
低次元分数和計画問題に対する効率的なアルゴリズ
ムに関する研究

言語: eng

出版者:

公開日: 2014-12-04

キーワード (Ja):

キーワード (En):

作成者: 胡, 勇文

メールアドレス:

所属:

メタデータ

https://doi.org/10.15118/00005122URL

Muroran Institute of Technology

Doctoral Dissertation

Efficient Algorithms for Solving
the Sum of Linear Ratios

Problem with Lower Dimension

Yongwen Hu

Supervisors:

Prof. Jianming Shi

Assoc. Prof. Shinya Watanabe

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Computatioanl Intelligence Laboratory

Production Information System Engineering

September 2014

http://www.muroran-it.ac.jp
http://is.csse.muroran-it.ac.jp/
http://www.muroran-it.ac.jp/academic/gs_dp/dp_e/details.html

Declaration of Authorship

I, Yongwen Hu, declare that this dissertation titled, ’Efficient Algorithms for

Solving the Sum of Linear Ratios Problem with Lower Dimension’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

ii

“Thanks to my solid academic training, today I can write hundreds of words

on virtually any topic without possessing a shred of information, which is how I

got a good job in journalism.”

Dave Barry

Muroran Institute of Technology

Abstract
School of Engineering

Production Information System Engineering

Doctor of Philosophy

Efficient Algorithms for Solving the Sum of Linear Ratios Problem

with Lower Dimension

by Yongwen Hu

The Sum of Linear Ratios (SOLR) optimization problem, well know as an NP -

hard problem, has wide applications. A variety of problems can be formulated

into the SOLR problem, and these problems are characterized by a small number

of variables but a large number of ratios. In this dissertation, we are extremely

interested in the SOLR problem where the native dimension is lower.

A natural approach to cope with the NP -hardness is to develop an efficiently

approximation algorithm that is guaranteed to obtain a better approximation to

the optimal solution. The DIRECT algorithm is one of such approximation ap-

proach. We evaluate the performance of DIRECT for solving the SOLR problem

with lower dimension by conducting numerical experiments. The results show that

the DIRECT algorithm could find an optimal solution of the SOLR problem with

an extremely high probability (99.99%) and less computational time spent within

a given tolerance.

Another approach for designing approximation algorithms is mostly fueled by

convex optimization techniques. Recently, Carsslon and Shi (2013) have proposed

an algorithm for solving SOLR problem with lower dimension. Carsslon and Shi

casted the SOLR problem into its equivalent problem with linear objective and

a set of linear and nonconvex quadratic constraints. By dropping the nonconvex

quadratic constraints out, they proposed a liner relaxation for the SOLR problem

and developed a branch-and-bound algorithm to solve the SOLR problem with

lower dimension.

http://www.muroran-it.ac.jp
http://www.muroran-it.ac.jp/academic/gs_dp/dp_e.html
http://www.muroran-it.ac.jp/academic/gs_dp/dp_e/details.html

To circumvent the nonconvex quadratic constraints, we make a linear relax-

ation for the nonconvex constraints by introducing some new auxiliary variables

instead of dropping them out. Therefore, this linear relaxation is generally tighter

than the previous one. With the help of the new relaxation, we propose a branch

and bound algorithm for solving the SOLR problem based on bisection branching

rules. We also prove the convergence of the proposed algorithm. The numerical

experiments are conducted and the results indicate that our method is much more

efficient than the previous one. More precisely, the number of branches is heavily

reduced at least to about 2% in average of the previous algorithm.

In addition, we develop a branch and bound algorithm for globally solving

the SOLR problem based on new branching rules (advanced branching rules).

The advanced branching rules guarantee that, if the rectangle that contains the

current best solution is divided into two sub-rectangles, the current best solution

will be in the both two sub-rectangles in next iteration. We also conduct numerical

experiments to investigate the performance of the proposed algorithm with the

new branching rules. The results indicate that the advanced branching rules can

accelerate the process for finding approximation solution.

Finally, we reformulate the SOLR problem into an SDP programming, and

give comparisons of several SDP relaxations.

Acknowledgements

I owe my deepest gratitude to my supervisors Prof. Jianming Shi and Assoc. Shinya

Watanabe. It is their invaluable guidance, advice and constant support and en-

couragement that enable me to finish this dissertation. I have learned a lot from

working with Prof. Shi. He taught me about doing research and presentation. We

also had many interesting and stimulating discussions during our weekly meetings.

After Prof. Shi moved to Tokyo University of Science, I still have numerous oppor-

tunities to discuss the difficulties of my research with him. I am greatly indebted

to him. Assoc. Shinya Watanabe also gave me tremendous help on my research.

I would like to thank him for interesting research discussion and invaluable com-

ments on my topics.

I am especially grateful to Prof. Hiroyuki Shioya who generously gave me his

time to discuss research problems with me.

Many thanks to Prof. Yanjun Wang from Shanghai University of Finance and

Economics. She shared valuable ideas with me during her visit in winter 2012 in

Muroran, which make me understand further on semidefinite programming.

This dissertation would not be possible without the encouragement and sup-

port of many friends. I would like to express my sincerest thanks to them all. My

special thanks go to Jun Mao, Woramol Chaowarat, Qunpo Liu, Faqiang Su for

their shared experience, assistance and discussions that made my PhD life hassle

free. I would also like to thank everyone in computational intelligence lab, for

their help and the fun they brought to my life. I will never forget the wonderful

times we spent together.

Finally, I would like to express my deepest gratitude to my family, for their

love and support over the years. This dissertation is dedicated to them all.

vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements vi

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 The Sum of Linear Ratios Problem 2

1.2 Applications . 5

1.3 Dissertation Outline . 6

2 Preliminaries 9

2.1 Notations . 9

2.2 Linear Programming . 10

2.2.1 Duality of Linear Programming 11

2.2.2 Algorithms for Solving Linear Programming 12

2.3 Lagrangian Duality . 14

2.3.1 Lagrange Function . 14

2.3.2 Lagrange Dual Function . 15

2.3.3 Lagrange Dual Problem . 15

2.3.4 Weak Duality and Strong Duality 16

2.4 Semidefinite Programming . 16

2.4.1 Semidefinite Duality . 17

2.4.2 Semidefinite Relaxation for Quadratic Optimization 18

2.5 NP-hardness of the SOLR Problem 19

2.5.1 Prelininaries . 19

vii

Contents viii

2.5.2 Main Construction . 20

2.5.3 An Example-Traveling Salesman Problem 27

3 The DIRECT Algorithm for Solving the SOLR Problem 31

3.1 Lipschitz Optimization . 31

3.2 Outline of the DIRECT Algorithm 32

3.2.1 Dividing hyperrectangles . 33

3.2.2 Identifying Potentially Optimal Hyperrectangles 33

3.2.3 Algorithm Description . 36

3.3 Performance of the DIRECT Algorithm for Lower Dimension 37

3.4 Numerical Results . 38

3.5 Conclusions . 40

4 A linear Relaxation Algorithm for Solving the SOLR Problem 43

4.1 Introduction . 43

4.2 Equivalent Transformation and Linear Relaxation 44

4.2.1 Equivalent Transformation 44

4.2.2 Linear Ralaxation . 46

4.3 A Branch and Bound Algorithm Based on Bisection Branching
Rules . 49

4.3.1 Branch and Bound Algorithm Review 49

4.3.2 Algorithm Description . 50

4.3.3 Algorithm’s Convergent Proof 51

4.3.4 Numerical Experiments . 53

4.4 A Branch and Bound Algorithm Based on Advanced Branching Rules 59

4.4.1 Feature of Best Solution in Native Dimension 60

4.4.2 Advanced Branching Rules 63

4.4.3 Advanced Algorithm Description 65

4.4.4 Numerical Experiments . 66

4.5 Conclusions . 68

5 Convex Relaxations for the SOLR Problem 73

5.1 Reformulation . 74

5.2 Lagrangian Relaxation . 76

5.3 Shor Relaxation . 78

5.4 SDP Relaxation for the SOLR Problem 80

5.5 Conclusions . 85

6 Conclusions and Further Works 87

6.1 Conclusions . 87

6.2 Further Works . 88

Contents ix

Bibliography 91

List of Figures

3.1 Different division strategies for hyperrectangles for two dimensions. 34

3.2 Results of DIRECT for Example 1. 38

4.1 Bounds and iterations with ε = 0.05 for solving Example 4.1. 55

4.2 Average lowboud of two models with different size of box p = 5, n = 3. 56

4.3 Average lowboud of two models with different size of box p =
30, n = 3. 56

4.4 Average lowboud of two models with different size of box p =
60, n = 3. 57

4.5 Average lowboud of two models with different size of box p =
80, n = 3. 57

4.6 An example of bisection branching rules at iteration k with a current
best solution xk

∗
in box Bk . 64

4.7 An example of advanced branching rules at iteration k with a cur-
rent best solution xk

∗
in box Bk . 64

xi

List of Tables

3.1 Convergence of DIRECT for example 1 with different torlerance. . 38

3.2 Results on 3 examples with tolerance ε = 10−4. 39

3.3 Numerical results with a budget of different function evaluations for
low dimensions. 40

3.4 The average CPU time (seconds) of DIRECT algorithm for dimen-
sion 2, 3, 4, with p = 10 through 400, and the budget of function
evaluations are 8100, 15400, 45800, respectively. 41

4.1 Numerical results on CPU times for solving problem (P0) with Q1

and Q0 with various p and n = 3. 58

4.2 Numerical results on iterations for solving problem (P0) with Q1

and Q0 with various p and n = 3. 59

4.3 Numerical results on branches for solving problem (P0) with Q1 and
Q0 with various p and n = 3. 60

4.4 Numerical results on CPU times for solving problem (P0) with var-
ious p and n = 3. The rows Qb1 for the results obtained from model
Q1 using bisection branching rules, while rows Qa1 for the results
obtained from model Q1 using advanced branching rules. 69

4.5 Numerical results on iterations for solving problem (P0) with Q1 and
Q0 with various p and n = 3. The rows Qb1 for the results obtained
from model Q1 using bisection branching rules, while rows Qa1 for
the results obtained from model Q1 using advanced branching rules. 70

4.6 Numerical results on branches for solving problem (P0) with Q1 and
Q0 with various p and n = 3. The rows Qb1 for the results obtained
from model Q1 using bisection branching rules, while rows Qa1 for
the results obtained from model Q1 using advanced branching rules. 71

xiii

Dedicated to my family

xv

Chapter 1

Introduction

Optimization problems appear in many practically relevant areas of our life. Typi-

cal application areas include project scheduling and staffing, production planning,

transportation, investment planning and many more. Optimal solutions in these

applications have significant economical and social impact. And better engineer-

ing designs often result in lower implementation and maintenance costs, faster

execution, and more robust operation under a variety of operating conditions. In

this dissertation, we study a convex optimization method for solving a class of

non-convex problems. A convex optimization problem, stated in Boyd and Van-

denberghe [13], is one of the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m,
(1.1)

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x,y ∈ Rn and all positive α, β such that α+β = 1. x = (x1, x2, . . . , xn)> ∈
Rn is decision variable. Clearly, if f0, . . . , fm are linear, the problem (1.1) is a

linear programming (LP) problem which is one of the most well-studied fields

within optimization.

If at least one of f0, . . . , fm is not convex, then problem (1.1) becomes non-

convex optimization problem, which in general is known to be NP-hard. And

1

Chapter 1. Introduction 2

such problems arise naturally in various areas in the real word. The problem of

optimizing one or several ratios of functions is called a fractional programming

problem which was introduced by Charnes and Cooper [19], and the general form

of sum of ratios can be formed as following

minimize f(x) =

p∑
i=1

hi(x)

gi(x)

subject to x ∈ X.
(1.2)

Fractional programming is one of the most successful fields today in non-linear

optimization. In the special case when g, h are both convex quadratic functions,

or both d.c. functions, problem (1.2) was studied by Gotoh and Konno [61] and

Jianming Shi [26], respectively. When g, h are both linear functions, problem (1.2)

is called the sum of linear ratios (SOLR) problem. It is an important branch of

fractional optimization and has attracted many researchers’ concern for several

decades. In this dissertation, we mainly focus on the SOLR problem with lower

dimension.

1.1 The Sum of Linear Ratios Problem

The SOLR problem has attracted the interest of many researchers since 1970s

because of its various applications and significant challenges for getting an optimal

solution; Many various problems arising in engineering, economics, management

science, transportation problems and other disciplines can be stated as the problem

of optimizing a sum of linear ratios [80]. In this dissertation, we consider the SOLR

problem defined as follows

minimize f(x) =

p∑
i=1

n>i x+ ai

d>i x+ bi

subject to x ∈ X = {x ∈ Rn|Ax ≤ c,x ≥ 0},
(1.3)

where p ≥ 2, ni,di are both vector in Rn for i = 1, . . . , p, ai, bi are real numbers

for i = 1, . . . , p , A is an m× n matrix, c is a vector in Rm.

The SOLR problem has attracted the interest of practitioners and researchers

for more than 40 years. This is because, from a practical point view, the SOLR

Chapter 1. Introduction 3

problem has a wide variety of applications such as multi-stage stochastic shipping

problem [2], multi-objective bond portfolio optimization problem [54, 56], mini-

mum ratio spanning tree problem [79], finance and investment [23], and a number

of geometric problems etc. [20]. In addition, from an academic research point of

view, the SOLR problem poses some theoretic and computational challenges. It is

well know that the SOLR problem generally has multiple locally optimal solutions

which are not globally optimal solution even for low dimension [70]. Furthermore,

the SOLR problem is NP-hard [63]; actually the 3-partition problem in [64], an

NP-hard problem, can be written in the form of problem (1.3).

Since the non-convexity of problem (1.3), traditional convex optimization

methods can not be applied directly for it. Fortunately, some complexity results on

fractional functions and related problems are known and several algorithms have

been proposed and some typically important results have been given for solving

for problem (1.3).

For example, solving the SOLR problem with n-variable is NP-complete,

even when the sum has only two or few terms [34]. Chandrasekaran [18] reduced

the Minimal Ratio Spanning Trees (MRST) as the SOLR problem and proved

that problem (1.3) is NP-complete problem in the case that the denominator is

allowed take on negative values on its feasible region. Schaible [70] showed in 1977

that the SOLR problem is neither quasiconcave nor quasiconvex on X even the

objective function is the sum of a linear term and a ratio term, and generally the

problem has one or more locally optimal solutions which are not global optimal

solution. In such a situation, solving problem (1.3) is quite challenging.

Quite a few algorithms have been proposed for solving it in the past decades,

(see [21, 52, 57]). First, some of these algorithms were intended only for the

case with p ≤ 2 [15, 57], and many algorithms were proposed for solving the

SOLR problem with only a few ratio degrees (less than 10) over a polytope (see

[33, 52, 79]). An efficient simplex-type algorithm were proposed by Charnes and

Cooper [19] for the case p = 1 in 1962. In fact, the objective function for this case

is both quasi-convex and quasi-concave. When p = 2, the objective is no longer

quasi-convex. Nevertheless, a parametric algorithm [57] can solve it in an efficient

manner.

Chapter 1. Introduction 4

However, problem (1.3) is much more difficult when p ≥ 3. When p = 3,

Konno [52] has developed an effective heuristic algorithm which is an extension of

the parametric simplex algorithm for p = 2. Some algorithms [10, 30, 33, 52, 79, 81]

have been proposed for such case. Also, Benson proposed an algorithm for the

problem (1.3), and a global solution for the problem (1.3) can be obtained by using

the primal-relaxed dual approach. Falk and Palocsay [33] proposed an algorithm

to solve problem (1.3) when p ≥ 3. In this algorithm, each ratio in the original

problem turns to be a new variable in the image space, and the optimal solution

is easy to obtain in certain directions in the image space.

