, LaO0.5F0.5BiS2 synthesized under ambient pressure have reported that the 

experimental results can be well represented by anisotropic s-wave and s + s-wave by 

Fig. 1.18 The plot of different pairing symmetries of superconducting gap. 
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transverse-field muon spin relaxation measurements. [58] From angle-resolved 

photoemission spectroscopy (ARPES) measurement, it showed that the 

superconducting gap is very anisotropic in NdO0.71F0.29BiS2 single-crystal, and some of 

the gaps are observed to be almost zero like nodes. This gap structure cannot be 

explained by conventional superconductivity, suggesting that it is unconventional. [59] 

Soon after that, the superconducting gap of LaO0.5F0.5BiS2 polycrystal was considered 

as d-wave unconventional pairing symmetry by point contact spectroscopy 

measurement. [44] After half a year, a concept of dirty nodal extended s-wave 

superconductivity was proposed to reconcile these two distinct experimental results of 

superconducting gap with a disconnected pocketlike Fermi surface structure model. [60] 

So far, the superconducting gap symmetry of BiS2-based superconductors has not been 

fully elucidated yet. 

1.5.5 The impurity effect on conventional and unconventional 

superconductors  

One of the significant differences between conventional superconductors and 

unconventional superconductors is the effect of non-magnetic impurities on 

superconductivity, while the impurity effects of non-magnetic are greatly different 

depending on the superconducting gap symmetry. In the case of s-wave conventional 

superconductors, the non-magnetic impurity can scatter the Cooper pair, but the Cooper 

pair is symmetric with respect to the time reversal. Therefore, the density of states near 

the Fermi surface and the attractive force of Cooper pair formation do not change due 
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to the non-magnetic impurities, and the Tc given by the BCS theory does not change.   

In the case of non-s-wave unconventional superconductors, Tc is greatly suppressed 

even by a slight lattice distortion contained in the sample. Because the SC gap of 

unconventional superconductors strongly depend on k-space, and non-magnetic 

impurity scattering will change k leading to large Cooper pair breaking effects. 

Therefore, it is understood that the unconventional superconductor is greatly affected 

by the Fermi level state density when it contains a non-magnetic impurity. 

It is known that when magnetic impurities are included, Tc is greatly suppressed 

even with a small amount. This is probably because the spins of the magnetic impurities 

scatter the spins of the electrons forming the Cooper pair, and the Cooper pair is broken. 

It can be explained as the scattering in this case is inelastic scattering and is not for time 

reversal. 

1.6 Purpose  

As above said, there are few reports of adding impurities to the Bi site on the 

superconducting surface in BiS2-based superconductors. In this system, there are many 

discussions on the symmetry of superconductivity from various theories and 

experiments. But the superconducting gap symmetry of BiS2-based superconductors is 

still controversial. Whether the superconductivity of this system is bulk that also is the 

subject of debate among scientists. So, we aimed to research the superconducting gap 

symmetry and superconductivity of BiS2-based superconductors. In this work, we 

fabricated LaO1-xFxBiS2 by flux method and investigated the symmetry and bulk 
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properties of the superconducting gap by specific heat, electrical resistance, magnetic 

susceptibility, and XRD measurements. And then, we fabricated LaO0.5F0.5Bi1-ySbyS2 

single-crystal by substituting a part of Bi on LaO0.5F0.5BiS2 with Sb, and to investigate 

the impurity effect on superconductivity and the superconducting gap symmetry by 

same measurements. 
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2.1 Single-crystal and polycrystalline 

The fundamental difference between single-crystal and polycrystalline is the 

length scale over which the atoms are related to one another by translational symmetry. 

Single-crystal has infinite periodicity and polycrystalline has local periodicity. An ideal 

single-crystal has an atomic structure that repeats periodically across its whole volume. 

Even at infinite length scales, each atom is related to every other equivalent atom in the 

structure by translational symmetry. A polycrystalline solid or polycrystal is comprised 

of many individual grains or crystallites. Each grain can be thought of as a single-crystal, 

and an interface called a grain boundary exists between the single-crystal adjacent to 

each other. In an isotropic polycrystalline solid, there is no relationship between 

neighboring grains. Therefore, on a large enough length scale, there is no periodicity 

across a polycrystalline sample. In a physical property study, the polycrystalline sample 

may be strongly affected by crystal grain boundaries due to anisotropy of the crystal 

structure of the sample, and a combined result of measurements in different directions 

may be observed sometimes. In the case of a single-crystal sample, it is expected that 

the observed results are ideally the essential results of the sample without any effects. 

2.2 Method 

Crystal growth methods can be classified into liquid phase method, gas phase 

method and solid phase method. Among these, from the viewpoint of growing a large 

single-crystal, the liquid phase method is advantageous because the easiness of 

rearrangement of atoms. The current methods for preparing BiS2-based 
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superconductors are solid phase method for polycrystalline and liquid phase method for 

single-crystal. 

The solid phase method is a commonly used method for preparing superconductor 

polycrystalline. The operation is simple and easy to develop. It is a chemical reaction 

of solid powder at a temperature lower than the melting point, that is, a new solid 

solution is generated by the thermal diffusion of ions or molecules participating in the 

reaction. The type, purity, and property of the raw materials in the solid phase method 

determine the reaction temperature, reaction speed, and reaction product. The choice of 

raw material will be an important factor in determining the final product. At the same 

time, the reactants are in contact with each other during the reaction. If the size of the 

reactants is smaller, and the contact area between the reactant particles become larger. 

So, it will promote the diffusion between atoms or ions, and increase the reaction rate. 

