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SUMMARY In this paper, we reformulate a sensitivity analysis method
for function-expansion-based topology optimization method without us-
ing gray area. In the conventional approach based on function expan-
sion method, permittivity distribution contains gray materials, which are
intermediate materials between core and cladding ones, so as to let the
permittivity differentiable with respect to design variables. Since this ap-
proach using gray area dose not express material boundary exactly, it is
not desirable to apply this approach to design problems of strongly guid-
ing waveguide devices, especially for plasmonic waveguides. In this study,
we present function-expansion-method-based topology optimization with-
out gray area. In this approach, use of gray area can be avoided by replacing
the area integral of the derivative of the matrix with the line integral taking
into acount the rate of boundary deviation with respect to design variables.
We verify the validity of our approach through applying it to design prob-
lems of a T-branching power splitter and a mode order converter.
key words: topology optimization, function expansion method, finite ele-
ment method, adjoint variable method

1. Introduction

In order to develop high performance photonic devices be-
yond human knowledge, development of automatic opti-
mization methods with high design flexibility is desired [1]–
[18]. For this purpose, topology optimization methods
which can optimize material distribution itself have been in-
tensively studied to enhance performance of photonic de-
vices. Several design approaches based on toptology op-
timization have already been reported and developed so
far [5]–[18]. In topology optimization, optimization prob-
lem of material distribution itself is replaced with minimiza-
tion or maximization problem of a specific objective func-
tion. To solve the problem, gradient-based methods based
on sensitivity analysis or evolutionary methods have been
employed. Topology optimization based on sensitivity anal-
ysis require iterative calculation of numerical simulation and
estimation of sensitivity, which is variation of device perfor-
mance with respect to design variables. Evolutionary ap-
proaches based on multiple point search can search wider
range of searching space, but it cost a numerous computa-
tional effort. Since a vast number of design variables has to
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be optimized, gradient-based approach is widely employed
in topology optimization. As a representation method of
material distribution, a function-expansion-method [9]–[14]
is employed, and it has a feature that complexity of device
profile can be adjusted by controlling number of function
expansion terms. In the function-expansion-based topology
optimization based on sensitivity analysis, material distri-
bution contains gray materials, which are intermediate ma-
terials between core and cladding ones, during optimization
procedure in order to let permittivity distribution differen-
tiable and to compute sensitivity. However, use of gray area
is not desirable in design of strongly guiding devices be-
cause this approach can not express material boundary ex-
actly. In this paper, we revise the function-expansion-based
topology optimization so as not to require gray area both in
the waveguide analysis and the sensitivity analysis. In our
approach, the sensitivity is estimated without gray materials
by computing variation of permittivity at material bound-
ary. The finite element method (FEM) is employed to ana-
lyze transmission property of optical devices. Although we
have developed the automatic finite element mesh genera-
tion method for the function expansion method in [13], [14],
flat triangular elements which degrade numerical accuracy
might be generated. In this paper, we revise a finite element
mesh generation method to improve finite element mesh.

In Sect. 2, the function-expansion-based topology op-
timization is briefly reviewed and the improved sensitivity
analysis method is described. In addition, the improved
adaptive mesh generation for function expansion method is
illustrated. In Sect. 3, optimal design examples are shown
and compared with those by the conventional approach to
verify the validity of the present approach. Finally, this pa-
per is concluded in Sect. 4.