To minimize the problem (1.3), Wang et al. [88] used a linearization technique

twice by the nature of exponential and logarithmic functions to make a linear

relaxation programming for its original problem. Jiao et al. [46] found a global

optimizer for problem (1.3) using a new pruning technique with linear rexalation.

Konno et al. [55] developed an algorithm that can be used to solve globally the

problem obtained from (1.3) by minimizing the objective function of (1.3) in 1994.

This algorithm transforms the problem into an equivalent concave minimization

problem with 2p variables, and the globally optimal solution can be obtained by

using outer approximation. Later, Benson [9] proposed a branch-and-bound algo-

rithm for globally solving the problem (1.3) via a branch-and-bound search. Some

algorithms use simplex method-like pivoting or the parametric simplex method

and apply only when X is polyhedral. The algorithm of Falk and Palocsay [33]

searches the nonconvex program on a image space literally until the optimal so-

lution is abstained. In fact, problem (1.3) can not be solved in a reasonable time

with a large number of ratios (e.g. , p = 15) by using such approach. In addition,

Depetrini and Locatelli [30] proposed an algorithm like sampling method to get

an approximation optimal solution, but it would take much CPU time for solving

problem (1.3) even when p = 3. Most of these algorithms based on branch and

band have been proposed for solving problem (1.3), see [53].

For an excellent review of the applications, theoretical results, algorithms of

the SOLR problem, the reader is reffered to [73]. And some specific applications

of the SOLR problem, especially for lower dimension, will be described in next

section.

Chapter 1. Introduction 5

1.2 Applications

In this section, we will give some applications for the SOLR problem. A single-

ratio (e.g. [71, 72]) with numerator and denominator can be represented output

and input, profit and cost, capital and risk. A multitude of applications of the

SOLR problem can be envisioned in this way.

In addition, a variety of problems in application domains which includes lay-

ered manufacturing, camera resectioning, homography estimation, star cover prob-

lem, triangulation problem and others, can be appropriately formulated as the

SOLR problem with lower dimension. The problems of this class are character-

ized by a small number of variables and a large number of ratios. The following

are some specific examples with detail description.

Camera Resectioning A recursive Camera Resectioning algorithm is pro-

posed for solving the problem in [51]. In the algorithm, the estimation of camera

motion can be simply computed by

E[Xt|Yt] ≈
M∑
i=1

w
(i)
t x

(i)
t .

Here M is the number of samples (usually M is large), w
(i)
t is the weight of the

i-th sample, and x
(i)
t is the modes of the probability distribution of camera system

state at time t for sample i. Clearly, this problem can be formulated into problem

(1.3) in R3 if the probability distribution is linear ratio for each sample.

The star cover problem This problem was introduced by Karen Daniels at

the 5th MSI workshop on Computational Geometry in 1995 (see [27]).

Let S be an n-vertex simple polygon. The star-cover problem on S is that

of computing a star-shaped polygon S ′ such that S ′ contains S and the area of

S ′ is minimized. The application can be found in material layout and manufac-

turing. Arkin et al. [5] reduced the star-cover problem to solving O(n2) problems

of optimizing the sum of O(n) fractional polynomials of degrees 3 trigonometric

functions constrained O(n) linear inequalities in 2 dimension. Later, Chen et al.

[21] converted this problem into O(n2) number of the SOLR subproblems, where

each the SOLR problem has an objective function with O(n) ratios in R2.

Chapter 1. Introduction 6

Triangulation Kuno and Masaki [60] built a pinhole camera model for this

problem and formulated it into minimizing the following form

p∑
i=1

∣∣∣∣n>i x+ ai

d>i x+ bi

∣∣∣∣q ,
where x is constrained on a compact convex region in R3 and q = 1 or 2. Obviously,

we are be able to transform the triangulation problem into the SOLR problem by

adding a large enough number for each ratio if we take the L1 norm criterion.

Actually, Charnes-Cooper transformation [19] used to solve problem (1.3) can

also be applied to solve this problem even the symbol of value of each ratio can

be changed on its feasible region.

Layered Manufactruing In layered manufacturing, a physical prototype of

a 3D object is built from a (virtual) CAD model by orienting and slicing the model

with parallel planes and then manufacturing the slices one by one, each on top

of the previous one. Layered Manufacturing is the basis of emerging technology

called Rapid Prototyping and Manufacturing. Readers can read more details of

Layered Manufacturing in [61]. The objective function G(x) in problem PR(n)

(p. 252 in [61]) can be rewritten as the SOLR problem on an interval as follows

G(x) :=

p∑
i=1

di
1 + cix

,

where x is a one-dimensional variable constrained to lie in a line segment. The

authors claim that they are not aware of any efficient algorithm that solves problem

PR(n).

Several other problems such as optimal penetration problem [22], and so forth,

also share the same character mentioned above.

1.3 Dissertation Outline

This dissertation studies on optimizing for the SOLR problem with lower dimen-

sion. We rewrite the SOLR problem into its equivalent problem with linear ob-

jective and quadratic and linear constraints. We make a linear relaxation for

the quadratic constraints instead of dropping them out. Two branch and bound

Chapter 1. Introduction 7

algorithms have been presented to globally solve the SOLR problem with lower di-

mension using linear relaxation. The difference between two proposed algorithms

is the branching rules— bisection branching rules and advanced branching rules.

The rest of the dissertation is organised as follows. Chapter 2 introduces pre-

liminaries on linear programming, Lagrangian duality and semidefinite program-

ming and refines the proof on the NP-hardness of the SOLR problem. Chapter

3 reviews DIRECT algorithm and evaluates the performance of DIRECT algo-

rithm for solving the SOLR problem. Chapter 4 presents two branch and bound

algorithms for globally solving the SOLR problem with lower dimension using lin-

ear relaxation. Chapter 5 reformulates the SOLR problem into an SDP problem.

Some existing SDP relaxations that can be applied for solving the reformulated

problem. The comparisons between these relaxations are given in this chapter. Fi-

nally, we conclude this dissertation and discuss some further research in Chapter

6.

Chapter 2

Preliminaries

Since the long standing popularity of non-convex programming for optimization,

there are many theoretical work in this research area. We collect the main technical

tools and basic results that will be used throughout this thesis in this chapter.

Readers who are familiar with these foundations are encouraged to skip ahead to

section 2.5.

2.1 Notations

In this dissertation, we use Rn,N to denote n-dimensional Euclidean space, natural

numbers, respectively. The cardinality of a finite set S is denoted by |S|, and co(S)

denotes the closure of the convex hull of S.. We let ei ∈ R denote the i-th unit

vector. The norm of a vector v ∈ Rn is denoted by ||v|| :=
√
v>v.

We always consider an n-dimensional vector x=(xi)i=1,...,n ∈ Rn to be a column

vector, that is,

x =


x1
...

xn

 .

Additionally, we also use the more convenient notation x> = (x1, . . . , xn) to denote

the transpose of a column vector that is a row vector.

9

Chapter 2. Preliminaries 10

If x, y are two vectors in Rn, then the inner product of x, y is

x>y :=
n∑
i=1

xiyi.

We use 0, 1 to denote zero vector, 1 vector with all components equal to 1,

respectively, that is

0 =



0
...
...
...

0


,1 =



1
...
...
...

1


.

We denote Rm×n to be the set of m × n matrices (m rows, n columns) with

entries from R. Also, given a matrix A ∈ Rm×n, Aij is defined as the matrix

composed of entry of A with the i-th row and j-th column. We denote by Ai and

Aj the i-th row and j-th column of A respectively. The notation diag(A) is defined

as the vector, which is the diagonal of A, while Diag(v) denotes the diagonal matrix

with diagonal v. The inner product of two matrices A,B ∈ Rn×n is defined as

A • B :=trace(A>B). Let Sn,Sn+ be the space of n × n symmetric matrices and

n × n positive semedifinite matrices, respectively. Finally, A � 0, A � 0 denote

matrix A is positive definite, positive semidefinite, respectively.

2.2 Linear Programming

Linear programming (LP) has been one of the most fundamental and successful

tools for optimization and discrete mathematics. Its applications include exact

and approximation algorithms, as well as structural results and estimates.

Chapter 2. Preliminaries 11

2.2.1 Duality of Linear Programming

A typical LP has the following from

(LP)

∣∣∣∣∣∣∣∣
minimize b>x

subject to Ax ≥ c,
x ≥ 0,

(2.1)

where b, c are given vectors in Rn,Rm, respectively. A is an m × n matrix, and

x ∈ Rn is a decision variable. The set Fp = {x ∈ Rn|Ax ≥ c,x ≥ 0} is called a

feasible region. A point x ∈ Fp is called a feasible point, and a feasible point x∗

is called an optimal solution if b>x∗ ≤ b>x for all feasible points x. If there is a

sequence {xk} such that xk is feasible and b>xk → −∞, then the LP problem is

said to be unbounded.

Given a LP problem we can associate a corresponding dual problem which is

given as follows

(DP)

∣∣∣∣∣∣∣∣
maximize c>y

subject to Ay + s = b,

y ≥ 0.

(2.2)

The decision variables-called the dual variables-form a vector y ∈ Rm. We denote

the feasible region of problem (2.2) by Fd. Linear programs are very efficiently

solvable, and have a powerful duality theory showed as follows.

Theorem 2.1 (Weak duality theorem). Let Fp and Fd be non-empty. Then,

b>x ≥ c>y, where x ∈ Fp, y ∈ Fd.

This theorem shows that a feasible solution to either problem yields a bound

on the value of the other problem. We call b>x− c>y a duality gap.

Theorem 2.2 (Strong duality theorem). Let Fp and Fd be non-empty. Then x∗is

optimal for (2.1) iff the following conditions hold:

a) x∗ ∈ Fp;
b) there is y ∈ Fd;
c) b>x− c>y = 0.

Chapter 2. Preliminaries 12

Theorem 2.3 (LP duailty). If (LP) and (DP) both have feasible solutions, then

both problems have optimal solutions and the optimal objective values of the objec-

tive functions are eauql.

If one of (LP) or (DP) has no feasible solution, then the other is either un-

boundsed or has no feasible solution. If one of (LP) or (DP) is unbounded then

the other has no feasible solution.

The following theorem plays an important role in analysing interior-point

algorithms for solving LP. It gives a unique partition of the LP variables in terms

of complementarity.

Theorem 2.4 (Strict complementarity theorem). If (LP) and (DP) both have

feasible solutions then both problems have a pair of strictly complementary so-

lutions x∗ ≥ 0 and s∗ ≥ 0 meaning

x∗s∗ = 0 and x∗ + s∗ > 0.

Moreover, the supports

P ∗ = {j|x∗j > 0} and Z∗ = {j|s∗j > 0}

are invariant for all pairs of strictly complementarity solutions.

All the important theorems’ proofs mentioned above can be found in [8].

2.2.2 Algorithms for Solving Linear Programming

Various methods are available for solving LP problems, and LP problems are

solvable in polynomial time.

The classical, and still very well algorithm to solve LP is the Simplex Method

[28]. This is practically quite efficient, but can be exponential on some instances.

The first polynomial time algorithm to solve linear programming problem was the

Ellipsoid Method introduced by Khachian [50]. However, it compared poorly to

the Simplex method in real life applications.

The most efficient methods known today, both theoretically and practically,

are Interior Point Methods proposed by Karmarker [48]. The method starts from

Chapter 2. Preliminaries 13

an interior point of the feasible region and then follows a “central” path given

by adding a logarithmic barrier function to the objective function towards an

optimal point. Newton’s method is applied to follow the central path. Finally,

when a point sufficiently near an optimal extreme point is found, it can be rounded

in a polynomial number of steps to an exact solution. The theoretical worst case

running time is given by O(Ln ln(n)), where n is the dimension of the problem

space and L is the length of the input data, i.e., A, b, and c.

The basic idea for Karmarker Alogorithm is to use the steepest descent

method. It is advisable to move in the direction of steepest descent if the current

(approximate) interior point is near the centre of the polytope describing the fea-

sible region, and it is possible to transform the feasible region so as to place the

current point near the centre of the polytope, without changing the problem in

any essential way.

However, a lot of LPs arising in machine learning and data mining are so

large that they cannot be solved by off-the-shelf LP solvers because of memory

limitations of computer. As the problem size grows, simplex-like algorithms require

a prohibitive number of iterations and interior point methods need a large amount

of time and memory to compute a single iteration.

In order to cope with these problems many researchers have investigated de-

composition methods, such as Benders’ and Dantzig-Wolfe decomposition, and

Lagrange relaxations (see [62, 83]). The main idea of these methods is to di-

vide the initial problem into subproblems that are simpler and easier to solve.

Researchers also exploit the structure of special LP for dealing with even larger

problems, for example, by using problem sparsity. The efficiency analysis of these

methods is mostly based on empirical results for specific problem instances. And

recently many researchers develop several algorithms to solve large-scale linear

programming.

LP solvers are so sophisticated and robust that it is almost always keep the

case that a LP can be solved as long as there is sufficient computer memory.

LIPSOL , standing for Linear programming Interior-Point SOLvers, is a Matlab-

based software developed by Zhang [89] for solving relatively large linear problems.

CPLEX [25] optimizer, named for the simplex method as implemented in the C

programming language (now it also offer other interfaces such as Matlab, Java,

Chapter 2. Preliminaries 14

C++, etc.), is a well know optimizer can solve millions of variables in linear pro-

gramming [31]. The algorithms used in CPLEX is either primal or dual variants

of the simplex method or the barrier interior point method. Gurobi Optimizer

[66], a state-of-the-art solver for mathematical programming, is also a powerful

solver for large scale programming. The solver we use for solving large-scale linear

programming problems in this dissertation is Gurobi.

2.3 Lagrangian Duality

Lagrangian duality is a fundamental tool in optimization, and Lagrangian tech-

niques have been used extensively to solve vary kinds of problems. In this section,

we will review some basic definitions and results on Lagrangian duality.

2.3.1 Lagrange Function

We consider the following optimization problem to define Lagrange function.

minimize f0(x)

subject to fi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J ,

(2.3)

where x ∈ Rn. We assume the feasible region of (2.3), D, is nonempty, and denote

its optimal value by p∗.

The basic idea in Lagrangian duality is to take some difficult constraints in

(2.3) into account by augmenting the objective function with a weighted sum of

the constraint function. Next we define the Lagrange function L associated with

the problem (2.3) as

L(x,λ,ν) = f0(x) +
∑
i∈I

λifi(x) +
∑
j∈J

νjhj(x). (2.4)

We refer to λi as the Lagrange multiplier associated with the ith inequality con-

straint fi(x) ≤ 0; similarly we refer to νj as the Lagrange multiplier associated

with the jth equality constraint hj(x) = 0.

Chapter 2. Preliminaries 15

2.3.2 Lagrange Dual Function

The key idea of Lagrangian duality is the following observation:

We define the Lagrange dual function g as the minimum value of the Lagrange

function over x for λ ∈ R|I|,ν ∈ R|J |,

g(λ,ν) = inf
x∈D

L(x,λ,ν) = inf
x∈D

(
f0(x) +

∑
i∈I

λifi(x) +
∑
j∈J

νjhj(x)

)
. (2.5)

It is easy to verify that the dual lagrange function takes on the value −∞ when

the lagrange functionis unbounded below in x. Since the dual function is the

pointwise infimum of a family of affine functions of (λ,ν), it is concave, even if

the problem (2.3) is not convex.

Proposition 2.5. For any λ ≥ 0,ν, g(λ,ν) ≤ p∗.