The liquid phase method is divided into melt method and solution method for 

preparing single-crystal. The melt method is a method of growing crystals from the 

same liquid phase as the composition of the target substance. In the melt method, it is 

necessary to heat the material to the melting point or more, but a large single-crystal 

can be grown in a relatively short time. After heating above the melting point, 

supercooling is required for single-crystal, so the cooling method is important for 

single-crystal. Examples of the melt method include the Bridgman method and the 

floating zone method. On the other hand, the solution method using a solvent is a 

method in which crystallization is performed by supersaturation due to slow cooling of 
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the solution or evaporation of the solvent. In the solution method, an aqueous solution 

method and a hydrothermal method for growing crystals using water as a solvent are 

well known. However, other than water, inorganic compounds (oxides, halides, etc.) or 

metals that are melted at high temperatures may also be used as the solvent. The solvent 

is called flux, and the crystal growth method is called flux method. In this work, we 

used flux method on all of samples. 

There are two kinds of flux methods. The components of the flux are the elements 

in the products; this is called as “self-flux method”. The other is the use of flux which 

does not include the same element in the products. The flux and raw materials for target 

compounds are mixed using a mortar and put in the crucible. The mixed powder is 

heated for the solution-growth process, and then the single-crystal is obtained. 

Generally, oxide materials (high-Tc cuprate compounds) are heated in open atmosphere, 

and non-oxide materials (Fe-based and BiS2-based compounds) are performed in a 

closed atmosphere, such as sealed in a quartz tube in vacuum. Finally, the important 

point of flux select is the following: flux should not react with the target materials and 

should be easily separated from the grown single-crystal. 

The advantages of the flux method are that (1) high-quality single-crystal can be 

grown at a temperature much lower than the melting point of the substance. (2) It has a 

self-shape surrounded by flat crystal faces that reflect the crystal structure as it grows. 

(3) Being able to grow crystals easily even if you are not familiar with the operation. 

And so on. On the other hand, the disadvantage of the flux method is that (1) there is a 
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possibility that flux may be mixed as an impurity into the crystal. (2) The crystal to 

grow is relatively small and takes a long time to grow. And so on. The mixing of 

impurities can be avoided by selecting an appropriate flux. In this work, the mixture of 

CsCl and KCl powder was used as the flux. Because CsCl corrodes the quartz tube at a 

high temperature, so KCl was mixed and used. 

2.3 Synthesized 

The single-crystal samples of LaO1-xFxBiS2 (x = 0.5, 0.4) and LaO0.5F0.5Bi1-ySbyS2 

(y = 0 ~ 0.20) were fabricated by using flux method in vacuum quartz tubes. Powders 

of Bi (99.9%), Bi2S3 (99.99%), BiF3 (99.9%), Bi2O3 (99.9%), La2S3 (99.9%) and Sb2S3 

(99.9%) were used as raw materials of total 2 g, which were weighted with nominal 

compositions. The flux is CsCl:KCl = 5:3 molar ratio (CsCl = 11.8511 g, KCl = 3.1489 

g) of total 15 g. After weighing, each of the sample and the flux was stirred for about 1 

hour in air using a pestle and mortar made of alumina. Thereafter, the stirred flux was 

transferred to a mortar containing the sample, and further stirred for about 1 hour. The 

mixture of flux CsCl/KCl powders and raw materials (raw materials : flux = 1:7.5) were 

sealed in vacuum quartz tube. The compounds were heated at 950 ℃ for 12 h and 

cooled down to 600 ℃ at rate of 1.0 ℃/h by electronic Muffle furnace as shown in Fig. 

2.1. 
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2.4 Measurements 

The obtained compounds were rinsed by distilled water to take out of the flux, and 

then dried for 1 day at 40 ℃. A plate-like sample having a size of about 1.0 mm to 2.0 

mm was obtained. We performed single-crystal X-ray diffraction experiments at room 

temperature (~ 290 K) using a Rigaku Varimax Saturn CCD diffractometer (tube 

voltage: 50 kV, tube current: 24 mA). The target of this equipment is Mo-Kα ray 

(wavelength: 534.304 cm-1). After that, the crystal structure can be measured in detail, 

such as bond angle, bond length, lattice parameter and so on. 

In this work, the magnetic susceptibility was measured by Superconducting 

Quantum Interference Device (SQUID) using the Magnetic Property Measurement 

System (MPMS) down to 1.8 K. The electrical resistivity was measured by the four-

terminal method using Quantum Design's Physical Property Measurement System 

Fig. 2.1 The program of heating. 
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(PPMS) down to 2 K. The specific heat was measured by the relaxation method using 

the He3 option of PPMS from 0.38 K to 4 K and magnetic field dependence from 0 T 

to 2 T. 
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The superconductivity of LaO1-xFxBiS2 (x = 0.4, 0.5) 
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The superconductivity in LaO1-xFxBiS2 compounds has been studied intensively. 

The characteristic structure is an alternate stacking of superconducting BiS2 layers and 

blocking layers (LaO/F) that for supplying electrons. The layered crystal structure is 

analogous to those of high-temperature (high-Tc) cuprate and Fe-based superconductors. 

In this chapter, we will illustrate the superconductivity of LaO1-xFxBiS2 by XRD, 

specific heat, electrical resistivity, and magnetic susceptibility measurements. 

3.1 The superconductivity of LaO0.5F0.5BiS2  

The electrical resistivity versus temperature of LaO0.5F0.5BiS2 is shown in Fig. 3.1. 

The inset is the electrical resistivity of whole temperature from 2 K to 300 K. The 

enlarge figure is that of low temperature and the superconducting transition is observed. 

The electrical resistivity increases with decreasing temperature until the onset of 

superconducting transition, indicating semiconducting-like behavior. The value of Tc 

from electrical resistivity measurement is defined as the temperature where the 

electrical resistivity falls to 50% of its normal state, and Tc ~ 2.7 K. 
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We also measured the magnetic susceptibility of LaO0.5F0.5BiS2. Although 

Meissner diamagnetism was exhibited near Tc, saturation of Meissner diamagnetism 

could not be confirmed in the measurement temperature range. The value of Tc is 

determined by extrapolating to the zero level where the steepness of the Meissner 

diamagnetism is steepest (Tc determined by the point of intersection as shown in Fig. 