2. Function Expansion Based Topology Optimization

2.1 Representation of Refractive Index Distribution

We consider an optimal design problem of photonic device
with the desired transmission property, as shown in Fig. 1.
In order to obtain optimal device structure, we employ the
function expansion method to represent a structure in the
design region and optimize the design variables by a gra-
dient method according to the sensitivity analysis utilizing
the adjoint variable method(AVM). In the function expan-
sion method, the permittivity distribution is expressed as fol-
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Fig. 1 Setup of design problem.

lows [9]:

εr(x, y) = εra + (εrb − εra)H(w(x, y)) (1)

w(x, y) =
N∑

i=1

ci fi(x, y) (2)

where w(x, y) is a structure expressing function given by the
weighted sum of basis functions, fi(x, y). The amplitudes ci

of these basis functions are design variables in our design
approach. Selection of basis functions is not unique and
three kinds of functions have been compared in our previous
work [12]. In this paper, we employ Fourier series which
can dramatically change topology of device structure during
an optimization process and the actual form will be shown
in design examples. In the conventional function expansion
method [9], H(ξ) has been defined as a modified Heaviside
function with continuous transition region from 0 to 1 as
follows:

H(ξ) =



0 (ξ ≤ −h)

1
2

(
ξ + h

h

)2

(−h < ξ < 0)

1 − 1
2

(
ξ − h

h

)2

(0 ≤ ξ < h)

1 (ξ ≥ h)

(3)

because of a requirement of permittivity function to be dif-
ferentiable. However, an existing of gray areas in numerical
modeling may degrade a numerical accuracy, especially in
the design of plasmonic devices [13]. In this paper, H(ξ) is
defined as the original Heaviside function as follows:

H(ξ) =

 0 (ξ < 0)

1 (ξ ≥ 0)
(4)

and the sensitivity analysis method will be revised in the
next subsection.

In the conventional sensitivity analysis based on the
AVM, the gray area is required to take derivative of per-
mittivity with respect to the design variables. The gray area
is not desirable in design problems of strongly guiding pho-
tonic devices, especially for plasmonic devices. In this pa-
per, we define H(ξ) as Heaviside step function and revise

the sensitivity analysis method based on the AVM not to use
gray area.

2.2 Sensitivity Analysis by Adjoint Variable Method

From Maxwell’s equations, light propagation behavior is
governed by the following wave equation:

∂

∂x

(
p
∂ϕ

∂x

)
+
∂

∂y

(
p
∂ϕ

∂y

)
+ k2

0qϕ = 0 (5)

where p, q, ϕ are given for TE wave and TM waves as fol-
lows:

p = 1 q = n2 ϕ = Ez for TE wave

p =
1

n2
q = 1 ϕ = Hz for TM wave

where n =
√
εr is a refractive index distribution, and Ez and

Hz are an z-component of electric and magnetic fields, re-
spectively. In the FEM analysis, a final equation to be solved
is given as a following simultaneous linear equation [19]:

[P(εr)]{ϕ} = {u} (6)

where [P(εr)] is a finite element matrix, {ϕ} is an unknown
nodal electric or magnetic field vector and {u} is a vector re-
lated to an incident wave. In order to optimize design vari-
ables, we have to compute sensitivities of the transmission
properties with respect to the design variables. Transmission
power can be estimated using S-parameter. In the AVM, the
sensitivity of S-parameter is expressed as follows [7]:

∂S n1

∂ci
= −{λn}T

∂[P(εr)]
∂ci

{ϕ}, (7)

[P(εr)]
T {λn} = {gn} (8)

where {gn} is a vector related to the modal field in the n-
th output port and {λn} is an adjoint variable vector. In the
conventional approach based on function expansion method,
the derivatives of the matrix [P] with respect to the design
variables can be analytically obtained because εr is differ-
entiable. In the conventional approach [7], ∂[P]/∂ci is given
as follows:

∂[P]
∂ci

=
∑

e

∫ ∫
e

∂εr

∂ci

∂[p(εr)]
∂εr

dxdy (9)

∂εr

∂ci
= (εrb − εra) fi(x, y)

∂H(ξ)
∂ξ

∣∣∣∣∣
ξ=w(x,y)

(10)

where [p(εr)]e is an integrand element matrix for matrix
[P(εr)] and

∑
e extends over all elements in the design re-

gion.
In this paper, we define εr as a step profile at the ma-

terial boundaries in order to eliminate gray area completely
in the whole optimization process and the light propagation
analysis. We revise the estimation of ∂[P]/∂ci in (7) as fol-
lows:

∂[P]
∂ci
=

∑
e

′
∫
Γ

∂δ

∂ci

(
[p(ε+r )]e − [p(ε−r )]e

)
dl (11)
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Fig. 2 Deviation of material boundary ∆δ with respect to a slight change
of design variable, ∆ci. Left figure is shown in xy-plane. Γ is material
boundary and Γ′ is a deviated material boundary. Right figure shows the
relation between ∆ci and ∆δ.

where
∑′

e extends over all elements related to material
boundary Γ, ε+r and ε−r are the relative permittivity of the
material on the right and left sides of the integration path,
and ∂δ/∂ci denotes a deviation rate of Γ with respect to the
design variable as shown in Fig. 2. This deviation rate is
calculated as follows:

∂δ

∂ci
= − fi(x, y)

in · ∇w(x, y)
(12)

where in is a unit vector normal to Γ and δ is a function that
changes along a material boundary.

2.3 Gradient Descent Method to Update Design Variables

We employ gradient descent method(GDM) to optimize de-
sign variables and update them as follows:

cpost = cpre + α × (−∇cC) (13)

where cpre, cpost are vectors consist of all the design vari-
ables before and after an update, respectively. ∇cC express
the gradient of the objective function C with respect to the
design variables. α is defined as follows:

α = δ ×
|C −Copt|
|∇cC|

(14)

where Copt is the ideal value of the objective function and δ
is a constant which governs a convergence speed in GDM.
When α is larger, the property improvement may faster,
however, the solution may oscillate around the optimal so-
lution. By making α proportional to |C −Copt|, The solution
approaches the optimal solution faster when it is far from the
optimal solution, and its neighborhood is searched in detail
when it is close to the optimal solution. δ = 1.0 is used in
this paper.

2.4 Adaptive Finite Mesh Generation for Function Expan-
sion Method

In the conventional function expansion method, it is not
so important to treat material boundaries strictly because
a permittivity distribution is defined as a continuous func-
tion. Since the sensitivities are estimated only at the ma-
terial boundaries in the present approach, it is necessary to

Fig. 3 Improved finite element mesh generation scheme for function ex-
pansion method. (a) Finite element mesh by the scheme in [14]. (b)
Structure expressed by function expansion method. (c) Generated bound-
ary nodes on regular mesh. (d) Uniformly generated boundary nodes. (e)
Generated inner nodes and generated mesh by Delauny triangulation. (f)
Finally obtained mesh for second-order FEM analysis.

treat the boundaries strictly in order to calculate the sensi-
tivity with good accuracy. We have presented the automatic
finite element mesh generation for the function expansion
method in [14]. However, the approach in [14] is not neces-
sarily sufficient to calculate the sensitivity because there is a
possibility that small elements or flattened elements are gen-
erated around the material boundary shown in Fig. 3(a) and
cause degradation of accuracy for sensitivity evaluation. In
this section, the mesh generation scheme is also improved so
as to generate better elements around material boundaries.

The schematic of a finite element mesh generation is
shown in Fig. 3. First, the material boundary is recognized
on a regular lattice meshes and the crossing points of the
regular mesh and material boundary are detected and stored
(Fig. 3(c)). At this stage in Fig. 3(c), each distances between
the neighboring nodes are not uniform, then the new nodes
are placed uniformly on the material boundary (Fig. 3(d)),
and all the nodes stored previously are removed. After that,
the other nodes in the design region expect for near the ma-
terial boundary (Fig. 3(e)), then finite element mesh is gen-
erated by a Delaunay triangulation and nodes for higher-
order curvilinear elements are generated (Fig. 3(f)). Here,
the nodes put on material boundary are not always on the
material boundary exactly because at this point the linear
approximation is used to find the material boundary. To ex-
press curved boundary more exactly, the nodes are moved
on the boundary estimated by a Newton’s method because
w(x, y) is a nonlinear function. The Newton’s method is ex-
pressed as follows:

r′ = r − w(r)
in · ∇w(r)

· in (15)

where r is a initial position vector and r′ is a corrected one
by Newton’s method. After an initial position of node is
estimated by linear interpolation, this correction is iterated
several times.
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Fig. 4 An image to allocate node related to material boundary. A posi-
tion of node is first set by linear interpolation and is moved onto material
boundary by Newton’s method.