That is to say, for any ν and nonnegative λ, g(λ,ν) is a lower-bound of the

true optimum. First, for any x in feasible region,

L(x,λ,ν) ≤ f0(x). (2.6)

Inequality (2.6) indicates that the Lagrange function can only work for legal solu-

tions. Thus, in particular, if x∗ is the optimum of problem (2.3),

g(λ,ν) = inf
x∈D

L(x,λ,ν) ≤ inf
x∈D

L(x∗,λ,ν) = p∗. (2.7)

For illegal solutions, however, this is not true. If x′ violates some constraints, then

for certain settings of the Lagrange multipliers, L(x′,λ,ν) > f0(x
′).

2.3.3 Lagrange Dual Problem

We know that the Lagrange dual function gives valid lower bounds for any ν,λ ≥
0, it is natural to try to get the best lower bound. A better lower bound can be

exploited the following Lagrange dual problem associated with problem (2.3)

maximize g(λ,ν)

subject to λ ≥ 0.
(2.8)

Chapter 2. Preliminaries 16

The Lagrange dual problem (2.8) is a convex optimization problem, since the

objective to be maximized is concave and the constraints are convex.

2.3.4 Weak Duality and Strong Duality

Let d∗ be the optimal value of the Lagrange dual problem. In particular, we have

the simple but important inequality

d∗ ≤ p∗, (2.9)

which holds even if the original problem is not convex. This property is called

weak duality.

We refer to the difference p∗− d∗ as the optimal duality gap of problem (2.3).

If the equality

p∗ = d∗ (2.10)

holds, i.e., the optimal duality gap is zero, then strong duality holds, which means

that the best bound obtained from the Lagrange dual function is tight. Constraint

qualications for fi(x0) < 0, i = 1, . . . ,m for some x0 ∈ D. A common usage of the

Lagrangian duality is that, when Slater’s conditions are satisfied, we can transform

the primal problem into the dual problem and apply optimization methods to the

dual problem instead of solving the primal problem directly.

2.4 Semidefinite Programming

Semidefinite programming (SDP) , can be solved very efficiently in practice as well

as in theory, is the most exciting development in mathematical programming in the

1990’s and plays a very useful role in non-convex or combinatorial optimization.

And the semidefinite relaxation (SDR) is a powerful, computationally efficient

approximation technique for a host of very difficult optimization problems.

In this section, we give some results on semidefinite programming. Particu-

larly, we give some overview of semidefinite relaxation for quadratic optimization

problem. Readers are referred to Nemirovski [8] and Helmberg [41] for further

background and more details.

Chapter 2. Preliminaries 17

A semidefinite programming is an optimization problem of the stand form:

(SDP-P)

∣∣∣∣∣∣∣∣
minimize C •X

subject to Ai •X = bi, i = 1, . . . ,m,

X � 0,

(2.11)

where C,Ai ∈ Sn, X is an n× n matrix.

2.4.1 Semidefinite Duality

A very important feature of semidefinite programming, from both the theoretical

and applied viewpoints, is the associated duality theory. For each SDP program

in the form (2.11), there is another associated SDP, called the dual problem which

can be stated as follows

(SDP-D)

∣∣∣∣∣∣
maximize b>y

subject to
m∑
i=1

Aiyi � C,
(2.12)

where b = (b1, . . . , bm)> is given, and y = (y1, . . . , ym)> is the dual decision

variables.

As in the linear programming case, a key relationship between the primal and

the dual problems is that feasible solutions of one problem can be used to bound

the values of the other, which can be showed by the following proposition.

Proposition 2.6 (SDP weak dulity). Let X and y be feasible for (SDP-P) and

(SDP-D), respectively. Then we have C •X − b>y ≥ 0.

Proof. Since X and y are feasible for (SDP-P) and (SDP-D), we have

C •X − b>y ≥

(
m∑
i=1

Aiyi

)
•X − b>y = 0.

as desired.

Chapter 2. Preliminaries 18

2.4.2 Semidefinite Relaxation for Quadratic Optimization

Let us write the quadratic optimization as follows:

(QP)

∣∣∣∣∣∣ minimize x>Cx

subject to x>Aix ≥ bi, i = 1, . . . ,m,
(2.13)

where C,A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R. To make a relaxation of (2.13), it is

easy to observe that

x>Aix = trace(x>Aix) = trace(Aix
>x) = Ai •X,

x>Cx = trace(x>Cx) = trace(Cx>x) = C •X,

whereX = x>x. Particularly, both the objective function and constraints in (2.13)

are linear with respective to matrix X. Furthermore, X = x>x is equivalent to X

being a rank one symmetric positive semidefinite matrix. We obtain the following

equivalent problem of problem (2.13)

minimize C •X
subject to Ai •X ≥ bi, i = 1, . . . ,m,

X � 0, rank(X) = 1.

(2.14)

Although problem (2.14) is as difficult to solve as problem (2.13), the formulation

in (2.14) allows us to identify the fundamentally difficulty in solving problem

(2.13). Indeed, the constraints in problem (2.14) are all convex constraints except

the constraint rank(X) = 1. Thus, we can obtain a relaxed version which is given

as bellow for problem (2.14) by dropping the non-convex constraint as follows

minimize C •X
subject to Ai •X = bi, i = 1, . . . ,m,

X � 0.

(2.15)

Indeed, problem (2.15), the standard form of semidefinite programming, can be

solved conveniently and effectively by many optimization tools such as CVX [39]

or Sedumi [69].

Chapter 2. Preliminaries 19

Recently, several SDP relaxations have been proposed for problem (2.13) [3,

4, 11, 12, 14, 35]. Particularly, we rewrite the following main theoretical results

for different SDP relaxations for (2.13), which is reported by Bao [6].

vL = vShor = vDShor ≤ vSD ≤ vSC ≤ vSRLT ≤ f ∗,

where

• vL : the value of a standard Lagrangian relaxation [85] of (2.13),

• vShor : the value of the Shor relaxation [78],

• vDShor : the value of dual of the Shor relaxation [78],

• vSD : the value of the Shor relaxation enhanced with convex/concave en-

velopes for diagonal elements of the matrix variables [78],

• vSC : the value of the Shor relaxation [78] enhanced with convex/concave

envelopes for matrix variables,

• vSRLT : the value of the Shor relaxation enhanced with a partial first-order

RLT [76],

• f ∗: the optimal value of (2.13).

2.5 NP-hardness of the SOLR Problem

In order to propose effective solution approaches for an optimization problem, it

is essential to understand the problem’s complexity [38]. This chapter reviews the

known complexity results [63, 67] for some linear multiplicative programming and

proves that the SOLR problem with linear constrains can be reduced to a kind of

linearly multiplicative problem which is proved to be an NP-hard problem [63].

These results enhance our understanding of what makes the SOLR problem so

difficult to solve.

2.5.1 Prelininaries

Let us define some classes of problems as follows:

Definition 2.7. Any problem for which the answer is either zero or one is called

a decision problem. An algorithm for a decision problem is termed a decision

algorithm.

Chapter 2. Preliminaries 20

Definition 2.8. Any problem that involves the identification of an optimal (either

minimum or maximum) value of a given cost function is known as an optimization

problem. An optimization algorithm is used to solve an optimization problem.

Definition 2.9. P is a set of all decision problems solvable by deterministic al-

gorithms in polynomial time. NP is a set of all decision problems solvable by

nondeterministic algorithms in polynomial time.

Clearly, if a problem is in P , then it is also in NP .

Definition 2.10. A problem A is NP-hard if and only if satisfiability reduces to

A (satisfiability ∝ A). A problem A is NP-complete if and only if A is NP-hard

and A ∈ NP .

Definition 2.11. Let A and B be problems. Problem A reduces to B (A ∝ B) if

and only if there is a way to solve A by a deterministic polynomial time algorithm

using a deterministic algorithm that solves B in polynomial time.

The reader is referred to the classic text by Garey and Johnson [49] for

more details on computational complexity and the theories of NP-hard and NP-

complete.

In order to prove the NP-hardness of the SOLR problem, let us consider the

following problem which is given in [63] :

maxmize 1
x1

+ 1
x2

subject to x ∈ X = {x ∈ Rn|Ax ≤ c,x ≥ 0}
(2.16)

where x = (x1, x2, . . . , xn). Clearly, the SOLR problem is NP-hard if (2.16) ∝ the

SOLR problem under the condition that (2.16) is NP-hard. Next we will make a

construction to show that (2.16) is NP-hard.

2.5.2 Main Construction

Pardalos and Vavasis [67] showed that the following problem of minimizing a

quadratic concave problem with linear constraints is NP-hard.

maxmize x1 − x22
subject to x ∈ X = {x|Ax ≤ c,x ≥ 0}.

(2.17)

Chapter 2. Preliminaries 21

In this section, we review an excellent proof given by Matsui [63] who refined the

proof described in [67]. Let us denote the value rx1+r2x2+ · · ·+rnxn be w, where

x ∈ [0, 1]n and r > 0. And for ∀x ∈ [0, 1]n,

w2 =
n∑
i=1

n∑
j=1

ri+jxixj.

Since ∀x ∈ [0, 1]n, we can make a relaxation for xixj by the following linear

inequalities if we replace xixj by yij.

Y :=


yij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ yij ≤ 1,

yij ≤ xi,

yij ≤ xj,

yij ≥ xi + xj − 1,

i 6= j.


(2.18)

For the case i = j, we replace the term xixi by yii. Thus,

yii = xi. (2.19)

In addition, w2 is approximated by the following value with the definition of yij.

w2 =
n∑
i=1

n∑
j=1

ri+jxixj.

Clearly, according to (2.18), yij = xixj if either xi or xj is 0-1 valued. And

yii = xi if and only if xi ∈ [0, 1]n is 0-1 valued for all i. Therefore, for xi ∈ [0, 1]

valued 0-1 for all i, the equality yij = xixj always holds. However, if x ∈ [0, 1]n is

not valued 0-1, the equality yij = xixj does not hold in general. Next we consider

the gap between w2 and
n∑
i=1

ri+jyij when x is not 0-1 valued.

Chapter 2. Preliminaries 22

Let k = arg max (xi), 0 < xi < 1. Therefore, for any i > k, yij = xixj for all

j because xi is 0-1 valued. Then we have

n∑
i=1

ri+jyij − w2

=
k∑
i=1

k∑
j=1

ri+jyij +
n∑

i=k+1

k∑
j=1

ri+jyij

+
k∑
i=1

n∑
j=k+1

ri+jyij +
n∑

i=k+1

n∑
j=k+1

ri+jyij −
n∑
i=1

n∑
j=1

ri+jxixj

=
k∑
i=1

k∑
j=1

ri+jyij +
n∑

i=k+1

k∑
j=1

ri+jxixj

+
k∑
i=1

n∑
j=k+1

ri+jxixj +
n∑

i=k+1

n∑
j=k+1

ri+jxixj −
n∑
i=1

n∑
j=1

ri+jxixj

=
k∑
i=1

k∑
j=1

ri+jyij −
k∑
i=1

k∑
j=1

ri+jxixj

≥ r2kykk − (r2k(xk)
2 + r2k−1(k2 − 1))

= r2k(xk − (xk)
2)− r2k−1(k2 − 1)

> r2(xk − (xk)
2)− rn2.

Since 0 < xk < 1, xk − (xk)
2 ≥ 1

4
. Let σ ∈ (0, 1

2
), and we have

n∑
i=1

ri+jyij − w2 ≥ r2σ/2− rn2. (2.20)

Lemma 2.12. Let x ∈ Rn, and y ∈ Rn×n such that:

0 ≤ xi ≤ 1 (for all i),

0 ≤ yij ≤ 1 (for all i, j),

yij ≤ xi, yij ≤ xj, yij ≥ xi + xj − 1 (for all i, j such that i 6= j),

yii = xi (for all i).

(2.21)

Assume that r is a positive integer, x is not 0-1 valued and ∃σ ∈ (0, 1/2) such

that each element xi is either xi = 0, 1 or σ < xi < 1 − σ. Then the inequality
n∑
i=1

n∑
j=1

ri+jyij − w2 ≥ r2σ/2− rn2 holds.

Lemma 2.12 implies that
n∑
i=1

ri+jyij − w2 > 0 if r is sufficiently large. Thus,

Chapter 2. Preliminaries 23

n∑
i=1

ri+jyij −w2 ≤ 0 if and only if x ∈ [0, 1]n is 0-1 valued if r is sufficiently large,

which give us an idea to show the NP-hardness of problem (2.17). We transform

the NP-hard problem, Set partition [49, 64], to a decision version of problem

(2.17) to show NP-hardness of (2.17).

Set partition

• data: A 0-1 matrix M ∈ Rm×n such that n > m.

• question: Is there a 0-1 vector x such that Mx = 1?

Let us consider the following optimization problem:

f ∗ = minimize
n∑
i=1

n∑
j=1

ri+jyij −

(
n∑
i=1

rixi

)2

subjcet to (2.21) andMx = 1.

(2.22)

Suppose Mx = 1 has a 0-1 valued solution. Without loss of generality, let I
is set of the index such that xi = 0,∀i ∈ I. And J is the set of index that

xj = 0,∀j ∈ J . Since yij is constrained to the set linear inequalities of (2.21),

yij = 0 if and only if xi = 0. Similarly, yij = 1 if and only if I = ∅. Therefore,

the optimal value of (2.22) is non-positive if the system Mx = 1 has a 0-1 valued

solution.

Now we focus on the case that the system Mx = 1 dose not have a 0-1 valued

solution. Let FP3 be the feasible region of problem (2.22), and, of course, FP3 is a

bounded polytope. The number of constrains of (2.22) is equal to n+n2 + 4(n2−
n)+n+m and so the number of constrains is less than n3 when n > 5. Let (x′,y′)

be a vertex of polytope FP3 . Since the element of the constraint matrix of (2.22)

is −1, 0 or 1, Cramer’s rule imply that each element of (x′,y′) is 0-1 or contained

in the interval [1/(n3)n
3
, 1 − 1/(n3)n

3
], which can derive the following theorem if

we let σ′ = 1/(n3)n
3
.

Theorem 2.13. Let M ∈ Rm×n be a 0-1 matrix with n > m and n ≥ 5. Assume

that r = nn
4
. The equality system Mx = 1 has a 0-1 valued solution if and only

if the optimal value of problem (2.22) is non-positive. If Mx = 1 does not have a

0-1 valued solution, the optimal value of problem (2.22) is greater than r.

Chapter 2. Preliminaries 24

Proof. We have mentioned that the optimal value of problem (2.22) is non-positive

if Mx = 1 has a 0-1 valued solution.

Now we consider the case that Mx = 1 does not have a 0-1 valued solution.

For any vertex (x′,y′) of polytope FP3 , each element of (x′,y′) is 0-1 valued or

contained in the interval [1/(n3)n
3
, 1 − 1/(n3)n

3
]. Since Mx = 1does not have a

0-1 valued solution, any element of x′ is not 0-1 valued. According to lemma 2.12,

we have

n∑
i=1

n∑
j=1

ri+jy′ij −

(
n∑
i=1

rix′i

)2

≥ r2σ′/2− rn2 > p(nn
4

/(2n3n3

)− n2) > r.

Because (x′,y′) is the any vertex of polytope FP3 , any feasible solution (x,y)

can be represented by a convex combination of vertices of FP3 . Since the ob-

jective function of (2.22) is concave, any feasible solution (x,y) satisfied that
n∑
i=1

n∑
j=1

ri+jyij −

(
n∑
i=1

rixi

)2

> p, which completes the proof.

Theorem 2.23 implies that we can decide the answer to the Set partition by

solving the optimization problem (2.22). The largest coefficient of (2.22) is r2n,

and its input size is dlog(r2n)e + 1 = dlog(nn
4
)2n)e + 1 = d2n5 log ne + 1, which

indicates that the input size of problem (2.22) is bounded by a polynomial of n.