3.2). The value of Tc from magnetic susceptibility measurement is about 2.7 K and it is 

same with that from electrical resistivity measurement. 
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Fig. 3.1 The electrical resistivity of LaO0.5F0.5BiS2 at low temperature. The inset is that of the 
range of temperature from 2 K to 300 K. 
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Figure 3.3 shows the total specific heat C divided by T, C/T, of LaO1-xFxBiS2 (x = 

0.5) as a function of T2 at low temperature, and the SC transition is very clear between 

the normal state and the SC state indicated by the arrow. Figure 3.4 shows the C/T 

versus T2 of LaO1-xFxBiS2 (x = 0.5) in the normal state. The fitting result is derived by 

the conventional expression C/T = γN + βT 2, where γN is the electronic specific heat 

coefficient in the normal state (Sommerfeld constant) and β, the coefficient of the 

phonon cubic term. We obtained γN = 1.5 mJ/mol·K2 and β = 1.0 mJ/mol·K4. The 

coefficient β gives the Debye temperature in the simple model of phonon contribution, 

and it leads to QD ~ 210 K (Θ- = [/"<
$

=>
𝑛𝑅]

%
&, where R is the gas constant and n = 5 is 

the number of atoms per formula unit). The γN value is smaller and the QD value is larger 
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Fig. 3.2 The magnetic susceptibility of LaO0.5F0.5BiS2 at low temperature. Solid line represents 
the linear fit of the data. 
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than those reported for LaO0.5F0.5BiSSe. [56]  
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Fig. 3.3 C/T vs T2 plot of LaO0.5F0.5BiS2. The superconducting transition between the normal 
state and the SC state is indicated by the arrow. 
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The electronic specific heat Ce divided by T, Ce/T, is obtained by the subtracting 

the phonon contribution βT 2 from C/T (Ce/T = C/T – βT 2) under the assumption that 

the phonon term in the normal state does not change in the SC state (Fig. 3.5). C clearly 

increases by DC at T ~ 2.5 K, corresponding to the SC transition. The Tc value (~2.5 K) 

is defined as the midpoint between the temperature at which the electronic specific heat 

starts to increase and its maximum temperature, and the value of Tc is a little smaller 

than that from electrical resistivity and magnetic susceptibility measurement. DC/γNTc 

~ 1 is comparable to the BCS value (~1.4) when we consider the broadness of the SC 

transition, indicating the bulk nature of superconductivity. The BCS curve for the 

conventional s-wave gap in the weak-coupling limit agrees well with our specific heat 

results under the assumption of a small residual γ-value, γ0, at T << Tc. γ0 can be 

estimated to be 0.2 mJ/mol·K2 by overall extrapolation fitting of the data with the BCS 

curve (Fig. 3.5). The residual γ0-value is about 14% of the normal state γN-value. This 

fraction is almost the same as that reported for LaO0.5F0.5BiSSe. [56] 

It should be noted that there is a possibility that a second gap develops in the partial 

density of states (DOS) giving the residual γ0. Then assuming two bands and two gaps 

on each band, we fit the Ce/T versus T data based on the a-model (two-band two-gap 

model), which is broadly used to describe experimental data phenomenologically in 

many multiband superconductors such as MgB2. [63] As shown in Fig. 3.5, the Ce/T 

Fig. 3.4 C/T vs T2 plot of LaO0.5F0.5BiS2 in normal state. Solid line represents the linear fit of 
the data with C/T = γN + βT2.  
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versus T data is well reproduced by the a-model; the size of the main gap D1 and the 

second gap D2 are 1.75kBTc and 0.36kBTc. Each band is characterized by the partial 

Sommerfeld constant γ1 and γ2 in the normal state, which result in γ1 = 0.86γN and γ2 = 

0.14γN by fitting. We could not find any difference in the fit for D2 < ~0.36kBTc, and then 

the D2-value of 0.36kBTc will be nearly the upper bound. This result suggests the SC 

gap structure is two gaps with different magnitudes.  

 

 

 

We used the typical expression ?es
@
= A)@*B

@
exp a− Δ(2)

:+@
b of BCS theory to fit the 

line of electronic specific heat as shown in Fig. 3.6. Based the line, we obtained two 

types of SC gap: one is Δ(0)small = 0.36kBTc dominated mainly at low temperature and 
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Fig. 3.5 Ce/T vs T with plot of LaO0.5F0.5BiS2. Thick line represents the BCS curve assuming a 
single s-wave gap with a residual γ0. Thin line represents the result of fit based on the a-model. 
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the other is Δ(0)large = 1.35kBTc dominated mainly at high temperature that indicates the 

SC gap is anisotropic. The value of large energy gap is slightly lower than the value of 

1.75 predicted by the BCS theory in the weak-coupling limit.  

 

 

 

But if the residual γ0 is considered to the typical expression of the fully gapped 

BCS theory. The expression will change to ?es
@
− 𝛾2 =

(A).A#)@*B
@

exp a− Δ(2)
:+@

b and fit 

the data of the electronic specific heat at low temperatures below T << Tc, as shown in 