3. Design Examples by the Proposed Method

In order to verify the validity of the present approach, first,
we consider the design example of a T-branching wave-
guide [7] as shown in Fig. 5. The refractive indices of core
and cladding materials are n1 = 1.45 and n2 = 1, respec-
tively. The waveguide width is w = 0.7 µm, the design
region width in the x and y directions are Wx = 4 µm
and Wy = 3 µm, and d = 1.5 µm. The fundamental TE
wave(TE0) with the wavelength of 1.55 µm is launched into
port 1. In order to split the incident power equally between
port 2 and 3, the objective function is given as follows:

Minimize C =
∣∣∣0.5 − |S 21|2

∣∣∣2 + ∣∣∣0.5 − |S 31|2
∣∣∣2 . (16)

In order to express device structure in the design region, we
employ Fourier series as w(x, y) in (2) as follows [7]:

w(x, y) =
Ny−1∑
j=0

Nx−1∑
i=−Nx

(ai j cos θi j + bi j sin θi j) (17)

θi j =
2πi
Lx
+

2π j
Ly

where ai j, bi j are design variables, and Lx, Ly are basic cy-
cles of fourier series. We set 2Nx×Ny = 16×8, Lx = 1.2Wx,
and Ly = 1.2Wy in this design example. Figure 6 shows the
results obtained by the conventional optimization approach
based on (9) with gray area [7] and the present one based
on (11) without gray area. In this design example, the con-
vergence behaviors of the objective functions and the finally
obtained results are almost same. The normalized transmit-
ted powers into port 2 and 3 are 0.46. Compared with the re-
sults reported previously in [7], the normalized transmitted
powers are almost same while the obtained optimized struc-
tures are different. This is because there are many local op-
timal structures and optimized structure depends on an ini-
tial structure and optimization settings. An enlarged views
of gray area in both results are shown in Fig. 6. Although
gray area seems to be negligible compared with the entire
design area, in the design of plasmonic devices, a transmis-
sion property may significantly change due to an existence
of gray area [14].

As a second design example, we consider a mode con-
verter that converts TE0 wave into the first higher order TE

Fig. 5 Design model of two-branch.

Fig. 6 Optimized results of T-branching waveguide. (a) The objective
function and the normalized output power as a function of iteration count
for topology optimization. The optimized structure and the propagating
electric field obtained (b) with using gray area, (c) without using gray area.

wave (TE1), as shown in Fig. 7. The refractive indices of
core and cladding materials are n1 = 3.4 and n2 = 1, re-
spectively. The waveguide width is w = 0.45 µm, the design
region widths in the x and y directions are Wx = 1 µm and
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Fig. 7 Design model of mode order converter.

Wy = 0.55 µm, and l = d = 0.5 µm. TE0 wave with the
wavelength of 1.55 µm is launched into port 1. The objec-
tive function is given as follows:

Minimize C =
∣∣∣∣1 − ∣∣∣S TE0→TE1

21

∣∣∣2∣∣∣∣2 . (18)

Fourier series with 2Nx × Ny = 16 × 8 sampling points,
Lx = 1.2Wx, and Ly = 1.2Wy is used to construct w(x, y).
Figure 8 shows the results obtained by the conventional opti-
mization approach using gray area and the present one with-
out using gray area. Although the convergence behaviors of
the objective functions and the finally obtained results are
slightly different, the optimized devices have similar pro-
file and almost the same performance. The conversion ef-
ficiencies (TE0 to TE1) is 0.954 in the optimized structure
obtained by the present approach and 0.950 in that by the
conventional approach. In Fig. 8, the structural evolution in
the first 4 iteration steps are shown. Although the sensitiv-
ity is calculated only at the material boundary in the present
optimization approach without gray area, the internal struc-
ture is updated and the topology of the structure automati-
cally changes. This is due to the use of Fourier series as a
structure expressing function. Tuning of a certain Fourier
coefficient causes structural change over the entire design
region because Fourier series is a basis function spreading
throughout the design region. Therefore, there is the whole
structure changes only by updating the material boundary.