Therefor, problem (2.22) is NP-hard.

In addition, we can extend the results of theorem 2.23 to a general optimiza-

tion.

Corollary 2.14. Let n be a positive integer such that n ≥ 5 and r = nn
4
. Assume

that g(x0, y0) is a function satisfying the following condition:

1. ∀x0 ∈ [0, nrn], ∀y0 ∈ [0, n2r2n], if y0 − x20 ≤ 0 then g(x0, y0) ≤ 0,

2. ∀x0 ∈ [0, nrn], ∀y0 ∈ [0, n2r2n], if y0 − x20 > r then g(x0, y0) > 0,

Chapter 2. Preliminaries 25

Let M ∈ Rm×n be a 0-1 matrix with n > m and n ≥ 5, and we define the following

problem:

f ∗ = minimize g(x0, y0)

subject to (2.21) andMx = 1,

x0 =
n∑
i=1

rixi,

y0 =
n∑
i=1

n∑
j=1

ri+jyij.

(2.23)

Then the optimal value of problem (2.23) is non-positive if and only if the equality

the system Mx = 1 has a 0-1 valued solution.

Corollary 2.14 give us a way to construct optimization problems which can

be reduced to problem (2.23). Let n ≥ 5 and r = nn
4
, considering the following

special function :

g1(x0, y0) = (y0 − r + 2r4n)2 − 4r4nx20 − 4r8n

= (y0 − r + 2r4n + 2r2nx0)(y0 − r + 2r4n − 2r2nx0)− 4r8n.

Next we show that g1(x0, y0) satisfies the two conditions in Corollary 2.14.

1. If x0 ∈ [0, nrn], y0 ∈ [0, n2r2n] and y0 − x20 ≤ 0, then

g1(x0, y0) = (y0 − r + 2r4n)2 − 4r4nx20 − 4r8n

≤ (y0 − r)2 + 2(y0 − r)(2r4n) + 4r8n − 4r4ny0 − 4r8n

= (y0 − r)2 − 4r4n(y0 + r − y0)

= (y0 − r)2 − 4r4n+1

≤ (y0)
2 + r2 − 4r4n+1

≤ (x0)
4 + r2 − 4r4n+1

≤ n4r4n + r2 − 4r4n

≤ 0 (since p is sufficient large).

Chapter 2. Preliminaries 26

2. If x0 ∈ [0, nrn], y0 ∈ [0, n2r2n] and y0 − x20 > p, then

g1(x0, y0) = (y0 − r + 2r4n)2 − 4r4nx20 − 4r8n

> (x20 + 2r4n)2 − 4r4nx20 − 4r8n

= x20

≥ 0.

Then it is natural consider the optimization problems as follows

f ∗1 = minimize z1z2

subject to (2.21) andMx = 1,

x0 =
n∑
i=1

rixi,

y0 =
n∑
i=1

n∑
j=1

ri+jyij,

z1 = y0 − r + 2r4n + 2r2nx0,

z2 = y0 − r + 2r4n − 2r2nx0.

(2.24)

Clearly, the optimal value of problem (2.24) is less than or equal to 4r8n if and

only if Mx = 1 has a 0-1 valued solution. Thus, we can decide the answer of

set partition by solving problem (2.24). In addition, the largest coefficient in

problem (2.24) is 2r4n = 2(nn
4
)4n = 2n4n5

, and the threshold value is 4r8n =

4(nn
4
)8n

5
= 4n8n5

. Thus, the input size of problem the largest coefficient and the

threshold value are 4n5 log(2n), 8n5 log(4n), respectively. Of course, they are both

bounded by a polynomial of n. Further more, problem (2.24) is a special case of

problem (2.22). Therefore, problem (2.22) can be reduced into problem (2.24),

which derives the following lemma.

Lemma 2.15. Problem (2.24) is NP-hard.

Note that z1, z2, defined in problem (2.24), are both positive. Since r = nn
4

is an efficiently large number when n ≥ 5. Therefore

z1 = y0 − r + 2r4n + 2r2nx0 > −r + 2r4n > 0;

z2 = y0 − r + 2r4n − 2r2nx0 > −r + 2r4n − 2r2nnrn = −r + 2r4n − 2nr3n > 0.

Chapter 2. Preliminaries 27

Since problem (2.24) implies that f ∗1 ≤ (2r4n)2 if and only if Mx = 1 has a

0—1 valued solution. In addition, z1z2 ≤ (2r4n)2 if and only if

1

z1 + 2r4n
+

1

z2 + 2r4n
≥ 1

2r4n
.

Therefore, if we let z3 = z1 + 2r4n and z4 = z2 + 2r4n, 1/z3 + 1/z4 ≥ 1/2r4n. Thus,

we can decide the answer to set partition by optimizing the following problem:

minimize 1
z3

+ 1
z4

subject to (2.21) andMx = 1,

x0 =
n∑
i=1

rixi,

y0 =
n∑
i=1

n∑
j=1

ri+jyij,

z1 = y0 − r + 2r4n + 2r2nx0,

z2 = y0 − r + 2r4n − 2r2nx0,

z3 = z1 + 2r4n,

z4 = z2 + 2r4n.

(2.25)

Similarly, the input size of the largest coefficient and its threshold value of

problem (2.25) are both bounded by a polynomial of n, and problem (2.24) is a

special case of problem (2.25), which implies that the NP-hard problem (2.24)

can be reduced to problem (2.25). Then we have following thorem:

Theorem 2.16. Problem (2.16) is NP-hard.

2.5.3 An Example-Traveling Salesman Problem

In section 2.5.2, we showed that the set partition problem can be reduced. It is

well know that the traveling salesman problem (TSP) is an NP-hard problem.

Gao, Mishra and Shi [37] showed that TSP can be written in a form of the SOLR

problem. In this section, we will review it to show how to reduce the TSP problem

to the SOLR problem.

The TSP problem consists of a salesman and a set l cities. The salesman has

to visit each one of the n cities once and only once, starting from a certain one

and returning to the same city. What route, or tour, should be choose in order to

Chapter 2. Preliminaries 28

minimise the total distance traveled? Other notions such as time, cost, etc., can

be considered as well instead of distance.

Mathematically, the TSP problem can be described as follows:

(1) Given a “cost matrix” D = (dij), where dij is the cost of going from city

i to city j, (i, j, . . . , n). determine xij which minimises the quantity Q =
∑
i,j

dijxij

subject to

(a) xii = 0;

(b) xij = 0, 1;

(c)
∑
i

xij =
∑
j

xij;

(d) for any subset S = {i1, i2, . . . , ir} of the integers from 1 to n,

xi1i2 + xi2i3 + · · ·+ xir−1ir + xiri1

 < r for r < n

≤ n for r = n

Let O,O∗ be the city order index set and the optimal order from city 1 to

city n is O∗ = {o∗1, o∗2, . . . , o∗n, o∗1, }, respectively. Then solving the TSP problem is

equivalent to optimise the following problem:

minimize
n∑
i=1

doioi+1
xoioi+1

+ dono1xono1

subject to (a) to (d).
(2.26)

We denote that

αj :=
n∑
i=1

doji o
j
i+1
xoji o

j
i+1

+ dojnoj1
xojnoj1

,

and L := min{di1,i2|i1, i2,∈ I}, βj := L
2n!αj

for each order Oj with 1 ≤ j ≤ (n −
1)!/2, where I is the city index set. Therefore, problem (2.26) is equivalent to

finding and order Oj such that βj is maximized for 1 ≤ j ≤ (n − 1)!/2. Denote

that

ρj := βj+1(j + 1)− (j + 1)2, σj := (βj − j)j,

and

gj(y) := y +
ρj(y − j) + σ((j + 1)− y)

y
, y ∈ R.

Chapter 2. Preliminaries 29

Clearly, gj(j) = βj, gj(j + 1) = βj+1. Furthermore, gj(y) is convex becasuse

σj(j + 1) − ρjj > 0, for all j. Since ρj(j − j) + σj((j + 1) − j) = σj = (βj − j)j,
and ρj((j + 1) − j) + σj((j + 1) − (j + 1)) = ρj = (j + 1)(βj+1 − (j + 1)), and

ρj+1 − σj+1 < ρj − σj, which implies that the function values of the numerator of

the second term of gj(·) at point j and point j + 1 are the same, and the slope of

the numerator is decreasing with j growing. According to these properties above,

we can solve the following problem instead of problem (2.26).

maximize y + t
y

subject to t ≤ ρj(y − j) + σj((j + 1)− y), j = 1, . . . , (n− 1)!/2,

1 ≤ y ≤ (n− 1)!/2.

(2.27)

Therefore, the TSP problem can be reduced to a problem (2.27) which is a spe-

cial case of sum of linear ratios, which indicates that problem (2.27) is NP-hard

problem.

Chapter 3

The DIRECT Algorithm for

Solving the SOLR Problem

The SOLR problem, mentioned in Chapter 1, is a non-convex and NP-hard prob-

lem. Furthermore, the derivative information of objective function is difficult to

get and therefore only objective function values can be used. There are some meth-

ods used to solve this kind of problem, and one of them is so called the DIRECT

algorithm [36, 47] which is the abbreviation of Dividing RECTangles. DIRECT

does not exploit any a prior knowledge on the objective function, which is suitable

for our problems. In this chapter, we apply the DIRECT algorithm for solving

SOLR with lower dimension within a given tolerance.

3.1 Lipschitz Optimization

For easier understand the princle of the DIRECT algorithm, we give the following

Lipschitz continuous functions.

Definition 3.1. Let M ⊂ Rn and f : M → R. The function f is called Lipschitz

continuous on M with Lipschitz constant γ if

|f (x)− f (x′)| ≤ γ ‖x− x′‖ ∀x, x′ ∈M, (3.1)

where ‖·‖ is any norm on Rn. The following theorem shows that the class of

Lipschitz continuous functions is very general.

31

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 32

Theorem 3.2. Let M ⊂ Rn be a bounded , closed set , and let f be a continu-

ously differentiable function on an open convex set M0 ⊇M . Then f is Lipschitz

continuous on M .

Proof. Let x0 ∈ M be an arbitrary point. Then the first order Taylor-expansion

of f near x0 is

f(x) = f(x0) + g(xr)>(x− x0),x ∈M, (3.2)

where g is the gradient of f , and xr is a suitably chosen point of the interval

[x0,x]. Applying the Cauchy-inequality to equation (3.2), we have

∣∣f(x)− f(x0)
∣∣ =

∣∣g(xr)>(x− x0)
∣∣ ,x ∈M. (3.3)

Then the relationship co(M) = co(M) ⊆ M0 holds [68], and therefore co(M) is

compact and the norm of the gradient g is bounded on co(M). Then maxx∈co(M)g(x)

is an appropriate Lipschitz constant, and f is Lipschitz continuous.

According to the Definition 3.1 and the Theorem 3.2, we have the following

theorem which gives the Lipschitz continuousity of the objective function in (1.3).

Theorem 3.3. The function f(x) in (1.3) is Lipschitz continuous on X.

Proof. We show f(x) in (1.3) is continuous differentiable on open convex set X0 ⊇
X first. Let ri(x) = n>i + ai, qi(x) = d>i + bi, h(x) = ri(x)

q(x)
. Since qi(x) 6= 0 on X

for all i = 1, . . . , p, we have the following formular for each j ∈ 1, . . . , n

∂h(x)

∂xj
=

∂r(x)
∂xj

q(x)− r(x)∂q(x)
∂xj

q(x)2

Clearly, X is a bounded set, therefore f(x) in (1.3) is Lipschitz continuous on X

according to the Theorem 3.3,

3.2 Outline of the DIRECT Algorithm

In this section, we give a brief overview of the DIRECT algorithm proposed by

Jones at al. [47]. The DIRECT algorithm, created in order to solve difficult global

optimization problems with bound constraints and Lipschitz-continuous objective

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 33

function, is a sampling algorithm and has been proven to be effective in a wide

range of application domains. The algorithm centers around a space-partitioning

scheme that divides large hyperrectangles into smaller ones. And the center of each

hyperrectangle, considered as a representative of the hyperrectangle, is evaluated

by objective function to compare with other ones.

The key of the algorithm are identifying potentially optimal intervals or hy-

perrectangles and its strategy of division. We will give a brief description as

follows.

3.2.1 Dividing hyperrectangles

The DIRECT algorithm begins by scaling the domain, Ω, to an n dimensional

unit hypercube. The domain Ω is identified as the first potentially optimal hy-

perrectangle and DIRECT initiates its search by evaluating objective function at

the center point of the original domain Ω, ce = (1/2, . . . , 1/2). Then it continues

search process by evaluating the objective function at the sampled points ce ± δei
which are determined as equidistant to the center ce. Where δ is the one third of

the distance to the hypercube, and ei is the ith unit vector. Then the algorithm

moves to the next phase of the iteration by dividing the potentially optimal hy-

perrectangle. The dividing process is done by trisecting in all directions and the

trisection is based on the directions with the smallest objective function value. For

two-dimensional case, two dividing scheme are illustrated in Figure 3.1.

If we need to subdivide one of the hyperrectangles, we only divide them along

their longest side, which ensure that we are able to get a decrease in the maximal

length of the hyperrectangle.

3.2.2 Identifying Potentially Optimal Hyperrectangles

Another phase of the algorithm is identifying potentially optimal hyperrectangles

which is defined below.

Definition 3.4. Assuming that the unit hypercube with center ci is divided into

m hyperrectangles, a hyperrectangle j is said to be potentially optimal if there

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 34

c

(a)

(b)

Figure 3.1: Different division strategies for hyperrectangles for two dimen-
sions.

exists rate-of-change constant
∼
K such that

f (cj)−
∼
Kσj ≤ f(ci)−

∼
Kσj,∀i = 1, . . . ,m, (3.4)

f (cj)−
∼
Kσj ≤ fmin − ε|fmin|, (3.5)

where fmin is the current best function value, and σj is the distance from the

center of hyperrectangle j to its vertices in [47]. f (cj) is the function value at the

center point of hyperrectangle j, and the positive ε , a parameter that balances

between global and local search, ensures that we have the possibility of a sufficient

decrease in the potentially optimal hyperrectangle.

It is not clear from the definition (3.4) to identify potentially optimal hep-

errectangles. The following lemma will show an easy way to identify potentially

optimal hyperrectangles.

Lemma 3.5. Let ε > 0 be a positive constant and let fmin be the current best

function value, I be the set of all indices of all intervals. Let I1 = {i ∈ I : σi < σj},
I2 = {i ∈ I : σi > σj} and I3 = {i ∈ I : σi = σj}. Hyperrectangle j is potentially

optimal if

f(cj) ≤ f(ci),∀i ∈ I3, (3.6)

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 35

there ∃
∼
K > 0 such that

max
i∈I1

f(cj)− f(ci)

σj − σi
≤
∼
K ≤ min

i∈I2

f(ci)− f(cj)

σi − σj
(3.7)

Proof. According to the definition (3.1) and I1, I2, I3, (3.6) becomes

∼
K ≥ f(cj)− f(ci)

σj − σi
,∀i ∈ I1, (3.8)

∼
K ≤ f(ci)− f(cj)

σi − σj
,∀i ∈ I2, (3.9)

and

f(cj) ≤ f(ci),∀i ∈ I3. (3.10)

From (3.10), it follows that hyperrectangle j can only be potentially optimal

if f(cj) = min
i∈I3

f(ci). If j satisfies this condition, then equations (3.8) and (3.9)

give

max
i∈I1

f(cj)− f(ci)

σj − σi
≤
∼
K ≤ min

i∈I2

f(ci)− f(cj)

σi − σj
(3.11)

Now we go back to inequality (3.5), hyperrectangle j can only be potentially

optimal if ∃
∼
K > 0 satisfying inequality (3.7). We want to make

∼
K as large as

possible. Therefroe the hyperrectangle with index j is potentially optimal if

ε ≤ fmin − f(cj)

|fmin|
+

σj
|fmin|

min
i∈I2

f(ci)− f(cj)

σi − σj
, fmin 6= 0, (3.12)

or

f(cj) ≤ djmin
i∈I2

f(ci)− f(cj)

σi − σj
, fmin = 0. (3.13)

which completes the proof.