Fig. 3.7. Below ~0.3Tc, the trend of the electronic specific heat is proportional to a 

single exponential that shows the existence of the spectral gap. Based on the line in Fig. 
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Fig. 3.6 Exponential type of electronic specific heat of LaO1-xFxBiS2 (x = 0.5). Solid line 
represents the linear fit of the data. 
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3.7, we obtained the size of the spectral gap Δ(0) = 1.0kBTc over the low-temperature 

range (T < 0.3Tc). The ratio of Δ/kBTc is clearly lower than the value of 1.75 predicted 

by the BCS theory in the weak-coupling limit, suggesting that the gap has an anisotropy, 

and its smallest part is ~1.0kBTc in magnitude. Based on a-model and BCS theory fitting 

results, it suggests two kinds of SC gap structure; one is an anisotropic single gap, and 

the other is two gaps with different magnitudes. To obtain more definitive information 

on the SC gap for x = 0.5, further investigation of specific heat will be necessary at 

lower temperatures well below ~0.3K. 
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Fig. 3.7 Exponential type of electronic specific heat of LaO1-xFxBiS2 (x = 0.5). Solid line 
represents the linear fit of the data. 
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Figure 3.8 shows C/T versus T 2 plots of LaO1-xFxBiS2 (x = 0.5) under a magnetic 

field of 0–2 T at low temperatures. The magnitude of total specific heat is increase with 

the increasing magnetic field until 0.2 T, and the recovery of total specific heat is very 

small at magnetic field 1 T–2 T. We used the expression ∆γ = ?(@,D)
@

− ?(@,2)
@

 to 

calculate the difference in the electron specific heat coefficient Δγ between each 

magnetic field and the zero magnetic field. Figure 3.9 summarizes the chosen 

temperature (T2 = 0.15, 0.24, 0.35, 0.46 K2) and magnetic field dependences of Δγ. Δγ 

linearly increases for a magnetic field of 0–0.2 T despite the different temperatures, as 

expected with a fully gapped s-wave. Δγ is almost nearly constant above 1 T; this is 

because the superconductivity is destroyed above 1 T. The electronic specific heat Ce 

divided by T, Ce/T, is obtained by the subtracting the phonon contribution βT 2 from 

C/T, as shown in Fig. 3.10. The increase in the electronic specific heat that accompanies 

the SC transition is suppressed by applying a magnetic field. Further, the SC gap of 

LaO1-xFxBiS2 (x = 0.5) is fully gapped, as expected. 
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Fig. 3.8 C/T vs T2 plot of LaO0.5F0.5BiS2 at low temperature with magnetic field. 
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3.2 The superconductivity of LaO0.6F0.4BiS2  

We measured the magnetic susceptibility of LaO0.6F0.4BiS2. Although Meissner 

diamagnetism was exhibited near Tc, saturation of Meissner diamagnetism could not be 

confirmed in the measurement temperature range. The value of Tc is determined by 

extrapolating to the zero level where the steepness of the Meissner diamagnetism is 

steepest (Tc determined by the point of intersection as shown in Fig. 3.11). The value of 

Tc from magnetic susceptibility measurement is about 2.4 K. 
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Fig. 3.9 Δγ vs H of LaO0.5F0.5BiS2. Dashed lines is guide to the eyes. 

Fig. 3.10 Ce/T vs T with magnetic field of LaO0.5F0.5BiS2. Solid lines are guides for the eyes. 
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We conducted the same analyses for LaO1-xFxBiS2 (x = 0.4) as those for x = 0.5, as 

shown in Fig. 3.12 and Fig. 3.13. As a result, we obtained γN = 1.1 mJ/mol·K2 and β = 

0.94 mJ/mol·K4, leading to QD ~ 220 K. Further, the transition between the SC state 

and the normal state is not as distinct as that for LaO1-xFxBiS2 (x = 0.5) even though the 

γN and β values are almost the same. 
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Fig. 3.11 The magnetic susceptibility of LaO0.6F0.4BiS2 at low temperature. Solid line 
represents the linear fit of the data.  
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Fig. 3.12 C/T vs T2 plot of LaO0.6F0.4BiS2. The superconducting transition between the normal 
state and the SC state is indicated by the arrow. 
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Figure 3.14 shows Ce/T versus T of LaO1-xFxBiS2 (x = 0.4, 0.5). The magnitude of 

Ce/T for LaO1-xFxBiS2 (x = 0.4, 0.5) in the normal state are defined as γN values and it is 

the same value with that from the fitting results of C/T in the normal state. There is an 

inconspicuous increase at x = 0.4 for Tc ~ 2.4 K that broadens the transition area, and 

the value of Tc is same with that from magnetic susceptibility measurement. Despite the 

broad SC transition for x = 0.4, the low-temperature specific heat for x = 0.4 seems to 

approach nearly zero like that for x = 0.5. This behavior suggests the bulk nature of 

superconductivity even for x = 0.4 although Tc is slightly suppressed and its transition 

is broad. A small residual γ0 can be estimated to be 0.3 mJ/mol·K2 by overall 

extrapolation fitting of the electronic specific heat data for x = 0.4. 

Furthermore, in Fig. 3.14, one can see that the data for x = 0.4 largely decreases 

below T ~ 0.6 K (~Tc/4). Such a behavior reminds us of the SC transition in Ce/T of 

MgB2, which is well understood based on two-band two-gap models. [63] Then we fit 

the Ce/T versus T data for x = 0.4 based on the a-model, as in x = 0.5 (Fig. 3.14). The 

characteristic T-dependence of Ce/T for x = 0.4 below ~Tc is well reproduced by the a-

model. The parameters obtained from the fit are as follows; D1 = 1.75kBTc, D2 = 0.60kBTc, 

γ1 = 0.40γN, and γ2 = 0.60γN. The contributions to Ce from two bands are closer in x = 0.4, 

which are largely different in the data for x = 0.5. This result suggests the two-gap effect 

is more dominant for x = 0.4. 

Fig. 3.13 C/T vs T2 plot of LaO0.6F0.4BiS2 in normal state. Solid line represents the linear fit of 
the data with C/T = γN + βT2.  
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We also used the typical expression ?es
@
= A)@*B

@
exp a− Δ(2)

:+@
b of BCS theory to fit 

the line of electronic specific heat of LaO1-xFxBiS2 (x = 0.4) as shown in Fig. 3.15. 