Next, we investigate the influence of the device length,
Wx, on the optimization results. Figure 9(a) shows the con-
version efficiency of the optimized structure as a function of
Wx. As shown in the figure, the conversion efficiency is im-
proved as the device length increases. It can be seen that the
conversion efficiency is hardly improved when the device
length exceeds 1 µm. This is because the global optimal so-
lution could not be found. This tendency is almost same in
the conventional approach using gray area. The optimized
structure with Wx = 0.5 µm and 1.5 µm and their propagat-
ing fields are shown in Fig. 9(b)-(e). It can be seen that the
optimized device with Wx = 1.5 µm has the similar structure
with that in the case of Wx = 1.0 µm.

Fig. 8 Optimized results of mode converter. (a) The objective function
and the normalized output power as a function of iteration count for topol-
ogy optimization. The optimized structure and the propagating electric
field obtained (b) with using gray area, (c) without using gray area. Ini-
tial structure, the structure in 1st, 2nd, and 3rd-steps, and the optimized
structure are shown in order from the top.

Finally, we investigate the wavelength dependence of
the mode order converters obtained by the present design
approach. Figure 10 shows the wavelength dependence of
the conversion efficiency and extinction ratio in the three
optimized devices with Wx = 0.5, 1.0, and 1.5 µm. The
conversion efficiency (CE) and the extinction ratio (ER) are
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Fig. 9 Dependence of the optimized conversion efficiency on the design
region size. (a) Conversion efficiency of optimized mode converters as a
function of Wx. (b) and (c) are the optimized structures with device length
of 0.5 µm and their propagating electric field. obtained by the conventional
approach and present approach, respectively. (d) and (e) are the optimized
structures with device length of 1.5 µm and their propagating electric field.
obtained by the conventional approach and present approach, respectively.

defined as follows:

CE =
∣∣∣S TE0→TE1

21

∣∣∣2 , (19)

ER = 10 log10

∣∣∣S TE0→TE0

21

∣∣∣2∣∣∣S TE0→TE1

21

∣∣∣2 [dB]. (20)

It can be seen that the optimized mode order converter has
a relative small wavelength dependence and it has the ER of
less than −20 dB over a wider bandwidth than 100 nm in
the device with Wx = 1.5 µm and less than −18 dB in one
with Wx = 1.0 µm. Although the optimized profile is some-
times relatively complicated in this design approach, there
is a possibility that the optimized structure can be simplified
by the scheme reported in [21].

Fig. 10 Wavelength dependence of the optimized mode order converters
with Wx = 0.5, 1.0, and 1.5 µm.

4. Conclusion

We revised a sensitivity analysis method for function-
expansion-based topology optimization method so as not
to require gray area. Adaptive mesh generation process is
also improved for accurate analysis. The validity of this ap-
proach is verified by comparing the results obtained by the
present sensitivity method with those by the conventional
one. In future work, we will design ultra compact pho-
tonic devices including plasmonic waveguide devices using
the present optimization method. We studied on 2D topol-
ogy optimization in this paper. In the conventional approach
with gray area, we have been already developed 3D topol-
ogy optimization [22], [23]. The proposed approach with-
out gray area can be straightforwardly extended to 3D op-
timization. Furthermore, in the design of layered structure
as treated in [23], the present approach may be superior for
estimating the sensitivity with respect to layer thickness.
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