Readers are reffered to some other potentially optimal identification in [36].

The phase of identifying potentially optimal hyperrectangles combines the

purposes of global and local search. The potentially optimal hyperrectangle(s)

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 36

with smallest function value will be divided into sub-hyperrectangles along the

longest side, which is essential for proving convergence and can also ensure that

hyperrectangles shrink on every dimension. This strategy increases the attractive-

ness of searching optimal function value with fewer number of local optima.

We claim that the DIRECT algorithm will converge to the global optimum

because the maximum size, max σj,∀j, is able to decrease to zero and the entire

search space can be thoroughly explored if needed.

More details on the DIRECT algorithm and its modification can be found in

[36, 47].

3.2.3 Algorithm Description

We now have the main parts of the DIRECT algorithm. Each iteration begins

by identifying the set of potentially optimal hyperrectangles which are then sam-

pled and subdivided again. The process continues until a prespecified iteration

limit numit (or a prespecified number of function evaluations limit, numfunc) is

reached. The formal statement of the DIRECT algorithm is described as bellow.

Algorithm 1 DIRECT algorithm

1: Normalize the search space to be the unit hypercube with center point c1.
2: Evalute f(c1), fmin = f(c1), t = 0,m = 1.
3: while t ≤ numit and m ≤ numfunc do
4: Identify the set S of potentially optimal hyperrectangles
5: while S 6= ∅ do
6: Take j ∈ S.
7: Sample new points, evaluate f at the new points and divide the hyper-

rectangle.
8: Upate fmin,m = m+ ∆m
9: Set S = S \ {j}

10: end while
11: t = t+ 1.
12: end while

The DIRECT algorithm is suitable for black-box optimization problem since

it dose not exploit and a priori knowledge on the objective function. The idea is to

carry out simultaneous searches in all directions using all possible constant and to

regard the Lipschitz constant as a weighting parameter to balance global and local

search. And DIRECT performs a sampling of feasible domain on a set of points

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 37

that become dense in the limit, which guarantees strong theoretical convergence

properties [47].

Usually the optimal function value is not known, therefore we are not able to

get a function value within the suitable number of maximum iterations or function

evaluation for a certain accuracy. Fortunately, the algorithm is effective for the

typical dimension (less than 30) of a problem as cited in [47]. Next, we will give

some statistic results to show the performance of DIRECT for optimizing the

SOLR problem.

3.3 Performance of the DIRECT Algorithm for

Lower Dimension

In this section, we give some results on solving some specific examples with DI-

RECT. As we mentioned above, DIRECT can be converged to a global optimum

after a large number of iteration. However, it will cost much computational time.

In the case that we only need to get an approximate solution, the early iteration

of DIRECT can provide a rapid rate of improvement as it showed in Figure 3.2 .

Figure 3.2 is on a typical example of the function evaluations VS. the best value

found by DIRECT for solving the SOLR problem in [21]. As the figure shows,

DIRECT provide a rapid rate of improvement at early iterations, while the later

iterations do not improve the solution very much.

Example 1 (see [21])

(EX1)

∣∣∣∣∣∣∣∣∣∣∣

minimize −x1+2x2+2
3x1−4x2+5

+ 4x1−3x2+4
−2x1+x2+3

subject to x1 + x2 ≤ 1.5,

x1 ≤ x2,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

(3.14)

For Example 1, we also test the cost of function evaluations for improving the

tolerance of the optimal value showed in Table 3.1.

In Table 3.1, fmin is the result found by DIRECT with given tolerance, and

f(x∗) is the optimal solution of example 1. As it showed in Figure 3.2 and Table

3.1, the DIRECT can get a high approximation solution (e. g. tolerance ε = 10−5)

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 38

0 50 100 150 200 250 300
1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

Fcn Evals

f m
in

Function evaluations Statistics for Example1

Figure 3.2: Results of DIRECT for Example 1.

|fmin − f(x∗)| f − eval. CPU time (s)
0.1 13 0.1617
0.01 63 0.3073
10−3 133 0.3991
10−4 245 0.4404
10−5 15963 5.2781

Table 3.1: Convergence of DIRECT for example 1 with different torlerance.

in a reasonable CPU time. In Section 3.4, we will give more results on DIRECT

for solving SOLR.

3.4 Numerical Results

Now we give some more results and a statistic results on DIRECT for solving SOLR

with lower dimension. The algorithm is coded in MATLAB R© and implemented on

an iMac with a Core i5 and 8GB of RAM. The results are summarized in Table

3.2 for a tolerance ε = 10−4.

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 39

Example 2 (see [87])

(EX2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize 2x1+x2
x1

+ 2
x2

subject to 2x1 + x2 ≤ 6,

3x1 + x2 ≤ 8,

x1 − x2 ≤ 1,

x1 ≥ 1,

1 ≤ x2 ≤ 6.

Example 3 (see [59])

(EX3)

∣∣∣∣∣∣∣∣∣∣∣

minimize (−−3x1+5x2+3x3+50
3x1+4x2+5x3+50

) + (− 3x1+4x2+50
4x1+3x2+2x3+50

) + (−4x1+2x2+4x3+50
5x1+4x2+3x3+50

)

subject to 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

The dimension of the 3 examples are less than 4, and the DIRECT algorithm

Problem optimal value CPU time (s)
P1 1.62326168 0.3456
P2 -6.4994 0.3498
P3 -3.0021 0.7763

Table 3.2: Results on 3 examples with tolerance ε = 10−4.

is to be effective. Jones et al. [47] terminate DIRECT when it has finished a

given number of iterations. And they also report numerical results of DIRECT

for different test problems in [47] .

For the case the global minimum of the test problem is known, we can ter-

minate DIRECT for a given tolerance mentioned in [47]. However, as mentioned

above, most of the global minimal function value is unknown in real applications.

Therefore, the termination criteria by Jones cannot be used. Instead, we use a

more realistic termination criteria with given, fixed function budgets showed in

Tabel 3.3. For a test problem, we let a large number of function evaluations (e.g.

the number of function evaluations is 107) as a termination criteria. We can pick

another objective function value at some function evaluations such that the differ-

ence between the larger objective function value and the smaller one is within a

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 40

given tolerance ε. We did experiments for 1000 instances for different dimensions

and the statistic results is showed as follows.

N f − eval. Rate(%)
2 8100 99.99
3 15400 99.99
4 45800 99.99

Table 3.3: Numerical results with a budget of different function evaluations
for low dimensions.

Tabel 3.3 shows the statistic results for DIRECT with fixed function eval-

uations budget. We accept a point as a solution if its tolerance ε is lower than

10−4. In the column labeled “Rate”, we report how often DIRECT was able to

find a solution within the given budget of function evaluations. We also did a

numerical experiment for solving a more general SOLR problem using DIRECT,

and the data of the test problems are set as follows: nij, dij are i.i.d. generated in

the ranges of −5 ≤ nij ≤ 5,−5 ≤ dij ≤ 5, for i = 1, · · · , p and j = 1, 2, 3, 4. The

ai and bi are fixed to 50, 90, respectively. The constraints and x ∈ [0,5] used in

numerical experiments for dimention 2, 3, 4 are

A2 =

1 1

1 −1

, c2 =

1

0

; A3 =

 6 3 3

10 3 8

, c3 =

10

10

;

A4 =


2 2 5 3

1 6 3 4

5 9 2 8

9 3 7 1

, c4 =


10

10

10

10

.

The results are shown in Table 3.4. We also did the experiment for solving

SOLR with only one ratio for 5 dimensions with DIRECT algorithm, and it will

take much more time (more than 2 hours) to get a solution within tolerance

ε = 10−4.

3.5 Conclusions

For an algorithm to be truly global, some effort must be allocated to the global

search which ensures that the global optima will not be overlooked in feasible

region. On the other hand, some effort must be on local search for efficiency, and

Chapter 3. The DIRECT Algorithm for Solving the SOLR Problem 41

p
dim. 10 20 30 40 50 60 70 80 100 200 300 400

2 2.3 2.7 3.2 3.4 3.8 4.0 4.4 4.8 5.5 8.4 12.3 15.5
3 4.0 5.5 5.1 6.5 7.2 7.7 8.3 9.3 10.5 16.5 23.4 29.7
4 23.6 25.5 27.3 29.5 30.1 32.5 34.1 35.8 39.2 57.6 79.1 96.6

Table 3.4: The average CPU time (seconds) of DIRECT algorithm for dimen-
sion 2, 3, 4, with p = 10 through 400, and the budget of function evaluations

are 8100, 15400, 45800, respectively.

local search ensures that the current best solution will be achieved in a local area.

Generally, most of algorithms strike a balance between local and global search

using one or two approaches. One is to start with a large emphasis on global

search and then shift to the emphasis on local search to get optimal solution (see

eg. [29, 58]) . The other is to combine a local optimization techniques with some

other technique that give a global aspect to the search (see eg. [40, 75]).

The DIRECT algorithm balances global and local search, and it does a little

of both on each iteration. In every iteration, it selects rectangles that contain

the potentially optimal and evaluate functional value on each sampling points to

update the current best solution. Furthermore, the DIRECT algorithm carries

out simultaneous searches with all possible Lipschitzian constant. The DIRECT

algorithm does not require derivatives, therefore, it is suitable to some “difficult”

problems.

We applied DIRECT to solve SOLR for different dimensions. We got the

number of function evaluations for different dimensions with given tolerance ε =

10−4. And the results show that we have a high probability (99.99%) to get

a “good” solution in an efficient CPU time, which will help us to design some

algorithm using the “good” starting point.

Chapter 4

A linear Relaxation Algorithm for

Solving the SOLR Problem

4.1 Introduction

In this chapter, we focus on a revision of the linear relaxation algorithm [16]

with lower dimension and we also develop an new branch and bound algorithm

for solving the SOLR problem with lower dimension based on new branch rule.

The new branch and bound algorithm based on bisection branching rules has

been published in [43, 45], and the branch and bound algorithm [44] based on

a sophisticated branching rules mentioned in section 4.4 is to be submitted for

publication.

Carlsson and Shi [16] casted the SOLR problem into an equivalent problem

with linear objective and a set of linear and nonconvex quadratic constraints. By

dropping out the nonconvex quadratic constraints, they proposed a linear relax-

ation for the SOLR problem and designed a branch-and-bound algorithm to solve

the SOLR problem with lower dimension. In addition, Kuno and Masaki [60]

also focused on the problem with lower dimension and proposed an algorithm for

solving a kind of the SOLR problem with different branching rules.

To circumvent the nonconvex quadratic constraints in [16], we do not drop the

nonconvex constraints out but make a linear relaxation for them with some extra

variables. Therefore, this linear relaxation is generally tighter than the previous

one. In addition, we implemented numerical results to evaluate performance of

43

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 44

the proposed algorithm, and the results show that CPU times and the number

of iterations, branches are sharply decreased when we use the proposed algorithm

compared the original algorithm. These features push us to develop a new branch

rule for solving the SOLR problem.

4.2 Equivalent Transformation and Linear Re-

laxation

4.2.1 Equivalent Transformation

We rewrite the SOLR problem as follows

(P0)

∣∣∣∣∣∣∣∣
minimize f(x) =

p∑
i=1

n>i x+ ai

d>i x+ bi

subject to x ∈ X = {x ∈ Rn |Ax ≤ c,x ≥ 0},

where p ≥ 2, ni,di are vectors in Rn and ai, bi are real numbers for all i = 1, . . . , p,

A is an m × n matrix, c is a vector in Rm. We assume that d>i x + bi 6= 0 on X

for all i = 1, 2, . . . , p. Without loss of generality, we suppose that d>i x+ bi > 0 in

this chapter based on the following proposition

Proposition 4.1. Assume
(
d>i x

1 + bi
)
6= 0,∀x ∈ X, for ∀x1,x2 ∈ X, we have(

d>i x
1 + bi

) (
d>i x

2 + bi
)
> 0.

Proof. Without loss of generality, we suppose that ∃x1,x2 ∈ X such that
(
d>i x

1 + bi
)
>

0 and
(
d>i x

2 + bi
)
< 0. Then there ∃xσ = x1 + σ(x2 − x1) ∈ X such that(

d>i x
σ + bi

)
= 0, where σ ∈ (0, 1) . It contradicts the assumption of

(
d>i x

1 + bi
)
6=

0,∀x ∈ X. So the conclusion is valid.

Because the set X is nonempty and bounded, we can construct a rectangle

B = [l,u] which contains the feasible regionX. We denote that l = (l1, l2, . . . , ln)>,

u = (u1, u2, . . . , un)>, where lj, uj are the optimal values of the linear programming

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 45

problem (4.1) and (4.2), respectively.

lj := minimize xj

subject to x ∈ X.
(4.1)

uj := maximize xj

subject to x ∈ X.
(4.2)

Consider problem of (P0) with box B = [l,u] as follows

(P1)

∣∣∣∣∣∣∣∣∣∣
minimize

p∑
i=1

n>i x+ ai

d>i x+ bi

subject to Ax ≤ c,
l ≤ x ≤ u,

(4.3)

where 0 ≤ l ≤ u. Becasuse X ⊆ B from (4.1) and (4.2), problem (P0) is equivalent

to problem (P1). Let us apply the Charnes-Cooper transformation [19] to (4.3),

by introducing 2p variables:

yi := zix, zi :=
1

d>i x+ bi
, i = 1, 2, . . . , p.

It is easy to see that Ax ≤ c if any only if Ay− cz ≤ 0 and that x ∈ [l,u] if

and only if −y + lz ≤ 0 and y − uz ≤ 0 in the sense that y = x/(d>x+ b), z =

1/(d>x+ b).

Denote that αi := min
{
d>i x+ bi

∣∣x ∈ X} and βi := max
{
d>i x+ bi

∣∣x ∈ X}.

Then we have

(P2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize

p∑
i=1

(
n>i y

i + aizi
)

subject to d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

yizj = yjzi,

zil ≤ yi ≤ ziu.


i, j = 1, 2, . . . , p.

(4.4)

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 46

We will see that problem (P2) is equivalent to problem (P1) from the following

theorem.

Theorem 4.2. Problem (P2) is equivalent to problem (P1).

Proof. The following proof is similar to Theorem 1 in [16]. For self-contained we

give a proof below.

Let x∗ be an optimal solution to problem (P1). Define that (yi)∗ := x∗/(d>i x
∗+

bi), z
∗
i =: 1/(d>i x

∗ + bi) then we see that ((yi)∗, z∗i) are feasible for problem (P2).

Suppose there is a feasible solution ((yi)′, z′i) such that

p∑
i=1

(
n>i (yi)′ + aiz

′
i

)
<

p∑
i=1

(
n>i (yi)∗ + aiz

∗
i

)
. (4.5)

Thus, we see that with x′ = (yi)′/z′i,

p∑
i=1

(
n>i (yi)′ + aiz

′
i

)
=

p∑
i=1

n>i x
′ + ai

d>i x
′ + bi

,

p∑
i=1

(
n>i (yi)∗ + aiz

∗
i

)
=

p∑
i=1

n>i x
∗ + ai

d>i x
∗ + bi

,

and x′ is also a feasible solution to (P1). Therefore, the inequality (4.5) contradicts

the optimality of x∗ for P1. And similar to vice versa.