Based the line in Fig. 3.15, we obtained the size of SC gap Δ(0) = 0.63kBTc dominated 

at whole temperature, suggesting that the gap has an isotropy. The ratio of Δ/kBTc is too 

much lower than the value of 1.75 predicted by the BCS theory in the weak-coupling 

limit.  
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Fig. 3.14 Ce/T vs T of LaO1-xFxBiS2 (x = 0.4, 0.5). Solid lines represent the results of the a-model fits. 
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But if the residual γ0 is considered ?es
@
− 𝛾2 =

(A).A#)@*B
@

exp a− Δ(2)
:+@

b and fit the 

data of the electronic specific heat at low temperatures below T << Tc, as shown in Fig. 

3.16. We obtained the size of the SC gap Δ(0) = 1.08kBTc over the low-temperature 

range (T < 0.3Tc). The ratio of Δ/kBTc is lower than the value of 1.75 predicted by the 

BCS theory in the weak-coupling limit, but it is almost same value as the SC gap of 

LaO1-xFxBiS2 (x = 0.5) in magnitude over the low-temperature range (T < 0.3Tc). Based 

on a-model and BCS theory fitting results, it suggests two kinds of SC gap structure; 

one is an isotropic single gap, and the other is two gaps with closer contribution to Ce. 

The two-gap effect is more dominant for x = 0.4, which are largely different with x = 
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Fig. 3.15 Exponential type of electronic specific heat of LaO1-xFxBiS2 (x = 0.4). Solid line 
represents the linear fit of the data. 
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0.5. 

 

 

 

3.3 The XRD results of LaO1-xFxBiS2 (x = 0.4, 0.5) 

We performed the single-crystal X-ray diffraction experiments of LaO1-xFxBiS2 (x 

= 0.4, 0.5) using a Rigaku Varimax Saturn CCD diffractometer at room temperature 

(~290 K). The crystal structure shows tetragonal symmetry with the P4/nmm space 

group in these two compounds. The data of crystal structure are shown in Table 3.1, and 

all the data of LaO1-xFxBiS2 (x = 0.4, 0.5) are almost same. The in-plane chemical 

pressure coefficient, given by (RBi+RS1)/(Bi-S1(in-plane) distance), was proposed by 

Mizuguchi group, [42] where RBi = 104.19 pm and RS1 = 184 pm are the ionic radius of 
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Fig. 3.16 Exponential type of electronic specific heat of LaO1-xFxBiS2 (x = 0.4). Solid line 
represents the linear fit of the data. 
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Bi and S in the Bi-S1 plane. The Bi-S1(in-plane) distance is almost constant (~2.87 Å), 

independent of x. Then the in-plane chemical pressure coefficient was calculated to be 

1.005. These results indicate that the in-plane chemical pressure effect is very weak in 

these two compounds. 

 

 

x 0.4 0.5 

a [Å] 4.0674 4.0655 

c [Å] 13.448 13.433 

c/a [-] 3.3063 3.3041 

V [ÅE] 222.49 222.03 

Bi-S1 [Å] 2.8761 2.8748 

Bi-S2 [Å] 2.530 2.530 

La-S1 [Å] 3.735 3.748 

La-S2 [Å] 3.867 3.862 

S1-Bi-S1 [°] 179.61 180.38 

 

3.4 Discussions and conclusions of LaO1-xFxBiS2 (x = 0.4, 0.5) 

From the above results of LaO1-xFxBiS2 (x = 0.4, 0.5), we consider that the fluorine 

concentration of LaO1-xFxBiS2 is what makes the two samples different. Fluorine doping 

can influence whether the transition area becomes broad, and 40% fluorine doping may 

Table 3.1 List of crystal structure of LaO1-xFxBiS2 (x = 0.4, 0.5).  
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be the boundary in these compounds at which the nature of the superconductivity starts 

worsening. This boundary may be related to the boundary between the bulk and the 

nonbulk of SC, as reported previously, [61, 37] although the fluorine concentration at the 

boundary is slightly different. The fluorine concentration of our single-crystal samples 

was nominal, and unfortunately, it is very difficult to determine the exact net fluorine 

concentration because of light element. We speculate that if the SC nature collapses at 

a certain doping level x, its doping level will be below net x = 0.4. 

The results of temperature and magnetic field dependence in the electronic specific 

heat below Tc indicate that LaO1-xFxBiS2 (x = 0.5) is a fully gapped s-wave 

superconductor in the weak coupling limit, are consistent with those reported in 

magnetic penetration depth [53] and thermal conductivity [55] experiments. The results 

also indicate that LaO1-xFxBiS2 (x = 0.4) shows bulk superconductivity in a manner 

similar to LaO1-xFxBiS2 (x = 0.5), although Tc is slightly suppressed and has a broad 

transition.  

The a-model results of LaO1-xFxBiS2 (x = 0.5) suggest the SC gap structure is two 

gaps with different magnitudes. However, from the BCS theory fitting results, it has 

two types of SC gap: one is Δ(0)small = 0.36kBTc and the other is Δ(0)large = 1.35kBTc that 

indicates the SC gap is anisotropic. These BCS theory fitting results agree with that of 

NdO0.71F0.29BiS2 from ARPES, [59] and from that ARPES results, a very small SC gap 

of about 0.1kBTc was observed, so a value of 0.36kBTc may be essential. But if the small 

residual γ0 is considered, the size of SC gap has become 1.0kBTc over the low-
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temperature range (T < 0.3Tc), suggesting that the gap has an anisotropy, and its smallest 

part is ~ 1.0kBTc in magnitude. Based on a-model and BCS theory fitting results, it 

suggests two kinds of SC gap structure; one is an anisotropic single gap, and the other 

is two gaps with different magnitudes.  