4.2.2 Linear Ralaxation

From Theorem 4.2, in order to globally solve (4.3), we may solve (4.4) instead

because all (P0), (P1) and (P2) are equivalent. However, the constraints yizj =

yjzi for i, j = 1, 2, . . . , p in (4.4) are quadratic and nonconvex. Therefore, this

problem can be solved in the category of nonconvex quadratic programming, which

is general, of course, NP -hard.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 47

It is trivial that we can make a relaxation for problem (P2) by discarding

yizj = yjzi for all i, j = 1, 2, . . . , p as follows:

Q0(l,u))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize

p∑
i=1

(
n>i y

i + aizi
)

subject to d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

zil ≤ yi ≤ ziu.


i = 1, 2, . . . , p.

(4.6)

Let (yi, zi), i = 1, 2, . . . , p be the optimal solution of problem Q0, then the

following claim holds

Proposition 4.3. Let (yi, zi), i = 1, 2, . . . , p be the optimal solution of problem

Q0, and
yi

zi
=
yj

zj
, ∀i, j = 1, 2, . . . , p. (4.7)

Then x∗ =
yi

zi
, i = 1, 2, . . . , p is an optimal solution of problem (4.3).

Proof. If (4.7) holds, which implies that yizj = yjzi, ∀i, j = 1, 2, . . . , p. There-

fore, (yi, zi), i = 1, 2, . . . , p satisfies all constraints in (4.4). Then x∗ =
yi

zi
, i =

1, 2, . . . , p is an optimal solution of problem (4.3) followed by Theorem 4.2.

The problem (4.6) is a linear programming problem. In their paper [16],

Carlsson and Shi fundamentally exploited this linear form (4.6) to obtain the

lower bounds of (4.4) and design a branch and bound algorithm for solving the

SOLR problem.

In this study, we devise a linear relaxation of yizj = yjzi with −yi + lzi ≤ 0

and yi − uzi ≤ 0. Note that 1/βi ≤ zi ≤ 1/αi and zi > 0 for all i. Thus we see

that for each i

l/βi ≤ yi and yi ≤ u/αi for all i = 1, . . . , p.

We consider two sets Bcurv and Btria that are defined below.

Bcurv := {(tij,yi, zj) | tij = yizj, 1/βj ≤ zj ≤ 1/αj, l/βi ≤ yi ≤ u/αi}

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 48

and

Btria :=



(tij,y
i, zj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tij ≤
1

αj
yi +

l

βi
zj −

l

αjβi
,

tij ≤
1

βj
yi +

u

αi
zj −

u

αiβj
,

tij ≥
1

αj
yi +

u

αi
zj −

u

αiαj
,

tij ≥
1

βj
yi +

l

βi
zj −

l

βiβj
,

1/βj ≤ zj ≤ 1/αj,

l/βi ≤ yi ≤ u/αi.


It is easy to see that

Lemma 4.4. The relation Bcurv ⊆ Btria holds.

Proof. We first prove the case that tij ≤ 1
αj
yi + l

βi
zj − l

αjβi
. For ∀(tij,yi, zj) ∈

Bcurv,∀i, j = 1, 2, . . . , p.

1

αj
yi +

l

βi
zj −

l

αjβi
− tij

=
1

αj
yi +

l

βi
zj −

l

αjβi
− yizj

=

(
1

αj
− zj

)(
yi − l

βi

)
.

Since zj ≤ 1/αj and yi ≥ l/βi, we have 1
αj
yik + l

βi
zj − l

αjβi
− tij ≥ 0. Using a

similar way, we can easily prove that the other cases in the lemma hold.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 49

Lemma 1 indicates that the following problem Q1(l,u) can be exploited to

find a lower bound for problem Q0(l,u) with a box [l,u]:

Q1(l,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize

p∑
i=1

(
n>i y

i + aizi
)

subject to d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

−yi + lzi ≤ 0,yi − uzi ≤ 0,

tij ≤
1

αj
yi +

l

βi
zj −

l

αjβi
,

tij ≤
1

βj
yi +

u

αi
zj −

u

αiβj
,

tij ≥
1

αj
yi +

u

αi
zj −

u

αiαj
,

tij ≥
1

βj
yi +

l

βi
zj −

l

βiβj
,

tij = tji.



i, j = 1, 2, . . . , p.

(4.8)

Next we will develop a branch and bound algorithm to find an optimal

solution to (4.3) by solving a series of the linear programming problem (4.8).

4.3 A Branch and Bound Algorithm Based on

Bisection Branching Rules

4.3.1 Branch and Bound Algorithm Review

It is well know that Branch and Bound (B&B) algorithms have been applied

successfully on various NP-hard problems, such as Traveling Salesman Problems

[17, 65], Schedule Problems [7], Mixed Integer Programming Problems [1]. It is an

intelligent search heuristic for finding a global optimum to problems of the form

minx∈Xf(x). Basic B&B searches feasible region X by iteratively subdividing the

feasible region and recursively searching each piece for an optimal feasible region.

Also, B&B algorithms are able to solve large instance for optimality, especially for

lower dimension, because it can eliminate regions which provably do not contain

an optimal solution. Readers are refereed to [24] for details of B&B.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 50

The following phenomenon frequently occurs in various optimization prob-

lems: a problem can be easily solved if we make some relaxation (e.g., remove

some constraints that are hard to solve) for the original problem, see examples in

[74]. Different relaxation techniques [32] are used to solve in numerous NP hard

problems.

A B&B algorithm for a minimization problem hence consists of the follow 3

main components:

Bounds Upper bound is the value of the best solution obtained currently,

and lower bound of a subproblem should be smaller than or equal to the optimum

function value got so far. If a lower bound exceeds the valued of the current

unbound for some subproblems, the corresponded subproblems will be discarded.

Search strategy The search strategy prescribes how the B&B algorithm

should proceed trough the search tree. The two most common methods are Depth

First Search, which solves the most recently generated subproblem first, and Best

First Search, which solves the most promising subproblem first. The search strat-

egy selected in this section is the Best First Search.

Branching rule At each node of a B&B search tree, the branching rule

prescribes how the current problem should be divided into new subproblems. The

branch rule in this section is bisection rules described bellow.

Suppose Bk = {x ∈ R| : xi ≤ xi ≤ xi, i = 1, 2, . . . , n} is a rectangle that con-

tains an optimal solution in the process. Then Bk is divided into two subrectangles

B2k, B2k+1 according to the following rules R1-R3:

R1. Let i0 ∈ arg max{xi − xi | i = 1, 2, . . . , n}.

R2. Let γi0 = 1
2
(xi0 + xi0).

R3. Let B2k = { x ∈ Rn |xi ≤ xi ≤ xi, i 6= i0, xi0 ≤ xi0 ≤ γi0},

B2k+1 = {x ∈ Rn |xi ≤ xi ≤ xi, i 6= i0, γi0 ≤ xi0 ≤ xi0}.

4.3.2 Algorithm Description

In our algorithm, the branching process is executed in the space of Rn. Starting

from B1 = {[l1,u1] = [l,u]} that is generated by solving problem (4.1) and (4.2),

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 51

we solve Q1(l
k,uk) for k = 1, 2, The rectangle Bk will be discarded at the

k-th iteration if the optimal value of Q1(l
k,uk) is greater than the current best

value at the solution xi0 = yi0/zi0 , i0 ∈ arg min{f(xik), ik = 1, 2, . . . , p}. Now the

algorithm is ready to be described in detail as follows:

Algorithm 2 Branch and bound algorithm for the SOLR problem based on bi-
section rule

1: Initial settings: Set k = 1. Let Bk = {[lk,uk]} = {[l,u]} be the initial
rectangle. L = −∞, U =∞.

2: Solve Q1(l
j,uj) with Bj ∈ Bk. If Q1(l

j,uj) is feasible then obtain the
optimal value Lk and xik = yik/zik , and Uk = min{f(xik), ik = 1, . . . , p}.
Lk = Lk, U = Uk. If Q1(l

k,uk) is infeasible then terminate.
3: Set a tolerance ε = 0.
4: while U − Lk > ε do
5: Discard rectangles Bj ∈ Bk such that the value of Q1(l

j,uj) > Uk

6: Select Bj0 ∈ Bk with Lj0 = Lk.
7: Divide Bj0 into two subrectangles B2k, B2k+1 according branching rules R1-

R3, and update Bk = (Bk\ {Bj0}) ∪ {B2k} ∪ {B2k+1}
8: Solve Q1(l

j,uj) for j = k, 2k + 1. If Q1(l
j,uj) is not feasible, then dis-

card Bj. Otherwise, obtain Lk, Uk, L2k+1, U2k+1 and keep the corresponding
incumbent best solution xjk = yjk/zjk .

9: Update Lk = min{Lk, L2k+1} if Lk < min{Lk, L2k+1}, U = min{Uk, U2k+1}
if U > min{Uk, U2k+1} and update the incumbent best solution.

10: Set k = k + 1
11: end while
12: Return U as an ε-minimum of (P0) with a minimizer xjk = yjk/zjk ∈ [l,u].

4.3.3 Algorithm’s Convergent Proof

Let δ([lk,uk]) := max{uki−lki | i = 1, 2, . . . , n}, which denotes the size (or diameter)

of box [lk,uk]. Hereafter, we also use δ to denote the size of a box. The convergence

of Algorithm 1 can be shown by the following Lemma 4.5 and Theorem 4.6.

Lemma 4.5. Suppose that (yi, zi) for i = 1, . . . , p are obtained from solving (4.8)

and x = yi0/zi0 for any given i0 ∈ {1, . . . , p}. Then∣∣∣∣∣
p∑
i=1

(n>i y
i + aizi)−

p∑
i=1

n>i0x+ ai0

d>i0x+ bi0

∣∣∣∣∣→ 0 as δ([lk,uk])→ 0. (4.9)

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 52

Proof. This proof is almost as the same as Theorem 1 in [16]. For self-contained

we give a proof below.

Without loss of generality, we suppose that i0 = 1. Let xi = yi/zi. Since

yi, zi are feasible solutions of (4.8), it follows that xi for i = 1, . . . , p are feasible

for (4.3) . We see that for each i,

(
n>i y

i + aizi
)

=
n>i x

i + ai

d>i x
i + bi

.

Let xδ = x− xi, then ||xδ|| 5 δ([lk,uk]). Denote that

τi := maximize
{∣∣n>i xi + ai

∣∣ |xi ∈ X}
ζ := maximize {||di|| | i = 1, . . . , p}

µ := maximize {||ni|| | i = 1, . . . , p}

Suppose xi = yi/zi for all i = 1, 2, . . . , p and x are points in [lk,uk].∣∣∣∣∣
p∑
i=1

(n>i y
i + aizi)−

p∑
i=1

n>i0x+ ai0

d>i0x+ bi0

∣∣∣∣∣
=

∣∣∣∣∣
p∑
i=1

n>i x
i + ai

d>i x
i + bi

−
p∑
i=1

n>i x+ ai

d>i x
+bi

∣∣∣∣∣
=

∣∣∣∣∣
p∑
i=1

n>i x
i + ai

d>i x
i + bi

−
p∑
i=1

n>i x
i + ai + n>i xδ

d>i x
i + bi + d>i xδ

∣∣∣∣∣
≤

∣∣∣∣∣
p∑
i=1

n>i x
i + ai

d>i x
i + bi

−
p∑
i=1

n>i x
i + ai

d>i x
i + bi + d>i xδ

∣∣∣∣∣+

∣∣∣∣∣
p∑
i=1

n>i xδ

d>i x
i + bi + d>i xδ

∣∣∣∣∣
≤

p∑
i=1

∣∣∣∣n>i xi + ai

d>i x
i + bi

· d>i xδ

d>i x
i + bi + d>i xδ

∣∣∣∣+

p∑
i=1

∣∣∣∣ n>i xδ

d>i x
i + bi + d>i xδ

∣∣∣∣
≤

p∑
i=1

∣∣∣∣n>i xi + ai
α2
i

∣∣∣∣ ∣∣d>i xδ∣∣+

p∑
i=1

∣∣∣∣n>i xδαi

∣∣∣∣
≤ δ

p∑
i=1

(
τiζ

α2
i

+
µ

αi

)
.

Therefore, the assertion holds as δ → 0.

Theorem 4.6. For a given tolerance ε, a global ε-minimizer of problem (P0) can

be found within finitely many iterations.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 53

Proof. A sufficient condition for a global optimization to be convergent to the

global minimum, for instance, stated in Horst and Tuy [42], is that the bounding

operation must be consistent and the selection operation must be bound improving.

A bounding operation is called consistent if at every step any unfathomed partition

can be further refined, and if any infinitely decreasing sequence of successively

refined partition elements satisfies:

lim
k→+∞

(U − Lk) = 0, (4.10)

where U and Lk are the computed upper bound and the current best lower bound

at iteration k, respectively.

Since the subdivision process is bisection, the process is exhaustive. Clearly,

Lemma 4.5 keeps (4.10) holding, which implies that the employed bounding oper-

ation in our algorithm is consistent.

A selection operation is called bound improving if at least one partition ele-

ment where the actual lower bound is attained will be selected for further partition

after a finite number of refinements. Clearly, the partition element at step 6 in

Algorithm 1 where the current lower bound is attained will be selected for further

partition at the next iteration in our algorithm. Therefore, the employed selection

operation improves the bound. We complete the proof of the convergence.

4.3.4 Numerical Experiments

In this section, we give a numerical example to compare the efficiency between the

revision and its previous algorithm. We also report the results of the numerical

experiments which were conducted using randomly generated data sets to verify

the performance of the revised algorithm. The algorithm is coded in MATLAB R©

and implemented on an iMac with a quad-core Core(i5) and 8GB of RAM in

Muroran Institute of Technology.

We use the following Example 1 to see the empirical evidence that the new

algorithm works efficiently well.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 54

Example 4.1 ([21], p.78)

minimize
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3

subject to x1 + x2 ≤ 1.5,

x1 ≤ x2,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 4.1 was solved by Algorithm SOLiRat in [16] and its revision Al-

gorithm 2 that is proposed in this study, respectively. That is, Example 4.1 was

solved based on two different linear relaxations Q0 in (2.5) and Q1 in (2.6) with

ε = 0.05. The minimum of Example 4.1 is 1.62318. In Figure 1, the horizontal

and vertical axises are the number of iterations in the process and the lower &

upper bounds the algorithms obtained at the iteration, respectively. The blue line

depicts the lower and the red is for upper bounds which were calculated by the

revised algorithm. We see that the gaps between the red and blue lines become

very small after about only 5 iterations in this example. The gaps, in contrast,

between the sky-blue and black lines keep a relative wider range even after 60

iterations. Figure 1 indicates that

• The new linear relaxation Q1 is likely to be more efficient than Q0.

To investigate the difference in the ability to produce a tighter lower bound

between Q0 and Q1, we solve problem (P0) with a variety of size (diameter) δ of

the box constraints l ≤ x ≤ u. The problem used in this numerical experiment is

with p = 5, n = 3. Figure 2 indicates that

• The new linear relaxation Q1 makes a better lower bound for any size δ of

the box constraints.

• For both Q0 and Q1, the larger the size of the box constraints is, the worse

the lower bounds become.

• The larger the size of box constraints is, the larger the difference in the lower

bounds obtained from Q0 and Q1 is.

• For the sam size of box constraints, the larger number of ratios, the larger

the difference in the lower bounds obtained from Q0 and Q1 is.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 55

0 10 20 30 40 50 60 70
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Iterations

B
o
u
n
d
s

Upbound of Q
0

Lowbound of Q
0

Upbound of Q
1

Lowbound of Q
1

Figure 4.1: Bounds and iterations with ε = 0.05 for solving Example 4.1.

We also conducted the numerical experiments to evaluate the general behavior

of the revised algorithm with lower dimension problems.

The datasets of the test problems used in this study are set as follows: The

dimension of variables is 3 and the tolerance ε = 0.05. The coefficients ni,di

are i.i.d. generated in the ranges of −5 ≤ nij, dij ≤ 5, for i = 1, . . . , p and j =

1, 2, 3. The constants ai (i = 1, . . . , p) are randomly chosen from [0, 60] and bi

(i = 1, 2, . . . , p) are fixed to 60.

Problem (P0) with a variety of p from 5 to 80 was solved. For a fixed p, a

set of 15 instances of the problem was solved by model Q1 and model Q0 using

bisection branching rules, respectively.

The recorded CPU times in second, the number of iterations and the number

of branches in the execution are displayed in Table 4.1, Table 4.2 and Table 4.3,

respectively. The columns titled averg. provide the information about the aver-

age value of CPU time, the number of iterations and the number of branches out

of the 10 runs in the execution, respectively.

As their names indicate, the rows Q1b delivers the results that obtained from

model Q1 using bisection branching rules, while rows Q0b for the results obtained

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

2

2.2

2.4

2.6

2.8

3

δ

L
o

w
 b

o
u

n
d

Low bound of Q
1

Low bound of Q
0

Figure 4.2: Average lowboud of two models with different size of box p =
5, n = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

δ

L
o
w

 b
o
u
n

d

Low bound of Q
1

Low bound of Q
0

Figure 4.3: Average lowboud of two models with different size of box p =
30, n = 3.

from model Q0 using bisection branching rules. Table 4.1, Table 4.2, Table 4.3

indicates the following observations.

• The number of branches is heavily reduced at least about to only 2% of the

previous algorithm. A smaller number of branches in a branch-and-bound

algorithm usually results in less time-consuming in implementation. In this

study, the proposed algorithm consists of two parts: bounding based on a

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

26

27

28

29

30

31

δ

L
o
w

 b
o

u
n

d

Low bound of Q
1

Low bound of Q
0

Figure 4.4: Average lowboud of two models with different size of box p =
60, n = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
34

35

36

37

38

39

40

41

42

43

δ

L
o
w

 b
o

u
n
d

Low bound of Q
1

Low bound of Q
0

Figure 4.5: Average lowboud of two models with different size of box p =
80, n = 3.

LP relaxation and branching. The LP can be solved in polynomial time,

so the reduction of the number of branches is fundamentally important to

design an algorithm.

• The proposed LP relaxation is very efficient for solving problem (P0) with

various p from 5 to 80. The proposed algorithm achieves superiority over

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 58

Model # p
CPU time(s)

min. averg. max.

Q1b 5 0.1 0.3 0.6
Q0b 5 0.7 12.7 77.8
Q1b 10 0.4 0.8 2.0
Q0b 10 4.3 66.5 170.4
Q1b 20 2.7 8.7 14.4
Q0b 20 31.9 865.1 3295.4
Q1b 30 14.3 34.2 54.6
Q0b 30 242.1 3206.0 11544.8
Q1b 40 49.4 111.3 223.9
Q0b 40 425.6 10798.1 12774.5
Q1b 50 95.0 242.5 500.9
Q0b 50 993.1 11108.1 30781.0
Qb1 60 296.3 650.7 1782.9
Q0b 60 3446.0 16592.3 40149.1
Q1b 70 469.3 1879.4 7502.5
Q0b 70 6955.2 27989.7 59016.8
Q1b 80 1182.3 2177.5 6161.9
Q0b 80 8907.0 44494.3 98020.6

Table 4.1: Numerical results on CPU times for solving problem (P0) with Q1

and Q0 with various p and n = 3.

the previous algorithm in CPU time, number of iterations and numbers of

branches on average, as well as max and min values.

Because that Q1 is a linear programming with a number of (p2n + pn + p)

variables, Q1 has a large number of variables when p is large. We see that such a

large number has two sides:

1) Theoretically, the size of (p2n+ pn+ p) is a polynomial of the size of input

data, and LP can be solved by a polynomial time of the size of input data,

therefore we strongly expect that the proposed algorithm keeps its good

efficiency even for a larger scale problem if we use a sophisticated software

to solve the involved LP problems.

2) In reality, in our numerical experiments solving the problems with p > 80

the implementation reached the maximum memory of our computer. To

take full advantage of this LP relaxation developed in this study the software

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 59

Model # p
Iterations

min. averg. max.

Q1b 5 1 1.8 4
Q0b 5 6 114.7 714
Q1b 10 1 2.2 6
Q0b 10 18 283.2 735
Q1b 20 2 4.8 12
Q0b 20 73 1406.7 4150
Q1b 30 3 7.4 12
Q0b 30 198 3853.5 15851
Q1b 40 4 9.4 19
Q0b 40 266 6749.2 16377
Q1b 50 3 14.5 17
Q0b 50 863 8480.9 23497
Q1b 60 1 8.8 27
Q0b 60 1843 8873.7 21356
Qb1 70 3 10.7 21
Q0b 70 2557 10033.1 21362
Q1b 80 5 8.8 25
Q0b 80 3007 15042.0 32457

Table 4.2: Numerical results on iterations for solving problem (P0) with Q1

and Q0 with various p and n = 3.

products that can solve large scale linear programming efficiently are highly

recommended to use.

4.4 A Branch and Bound Algorithm Based on

Advanced Branching Rules

The bisection branching rules, mentioned in section 4.3.1, is the standard bisection

via the longest edge. It recursively divides the hyperrectangle containing a cur-

rent best solution into sub-hyperrectangles, and discards the rectangles that the

optimal solution can not be included. In this section, we propose a branch and

bound algorithm to solve problem (4.8) based on sophisticated branching rules.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 60

Model # p
Branches

min. averg. max.

Q1b 5 1 2.13 5
Q0b 5 10 114.9 346
Q1b 10 1 3.9 10
Q0b 10 23 500.8 1351
Q1b 20 3 8.3 24
Q0b 20 106 2582.4 7818
Q1b 30 5 12.6 23
Q0b 30 282 6918.6 29523
Q1b 40 7 16.5 34
Q0b 40 513 12958.1 31012
Q1b 50 5 25.9 32
Q0b 50 1277 15640.1 37584
Q1b 60 2 15.8 46
Q0b 60 2745 15058.8 38440
Q1b 70 5 16.9 27
Q0b 70 3886.4 17495.3 32555
Q1b 80 7 16.3 48
Q0b 80 4794 24067.2 37560

Table 4.3: Numerical results on branches for solving problem (P0) with Q1

and Q0 with various p and n = 3.

4.4.1 Feature of Best Solution in Native Dimension

It is well know that the feasible region for a set of linear inequalities is a polytope,

and the optimal solution to LP problem constrained by a polytope is attained at

some vertex(s) of the polytope. We consider the following 3 polytopes for problem

(4.3), (4.6) and (4.8), ∀i, j = 1, 2, . . . , p

M1 =

x
∣∣∣∣∣∣ Ax ≤ c,

lk ≤ x ≤ uk.

 (4.11)

MQ0 =


(yi, zi)

∣∣∣∣∣∣∣∣∣∣∣∣

d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

zil
k ≤ yi ≤ ziu

k,


(4.12)

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 61

MQ1 =



(tij ,y
i, zi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

−yi + lkzi ≤ 0,yi − ukzi ≤ 0,

tij ≤
1

αj
yi +

lk

βi
zj −

lk

αjβi
,

tij ≤
1

βj
yi +

uk

αi
zj −

uk

αiβj
,

tij ≥
1

αj
yi +

uk

αi
zj −

uk

αiαj
,

tij ≥
1

βj
yi +

lk

βi
zj −

lk

βiβj
,

tij = tji.



(4.13)

Let vertM1 , vertMQ0
, and vertMQ1

denote the vertex set of M1, MQ0 and MQ1 ,

respectively. Then we have

Proposition 4.7. ∃x′ ∈ vertM1 such that ((y′)i, (z′)i) ∈ vertMQ0
, where (y′)i :=

(z′)ix′, (z′)i := 1/(d>i x
′ + bi), i ∈ {1, 2, . . . , p}.

Proof. Without loss of generality, let x′ ∈ vertM1 such that Ax′ = c and αi =

min
{
d>i x

′ + bi
∣∣x′ ∈M1

}
. Then A(y′)i − c(z′)i = 1

αi
(Ax′ − c) = 0, (z′)i = 1

αi
,

and (z′)ilk ≤ (y′)i ≤ (z′)iuk if lk ≤ x′ ≤ uk. Similarly, we can prove the

equalities in (4.12) are strictly held if βi = min
{
d>i x

′ + bi
∣∣x′ ∈M1

}
. Therefore,

((y′)i, (z′)i) ∈ vertMQ0
, which completes the proof.

Proposition 4.8. ∃ ((y′)i, (z′)i) ∈ vertMQ0
such that ((tij)

′, (y′)i, (z′)i) ∈ vertMQ1
, i ∈

{1, 2, . . . , p}.

Proof. Let ((y′)i, (z′)i) ∈ vertMQ0
such that

(z′)
i

=
1

αi
=

1

min
{
d>i x

′ + bi
∣∣x′ ∈M1

} , i = 1, 2, . . . , p. (4.14)

Then we will see that

tij ≤
1

αj
(y′)

i
+
lk

βi
(z′)

j − lk

αjβi
=

1

αj
(y′)

i
. (4.15)

tij ≥
1

αj
(y′)

i
+
uk

αi
(z′)

j − uk

αiαj
=

1

αj
(y′)

i
. (4.16)

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 62

(4.15) and (4.16) imply that tij = 1
αj

(y′)i. Similarly, if we let

(z′)
i

=
1

βi
=

1

max
{
d>i x

′ + bi
∣∣x′ ∈M1

} , i = 1, 2, . . . , p. (4.17)

Then

tij ≤
1

βj
(y′)

i
+
uk

αi
(z′)

j − uk

αiβj
=

1

βj
(y′)

i
. (4.18)

tij ≥
1

βj
(y′)

i
+
lk

βi
(z′)

j − lk

βiβj
=

1

βj
(y′)

i
. (4.19)

Therefore, tij = 1
βj

(y′)i according to (4.18) and (4.19). Thus, if we take (z′)i

satisfied (4.14) or (4.17), ((tij)
′, (y′)i, (z′)i) ∈ vertMQ1

, which is the desired proof.

From the proof mentioned above, it is easy to see that

Proposition 4.9. ∃x′ ∈ vertM1 such that ((tij)
′, (y′)i, (z′)i) ∈ vertMQ1

, where

(y′)i := (z′)ix′, (z′)i := 1

d>i x′+bi
, i ∈ {1, 2, . . . , p}.

Proposition 4.9 implies that if the optimal solution of problem Q1 with box

[lk,uk], denoted by ((tij), (y
′)i, (z′)i), i, j = 1, . . . , p, such that

(z′)i∗ = min

{
1

d>i∗x
′ + bi∗

}
,

or

(z′)i∗ = max

{
1

d>i∗x
′ + bi∗

}
.

then the optimal solution of problem (4.3) is on the vertex of M1, where i∗ =

arg min{f(
(y′)i
(z′)i

)|i = 1, . . . , p}.

Furthermore, the number of iterations and branches showed in table 4.2, and

table 4.3 are decreased sharply, which implies that we are able to improve the

lower-bound quickly if we solve problem (4.8) recursively with branch and bound

method. These features, together the proposition 4.9, give us an idea to develop

another branch strategy.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 63

4.4.2 Advanced Branching Rules

To globally solve problem (4.3), we can solve problem (4.8) instead by using branch

and bound method. Instead of bisection branching rules, mentioned in section

4.3.1, we develop a more sophisticated branching strategies.

Let ((tij)
k,yki , z

k
i) be the optimal solution of problem Q1 at iteration k with

box Bk = [lk,uk]. Denote xik = yki /z
k
i and k∗ = arg min {f(xik)|i = 1, 2, . . . , p}.

It is clear that xik is the optimal solution of problem (4.3) if x1k = x2k = · · · = xpk

for ∀i = 1, 2, . . . , p. However, usually the relation x1k = x2k = · · · = xpk does not

hold. Therefore, we need to push it into next iteration.

Let

$j = min
{
ukj − x

ik
j , x

ik
j − lkj

}
, j = 1, 2, . . . , n. (4.20)

and

j0 = arg min {$j|j = 1, 2, . . . , n.} (4.21)

Then the rectangle Bk = [lk,uk] with the interior point xk
∗

are to be divided into

two sub-rectangles B2k, B2k+1 by the following rules:

Ra Get $j, j = 1, 2, . . . , p by the rule of (4.20)

Rb Select j0 by the rule of (4.21).

Rc Define B2k =
{
x ∈ Rn|lkj ≤ xj ≤ ukj , j 6= j0, x

k∗
j0
≤ xj ≤ ukj

}
,

B2k+1 =
{
x ∈ Rn|lkj ≤ xj ≤ ukj , j 6= j0, l

k
j ≤ xj ≤ xk

∗
j0

}
.

The difference between bisection branching rules and advanced branching rules

are showed by Figure 4.6 and Figure 4.7.

According to the branch strategy, clearly, we have

Remark : xk
∗
j0

= lk+1
j0

or uk+1
j0

.

In addition, if we divide further for rectangle B2k, B2k+1, the following relation

holds

lk ≤ lk+1 ≤ x(k+1)∗ ≤ uk+1 ≤ uk, k = 1, 2, . . . (4.22)

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 64

B
2k

B
2k+1

x
k

*

=(1.5,1)

(0,0)

(4,3)

Figure 4.6: An example of bisection branching rules at iteration k with a
current best solution xk

∗
in box Bk

x
k

*

=(1.5,1)

B
2k

B
2k+1

(0,0)

(4,3)

Figure 4.7: An example of advanced branching rules at iteration k with a
current best solution xk

∗
in box Bk

These relation mentioned above imply that

Lemma 4.10. ∃ l̃, ũ ∈ [l,u] such that l̃ ≤ ũ, lim
k→∞

lk = l̃ and lim
k→∞

uk = ũ.

Furthermore, the sequence {xk∗} has accumulation points, and each of which lies

on a corner of the limit rectangle [̃l, ũ].

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 65

Proof. For each element of lk, uk, denoted by lkj , u
k
j , both sequence {lkj } and {ukj}

are monotonic, bounded followed by (4.22). Hence, {lkj } and {ukj} have limits

denoted by l̃j and ũj, respectively. Of course, l̃j ≤ ũj.

Since xk
∗

is generated in the compact set [l, u], there exists at least one accu-

mulation points. Without loss of generality, let x̂k
∗

be an arbitrary accumulation

point and {xks∗} be a subsequence converging to x̂k
∗
. Since the set {1, 2, . . . , n}

is finite, there ∃ t ∈ {1, 2, . . . , n} such that t = jks
∗

when s → ∞. Note that

xk
∗
t = {lk+1

t , uk+1
t }, therefore we have lim

s→∞
xks

∗

t = x̂k
∗
t = {l̃j, ũj}. Since xks

∗

t are

satisfied (4.20) and (4.21), we have

min
{
u
k∗s
t − xks

∗

t , xks
∗

t − l
k∗s
t

}
≥ min

{
u
k∗s
j − x

ks
∗

j , xks
∗

j − l
k∗s
j

}
, j = 1, . . . , n. (4.23)

Since min
{
u
k∗s
t − xks

∗

t , xks
∗

t − l
k∗s
t

}
= 0, then min

{
u
k∗s
j − x

ks
∗

j , xks
∗

j − l
k∗s
j

}
= 0, j =

1, . . . , n, which implies that {x̂k∗} lies on a corner of rectangle [̃l, ũ].