The a-model results of LaO1-xFxBiS2 (x = 0.4) suggest that the contributions to Ce 

from two bands are closer in x = 0.4. However, from the BCS theory fitting results, we 

obtained the size of SC gap Δ(0) = 0.63kBTc dominated at whole temperature, suggesting 

that the gap has an isotropy. The ratio of Δ/kBTc is too much lower than the value of 1.75 

predicted by the BCS theory in the weak-coupling limit. But if the small residual γ0 is 

considered, the size of SC gap has become 1.08kBTc over the low-temperature range (T 

< 0.3Tc). The ratio of Δ/kBTc is lower than the value of 1.75 predicted by the BCS theory 

in the weak-coupling limit, but it is almost same value as the SC gap of LaO1-xFxBiS2 

(x = 0.5) in magnitude over the low-temperature range (T < 0.3Tc). Based on a-model 

and BCS theory fitting results, it suggests two kinds of SC gap structure; one is an 

isotropic single gap, and the other is two gaps with closer contribution to Ce. The two-

gap effect is more dominant for x = 0.4, which are largely different with x = 0.5. 
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Chapter 4 

The superconductivity of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) 

superconductors 
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There are few reports of adding impurities to the Bi site on the superconducting 

surface in BiS2-based superconductors. The superconductivity of LaO0.5F0.5BiS2 is very 

robust for investigating the impurity effect. So, in this chapter, we will study the 

impurity effects on superconductivity of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) by XRD, 

specific heat, electrical resistivity, and magnetic susceptibility measurements. 

4.1 The XRD results of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) 

We examined the single-crystal X-ray diffraction patterns of LaO0.5F0.5Bi1-ySbyS2 

(y = 0–0.20) at room temperature (~290 K) as shown in Table 4.1 in detail. The crystal 

structure shows tetragonal symmetry with the P4/nmm space group as well as Sb-free 

crystals. Figure 4.1 shows the Sb-concentration dependences of the lattice parameters 

a and c. The c-axis is nearly independent of y, whereas the a-axis slightly decreases 

with increasing y because of the smaller ion radius of Sb3+. The Mizuguchi group [42] 

proposed the in-plane chemical pressure coefficient, given by (RBi + RS1)/(Bi-S1(in-

plane) distance), as a measure of chemical pressure within the BiS2 plane, where RBi = 

104.19 pm and RS1 = 184 pm are the ionic radii of Bi and S in the Bi-S1 plane, 

respectively. The Bi-S1(in-plane) distance is almost constant (~2.87 Å), independent of 

y, and the in-plane chemical pressure coefficient was calculated to be 1.005. These 

results indicate that the in-plane chemical pressure is positive but very weak in these 

compounds and that impurity scattering plays an essential role in tuning the electronic 

state in these compounds. 
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y 
a  

[Å] 

c  

[Å] 

V 

 [ÅE] 

Bi-S1 

[Å] 

Bi-S2 

[Å] 

La-S1 

[Å] 

La-S2 

[Å] 

S1-Bi-S1 

[°] 

0 4.0655 13.433 222.03 2.8748 2.530 3.748 3.862 179.40 

0.02 4.0685 13.367 221.26 2.8771 2.537 3.685 3.867 181.37 

0.04 4.0724 13.399 222.10 2.8797 2.532 3.686 3.871 181.05 

0.06 4.0690 13.361 221.20 2.8774 2.529 3.681 3.874 181.28 

0.08 4.0701 13.395 221.89 2.8781 2.532 3.685 3.86 180.80 

0.10 4.0647 13.369 220.88 2.8744 2.525 3.671 3.857 181.28 

0.12 4.0681 13.363 221.15 2.8768 2.520 3.661 3.855 181.54 

0.14 4.0689 13.374 221.41 2.8774 2.517 3.659 3.856 181.60 

0.16 4.0702 13.355 221.25 2.8785 2.521 3.646 3.854 182.00 

0.18 4.0697 13.361 221.29 2.878 2.514 3.655 3.855 181.60 

0.20 4.0716 13.354 221.39 2.8793 2.511 3.658 3.846 181.40 

 

Table 4.1 List of crystal structure of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2).  
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4.2 The magnetic susceptibility results of LaO0.5F0.5Bi1-ySbyS2 (y = 

0–0.2) 

We measured the magnetic susceptibility of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) 

normalized by its minimum magnetic susceptibility at lowest temperature respectively, 

and Meissner diamagnetism was exhibited near Tc. The value of Tc is determined by 

extrapolating to the zero level where the steepness of the Meissner diamagnetism is 

steepest (Tc determined by the point of intersection as shown in Fig. 4.2). The values of 

Tc are 2.7 K, 2.4 K, and 2.1 K for y = 0, 0.06, and 0.12, respectively. The transition 

temperature is suppressed by Sb substitution.  
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Fig. 4.1 Lattice parameters a and c of LaO0.5F0.5Bi1-ySbyS2. Dashed lines are guides for the eyes. 



The superconductivity of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) superconductors 

71 

 

 

4.3 The electrical resistivity results of LaO0.5F0.5Bi1-ySbyS2 (y = 0–

0.2) 

The electrical resistivity r versus T of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20) are shown 

in Fig. 4.3, The superconducting transition is observed in y = 0, 0.02 and 0.10. The 

electrical resistivity r increases with decreasing temperature in all samples until the 

onset of superconducting transition, indicating semiconducting-like behavior. Such a 

semiconducting-like behavior becomes much stronger with the Sb substitution. The 

amplitude of increase become much bigger in y = 0.18 and 0.20 while the 

superconductivity is not observed in these compounds. The value of Tc is defined as the 
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Fig. 4.2 The normalized magnetic susceptibility of LaO0.5F0.5Bi1-ySbyS2 at low temperature. 
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temperature at which the electrical resistivity decreases to 50% of its normal state value 

just above the SC transition. The values of Tc are 2.7 K and 2.6 K for y = 0 and 0.02 

respectively as shown in Fig. 4.4 at low temperature. The resistivity for Sb-doped 

samples shows an increase at low temperatures, suggesting a carrier localization due to 

impurities. Such a carrier localization can enhance the electron correlation, usually 

suppressing of Tc. [62] The slight decrease in Tc in Sb-doped samples can be ascribed to 

the enhancement of electron correlations due to the weak localization of carriers.  
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4.4 The specific heat results of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) 

Figure 4.5 shows the Ce/T versus T plots of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20). The 

Ce/T values for y = 0, 0.06, and 0.12 show clear SC transition anomalies. The sample 

for y = 0.20 does not show any signs of bulk superconductivity. Here, Tc is defined as 

the midpoint between the temperature at which the electronic specific heat starts to 

increase and its maximum temperature, and its value is 2.5, 2.2, and 1.7 K for y = 0, 

0.06, and 0.12, respectively. These Tc values are consistent with those from electrical 

resistivity and magnetic susceptibility measurements, as shown in Fig. 4.6. The 

transition temperature is suppressed by impurity scattering in both the specific heat and 

the electrical resistivity and magnetic susceptibility measurements. The rate of decrease 
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Fig. 4.4 r vs T of LaO0.5F0.5Bi1-ySbyS2(y = 0, 0.02) at low temperature. 
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in Tc owing to non-magnetic impurities is at least ~0.02/Sb% at low Sb concentrations. 

The slight decrease in Tc in Sb-doped samples can be ascribed to the enhancement of 

electron correlations due to the weak localization of carriers. The inset of Fig. 4.6 shows 

Tc versus abovementioned in-plane chemical pressure compared with Mizuguchi group. 

[42] Based the results of Mizuguchi group, the transition temperature increases with 

increasing in-plane chemical pressure. So, it is impossible for Tc to rise by Sb 

substitution, because the in-plane chemical pressure is very weak in this work. 

As mentioned in the chapter 3, the secondary gap D2 for x = 0.5 obtained assuming 

the alpha model is very small (< ~0.36kBTc), meaning that the T-dependence of Ce/T at 

T > 0.3 K is mainly dominated by the main gap in the case of the two-gap 

superconductivity. Then, in Fig. 4.5, we simply fit the data for Sb-doped samples to the 

single-gap BCS curve in the weak-coupling limit with a residual γ0. The Ce/T for y = 

0.06 is very similar to that for pure sample (y = 0) except for the difference of Tc. This 

result means that Sb-doping of y = 0.06 has no effect on the gap structure.  
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Fig. 4.5 Ce/T vs T of LaO0.5F0.5Bi1-ySbyS2. Solid lines represent the BCS curve assuming a 
single s-wave gap with a residual γ0. 
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Figure 4.7 shows the Sb-doping dependences of γN and γ0, where γN is defined as 

the magnitude of Ce/T in the normal state, and the residual linear term γ0 is obtained by 

extrapolating Ce/T at low temperatures to 0 K. The γ0-value is hardly affected below y 

= 0.06, even though the substitution of Sb suppresses the superconductivity, indicating 

that the density of states at the Fermi level in the SC state is not recovered by Sb-doping. 

The robustness of the SC gap against the pair-breaking due to non-magnetic impurities 

means that the SC gap is consistent with a full gap with an s-wave symmetry. The γN-

value remains nearly constant until y ~ 0.1. However, the γN-value is strongly suppressed 

by Sb-doping above y ~ 0.12, where the resistivity increases considerably at low 
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temperatures.  

 

 

 

4.5 The comparison of LaO0.5F0.5Bi1-ySbyS2 (y = 0, 0.06) 

Figure 4.8 shows the total specific heat C divided by T, C/T, of LaO0.5F0.5Bi1-

ySbyS2 (y = 0, 0.06) as a function of T2 at low temperature, and the SC transition is very 

clear between the normal state and the SC state in both two samples indicated by the 

arrow although the transition has a little shift. Figure 4.9 shows the C/T versus T2 of 

LaO0.5F0.5Bi1-ySbyS2 (y = 0, 0.06) in the normal state. The fitting result is derived by the 

conventional expression C/T = γN + βT 2, we obtained γN = 1.5 mJ/mol·K2 and β = 0.9 

mJ/mol·K4, leading to QD ~ 220 K for y = 0.06. The γN value is same and the QD value 
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Fig. 4.7 γ vs Sb concentration for LaO0.5F0.5Bi1-ySbyS2. 
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is a little larger than those values of y = 0.  
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We analyzed Ce/T versus T/Tc for y = 0, 0.06 as shown in Fig. 4.10, where the 

temperature is normalized by Tc. The T-dependence of Ce/T between y = 0 and 0.06 is 

coincident below Tc. Ce is well known to have two components in the SC state: the 

thermal excitation of quasi-particles beyond the gap as the temperature changes and the 

effect of the T-dependence of the gap size. The present Ce/T results for y = 0 and 0.06 

mean that both components in Ce are almost identical for the y = 0 and 0.06 samples 

when T is normalized by Tc. This finding implies that in these two samples, the SC gap 

D(T) is scaled by Tc, despite the suppression of Tc for y = 0.06. Hence the Sb-doping 

effects on the SC gap and Tc for y = 0.06 can mainly be explained not by the pair-

breaking effects but by the enhancement of electron correlation due to weak carrier 

localization. For ensure of that, we used the expression ?es
@
− 𝛾2 =

(A).A#)@*B
@

exp a− Δ(2)
:+@

b of the fully gapped BCS result to fit the data of the electronic 

specific heat at low temperatures below T << Tc for y = 0 and 0.06, as shown in Fig. 

4.11. We obtained the size of the gap Δ(0) = 1.0kBTc over the low-temperature range (T 

< 0.3Tc) in both two samples. The impurity effect for LaO0.5F0.5Bi1-ySbyS2 (y = 0.06) 

indicates an s-wave gap that is consistent with the result of the pure sample under the 

condition of microdoping, despite the suppression of Tc. 

 

Fig. 4.9 C/T vs T2 plot of LaO0.5F0.5Bi1-ySbyS2 in normal state. Solid line represents the linear 
fit of the data with C/T = γN + βT2.  
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Fig. 4.11 Exponential type of electronic specific heat of LaO0.5F0.5Bi1-ySbyS2. Solid line 
represents the linear fit of the data. 
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4.6 Discussions and conclusions of LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.2) 

Assuming a single anisotropic gap, the Ce for Sb-free and Sb-doped samples has 

small but finite γ0-value. The finite γ0-value may seem to be caused by pair-breaking 

effects in a nodal superconductor with impurities, which can explain the large 

anisotropy of SC gap reported in ARPES experiments. [59] However, we used the 

theoretical results of Ichikawa group [60] about impurity effects in BiS2-based layered 

superconductors to compare with our results. In Ichikawa groups results, the nodal 

extended s-wave gap symmetry was supposed as shown in Fig. 4.12 and Fig. 4.13. 

Based the results of Ichikawa group, ζ = )
"<@,#

 and ξ = )
∆
 are defined, where α is a 

pair-breaking parameter proportional to impurity concentration and Tc0 is the 

superconducting transition temperature without non-magnetic impurity. Figure 4.12 

shows Tc/Tc0 versus ζ for the nodal extended s-wave gap with p = 0, 0.5, 1.0, and 1.5, 

where p is ratio of isotropic to anisotropic gaps. Their results indicate that transition 

temperature is suppressed with increasing impurity scattering, and it is consistent with 

our results. Furthermore, there is small but finite γ0-value when p = 0 and 0.5 as shown 

in Fig. 4.13. So, γ0 versus x with p = 0 and 0.5 are summarized in Fig. 4.14. Their results 

indicate that γ0-value is increasing with increasing impurity scattering for the nodal 

extended s-wave gap, but in our study, γ0-value and SC gap D(T) are hardly affected by 

Sb-doping despite the suppression of Tc. It is well known that non-magnetic impurities 

do not affect the density of states at the Fermi level in s-wave conventional 

superconductors. Above all, the results of Ce in Sb-doped samples will rule out the 
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existence of nodes in the SC gap, and the symmetry of SC gap is suggested to be s-

wave with full gap. 

 

 

 

Fig. 4.12 Tc/Tc0 vs ζ for the nodal extended s-wave gap with p = 0, 0.5, 1.0, and 1.5. 
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In LaO0.5F0.5Bi1-ySbyS2, Tc is suppressed by the Sb-doping in both the specific heat 

and the electrical resistivity and magnetic susceptibility measurements. The slight 

decrease in Tc in Sb-doped samples can be ascribed to the enhancement of electron 

correlations due to the weak localization of carriers. However, γ0 proportional to the 

density of states at the Fermi level in the SC state is hardly recovered below y = 0.06. 

The Ce/T versus T curves for y = 0 and 0.06 are scaled with each other by Tc. The SC 

gap D(T) = 1.0kBTc over the low-temperature range (T < 0.3Tc) for y = 0 and 0.06, despite 

the suppression of Tc for y = 0.06. The T-dependence of Ce/T is very similar between y 
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Fig. 4.13. Density of state vs frequency for the nodal extended s-wave gap with p = 0, 0.5, 1.0, 
and 1.5. 

Fig. 4.14 γ0 vs x for the nodal extended s-wave gap with p = 0 and 0.5. 
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= 0 and 0.06, meaning that the Sb-doping of y = 0.06 has little effect on the gap structure. 

These results indicate that the superconductivity in the present system is robust against 

the pair-breaking due to non-magnetic impurities, as expected in the fully gapped s-

wave superconductivity without nodes. 
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In conclusion, we have synthesized single-crystal samples of LaO1-xFxBiS2 (x = 

0.5, 0.4) and LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20) using the flux method under ambient 

pressure. From single-crystal X-ray diffraction experiments at room temperature (~290 

K), all of samples in the present study show tetragonal symmetry with the P4/nmm 

space group. The lattice parameters a and c have not changed much in LaO1-xFxBiS2 (x 

= 0.5, 0.4) and LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20). These results indicate that the in-plane 

chemical pressure is positive but very weak in these compounds and that impurity 

scattering plays an essential role in tuning the electronic state in these compounds.  

For LaO1-xFxBiS2 (x = 0.5, 0.4) superconductors, Meissner diamagnetism was 

exhibited near Tc in both two samples. The results of T- and H-dependence of the 

electronic specific heat below Tc indicate that LaO1-xFxBiS2 (x = 0.5) is a fully gapped 

superconductor. The SC gap structure has two possibilities; one is an anisotropic single 

gap, and the other is two gaps with different magnitudes. The results also indicate that 

LaO1-xFxBiS2 (x = 0.4) shows bulk superconductivity in a manner similar to LaO1-

xFxBiS2 (x = 0.5), although Tc is slightly suppressed and has a broad transition. From 

the a-model fitting results, the two-gap effect is more dominant for x = 0.4. 

For LaO0.5F0.5Bi1-ySbyS2 (y = 0–0.20) superconductors, Tc is suppressed by the Sb-

doping in both the specific heat and the electrical resistivity and magnetic susceptibility 

measurements. Hence the Sb-doping effects on Tc can mainly be explained not by the 

pair-breaking effects but by the enhancement of electron correlation due to weak carrier 

localization. However, the SC gap D(T) for y = 0 and 0.06 are scaled with each other by 
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Tc. The impurity effect for LaO0.5F0.5Bi1-ySbyS2 (y = 0.06) indicates an s-wave gap that 

is consistent with the result of the pure sample under the condition of microdoping. γ0 

proportional to the density of states at the Fermi level in the SC state is hardly recovered 

below y = 0.06. The robustness of the SC gap against the pair-breaking due to non-

magnetic impurities means that the SC gap is consistent with a full gap with an s-wave 

symmetry without nodes.  
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