Lemma 4.11. Let x̂k
∗

be an arbitrary accumulation point of {xk∗}, and {xks∗}
be a subsequence converging to x̂k

∗
. Then we have

lim
s→∞

xksi = x̂k
∗
,xi =

yi
zi
, i = 1, 2, . . . , p. (4.24)

Proof. From lemma 4.10, we know that ∃ j such that x̂k
∗
j = {l̃j, ũj}, for j =

1, 2, . . . , n. Clearly, lksj ≤ xij
ks for i = 1, 2, . . . , p, which implies that xij

ks → lksj

if x̂k
∗
j = l̃j. In the similar way, we can prove xij

ks → uksj if x̂k
∗
j = ũj. Therefore

(4.24) holds.

Lemma 4.11 indicates that if we can find an arbitrary accumulation point,

denoted by x̂k
∗
, then x̂k

∗
is also an optimal solution of problem (4.3). Furthermore,

lemma 4.10 and lemma 4.11 keep the advanced branch rules convergent.

4.4.3 Advanced Algorithm Description

As it described in section 4.3.2, we starting from B1 = {[l1,u1] = [l,u]} that is

generated by solving problem (4.1) and (4.2), we solve Q1(l
k,uk) for k = 1, 2,

At each iteration k = 1, 2, . . . , we will get an optimal value of Q1(l
k,uk) at

(tijk ,yik , zik), i, j = 1, 2, . . . , p. And let xk
∗

= yk
∗
/zk∗ , k

∗ ∈ arg min{f(xik), ik =

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 66

1, 2, . . . , p}. Then the rectangle Bk that the smallest value of Q1(l
k,uk) take

will be divided into two rectangles B2k, B2k+1 by the advanced branching rules.

And rectangle Bk will be discarded at the k-th iteration if the optimal value of

Q1(l
k,uk) is greater than the current best vale. Now the algorithm is ready to be

described in detail as follows:

Algorithm 3 Advanced Branch and bound algorithm for SOLR based on bisection
rule

1: Initial settings: Set k = 1. Let Bk = {[lk,uk]} = {[l,u]} be the initial
rectangle. L = −∞, U =∞.

2: Solve Q1(l
j,uj) with Bj ∈ Bk. If Q1(l

j,uj) is feasible then obtain the
optimal value Lk and xik = yik/zik , and Uk = min{f(xik), ik = 1, . . . , p}.
Lk = Lk, U = Uk. If Q1(l

k,uk) is infeasible then terminate.
3: Set a tolerance ε ≥ 0.
4: while U − Lk > ε do
5: Discard rectangles Bj ∈ Bk such that the value of Q1(l

j,uj) > Uk

6: Select Bj0 ∈ Bk with Lj0 = Lk.
7: Divide Bj0 into two subrectangles B2k, B2k+1 according to the advanced

branching rules Ra-Rc, and update Bk = (Bk\ {Bj0}) ∪ {B2k} ∪ {B2k+1}
8: Solve Q1(l

j,uj) for j = k, 2k + 1. If Q1(l
j,uj) is not feasible, then dis-

card Bj. Otherwise, obtain Lk, Uk, L2k+1, U2k+1 and keep the corresponding
incumbent best solution xjk = yjk/zjk .

9: Update Lk = min{Lk, L2k+1} if Lk < min{Lk, L2k+1}, U = min{Uk, U2k+1}
if U > min{Uk, U2k+1} and update the incumbent best solution.

10: Set k = k + 1
11: end while
12: Return U as an ε-minimum of (P0) with a minimizer xjk = yjk/zjk ∈ [l,u].

It is easy to see that the Algorithm 3 are the same as the Algorithm 2 except

the branch rules, and the branch rules used in Algorithm 3 are proven to be con-

vergent. Therefore, for a given ε > 0, Algorithm 3 can terminate in finitely many

iterations; If the algorithm can not terminate for a given ε = 0, any accumulation

point of the sequence {xk∗|k = 1, 2 . . . } is an optimal solution followed by the

proposition 4.3 and lemma 4.11.

4.4.4 Numerical Experiments

In this section, in order to compare the performance of the two different branch

strategies used in branch and bound for solving the SOLR problem with lower

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 67

dimension, we implemented some numerical experiments using randomly generated

data sets. The algorithm is coded in MATLAB R© and implemented on an iMac

with a quad-core Core(i5) and 8GB of RAM in Muroran Institute of Technology.

The datasets of the test problems used in this study are set as follows: The

dimension of variables is 3 and the tolerance ε = 0.05. The coefficients ni,di

are i.i.d. generated in the ranges of −5 ≤ nij, dij ≤ 5, for i = 1, . . . , p and j =

1, 2, 3. The constants ai (i = 1, . . . , p) are randomly chosen from [0, 60] and bi

(i = 1, 2, . . . , p) are fixed to 60.

Problem (P0) was solved for various p = 5, 10, 20, 30, 40, 50, 60, 70, 80. For

a fixed p, a set of 15 instances of the problem was solved with model Q1 using

bisection rules and advanced rules, respectively. The column titled min., averg.,

max. provide the information on the minimal The recorded minimal CPU times in

second, average CPU times in second, maximal CPU times in second are provided

in Tabel 4.4 of the column titled “min.”, “averg.” and “max.”, respectively. And

the related information on the number of iterations and the number of branches

in the exception are showed Table 4.5 and Table 4.6, respectively. The rows Q1b

delivers the results that obtained by solving model Q1 with bisection rules, while

the rows Q1a delivers the results that obtained by solving model Q1 with advanced

rules.

Tabel 4.4, Table 4.5 and Table 4.6 indicate that

• The average number of branches is decreased about 4% of bisection branching

rules when p ≥ 40. Usually, small number of branches will result in less

computational time.

• The average CPU time solved by branch and bound method using advanced

branch rules is less than it solved by bisection branching rules when p ≥ 30.

And the decreased CPU time will be larger with p growing. That is because

the average number of branches becomes smaller when p ≥ 30 and the

computational time for solving model Q1 will be more with the p growing.

Furthermore, the minimal CPU time, iterations and branches for advanced

branch rules will be no more than those from bisection rules, which implies

that the advanced branching rules will result in less number of branches for

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 68

those problem that can be solved in a few number of branches when we use

bisection branching rules (e.g. the number of branches is less than 5).

• For a smaller p (e.g. p ≤ 5), the average CPU time and number of branches is

larger for advanced branching rules compared those from bisection branch-

ing rules. That is because the number of branches will become larger for

advanced branch rules compared the bisection branching rules, and the com-

putational time for solving model Q1 once is tiny.

• For some cases, the maximal number of iterations for advanced branching

rules is larger compared the bisection branching rules. The reason is based

on twofold. First, when the optimal solution obtained within a given tol-

erance ε at last iteration, the selected rectangle will be divided into two

sub-rectangles at the previous iteration. For the bisection branching rules,

one of them may be discarded when the lower bound of the one is greater

than the current best value. The second reason is related to the advanced

branching rules mentioned in section 4.4.2. For the advanced branching

rules, since the current best solution will be on the edge that the both two

sub-rectangles share if the algorithm goes to the next iteration, both of the

two sub-rectangles will not be discarded if the optimal solution is on the

side that is belonged to the both rectangle. Therefore, though the number

of branches will be larger, the CPU time will not be increased because there

is no more computational time for other branches. However, one of them

can be discarded if we using the bisection branching rules.

4.5 Conclusions

In this chapter, we have made a new linear relaxation for the SOLR problem

and designed a branch and bound algorithm for solving the SOLR problem with

lower dimension using two branching rules. One is the standard bisection via

longest edge, and the other is the advanced branching rules. The proposed two

algorithms share the similarities to the previous algorithm [16] that its branching

process works on a space with dimensions n, the dimensions of native variables

while its bounding process works on a space with dimensions of (p2n+ pn+ p), p

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 69

Model # p
CPU time(s)

min. averg. max.

Q1b 5 0.1 0.3 0.6
Q1a 5 0.1 0.42 0.66
Q1b 10 0.4 0.8 2.0
Q1a 10 0.4 0.8 1.8
Q1b 20 2.7 8.7 14.4
Q1a 20 2.4 8.7 19.4
Q1b 30 14.3 34.2 54.6
Q1a 30 15.3 30.5 45.5
Q1b 40 49.4 111.3 223.9
Q1a 40 44.7 98.8 215.3
Q1b 50 95.0 242.5 500.9
Q1a 50 92.4 204.3 504.2
Q1b 60 296.3 650.7 1782.9
Q1a 60 192.4 567.9 1689.2
Q1b 70 469.3 1879.4 7502.5
Q1a 70 303.1 1770.7 6984.3
Q1b 80 1182.3 2177.5 6161.9
Q1a 80 863.4 1937.5 5786.0

Table 4.4: Numerical results on CPU times for solving problem (P0) with
various p and n = 3. The rows Qb1 for the results obtained from model Q1

using bisection branching rules, while rows Qa1 for the results obtained from
model Q1 using advanced branching rules.

is the number of terms of ratios. Theoretically, the proposed algorithms finds an

ε-minimizer for any pre-given ε > 0 within finitely many iterations.

We conducted the numerical experiments to investigate the behavior of the

proposed algorithm using bisection branching rules. The results obtained from

the numerical experiments indicate that the proposed algorithm is superior to the

previous algorithm in CPU time, number of iterations and numbers of branches.

The numerical experiments shows that the CPU time is at most about 7% of the

algorithm in [16] on average.

Since the proposed algorithm using bisection rules can find an optimal so-

lution within a given tolerance efficiently, thus the relaxed model can enforce a

strong approximation for the quadratic constraints of the original problem. Thus

we developed another branch and bound algorithm for solving the SOLR prob-

lem. The advanced branching rules are proven to make the proposed algorithm

convergent. And the numerical results show that the average CPU time solved by

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 70

Model # p
Iterations

min. averg. max.

Q1b 5 1 1.8 4
Q1a 5 1 1.9 4
Q1b 10 1 2.2 6
Q1a 10 1 2.1 5
Q1b 20 2 4.8 12
Q1a 20 2 4.7 14
Q1b 30 3 7.4 12
Q1a 30 3 6.4 10
Q1b 40 4 9.4 19
Q1a 40 4 8.1 15
Q1b 50 3 14.5 17
Q1a 50 2 11.9 18
Q1b 60 1 8.8 27
Q1a 60 1 7.6 25
Q1b 70 3 10.7 21
Q1a 70 3 9.6 21
Q1b 80 5 8.8 25
Q1a 80 4 7.8 24

Table 4.5: Numerical results on iterations for solving problem (P0) with Q1

and Q0 with various p and n = 3. The rows Qb1 for the results obtained
from model Q1 using bisection branching rules, while rows Qa1 for the results

obtained from model Q1 using advanced branching rules.

branch and bound method using advanced branch rules is less than it solved by

bisection branching rules when p ≥ 30. Furthermore, the reduction of CPU time

will be substantial with the p growing.

We plan to conduct larger scale experiments to look into the detailed behavior

of the new algorithm as a further work. It is fundamentally important to make

a theoretical analysis on the number of iterations in which the new algorithm

finds a minimizer. An error bound between a minimizer and an ε-minimizer is an

important feature. We leave them as our further work.

Chapter 4. A linear Relaxation Algorithm for Solving the SOLR Problem 71

Model # p
Branches

min. averg. max.

Q1b 5 1 2.1 5
Q1a 5 1 3.2 10
Q1b 10 1 3.9 10
Q1a 10 1 4.0 8
Q1b 20 3 8.3 24
Q1a 20 3 7.9 23
Q1b 30 5 12.6 23
Q1a 30 5 12.1 19
Q1b 40 7 16.5 34
Q1a 40 5 15.3 38
Q1b 50 5 25.9 32
Q1a 50 4 24.1 34
Q1b 60 2 15.8 46
Q1a 60 1 15.2 48
Q1b 70 5 16.9 27
Q1a 70 4 14.6 24
Q1b 80 7 16.3 48
Q1a 80 6 14.9 43

Table 4.6: Numerical results on branches for solving problem (P0) with Q1 and
Q0 with various p and n = 3. The rows Qb1 for the results obtained from model
Q1 using bisection branching rules, while rows Qa1 for the results obtained from

model Q1 using advanced branching rules.

Chapter 5

Convex Relaxations for the SOLR

Problem

In this chapter, we study several relaxations for minimizing the SOLR problem

constrained a set of linear constrains. For convince, we rewrite the SOLR problem

which is mentioned in Chapter 1 as follows.

minimize f(x) =

p∑
i=1

n>i x+ ai

d>i x+ bi

subject to Ax ≤ c,
x ≥ 0,

(5.1)

where p ≥ 2, ni,di are both vector in Rn for i = 1, . . . , p, ai, bi are real numbers for

i = 1, . . . , p , A is an m× n matrix, c is a vector in Rm. We assume each denom-

inator is positive on its feasible region without loss of generality by proposition

4.1.

Our motivation for studying problem (5.1) using convex relaxation are as fol-

lows. It is well know that problem (5.1) has multiple local optimizers which are not

general globally optimal. We are interested in globally solving problem (5.1). And

if problem (5.1) is too difficult to be solved globally (e.g. because of ill-condition

and /or a large number of variables or ratios in f(x)), we would like to get at least

a valid lower bound of the global minimum. The upper bound can be obtained

with some efficient methods (algorithms) such as Newton’s method or its variants,

the DIRECT algorithm mentioned in Chapter 3. Furthermore, the SOLR problem

73

Chapter 5 . Convex Relaxations for the SOLR Problem 74

can be transformed into a quadratic programming by introducing some auxiliary

variables. Then semidefinite relaxation, a powerful and computationally efficient

approximation technique for several difficult nonconvex quadratical problem, can

be applied to solve that kind of problem.

5.1 Reformulation

In this section, we will describe how to reformulate problem (5.1) into an equivalent

problem which is able to be relaxed as an SDP.

Let ri =
n>i x+ai

d>i x+bi
, i = 1, . . . , p. Define

minimize

p∑
i=1

ri

subject to
n>i x+ai

d>i x+bi
≤ ri, i = 1, . . . , p,

Ax ≤ c,
x ≥ 0.

(5.2)

The following theorem asserts that problem (5.1) is equivalent to problem

(5.2).

Theorem 5.1. Problem (5.1) is equivalent to problem (5.2).

Proof. Let x∗ be an optimal solution to problem (5.1). Define r∗i :=
n>i x∗+ai
d>i x∗+bi

.

Then it is easy to see that (x∗, r∗1, r
∗
2, . . . , r

∗
p) is feasible for problem (5.2). Suppose

there is another feasible solution (x′, r′1, r
′
2, . . . , r

′
p) to problem (5.2) such that

p∑
i=1

r′i <

p∑
i=1

r∗i . (5.3)

Since
p∑
i=1

r′i =

p∑
i=1

n>i x
′ + ai

d>i x
′ + bi

,

p∑
i=1

r∗i =

p∑
i=1

n>i x ∗+ai

d>i x ∗+bi
, (5.4)

and x′ is also a feasible solution to problem (5.1). Therefore, the inequality (5.3)

contradicts the optimality of x∗ for problem (5.1). And similar to vice versa.

Chapter 5 . Convex Relaxations for the SOLR Problem 75

Since d>i x + bi > 0,
n>i x+ai

d>i x+bi
≤ ri,∀i = 1, . . . , p is equivalent to n>i x + ai −

ri(d
>
i x + bi) ≤ 0,∀i = 1, . . . , p. Therefore, problem (5.2) can be rewritten as

follows

minimize

p∑
i=1

ri

subject to n>i x+ ai − ri(d>i x+ bi) ≤ 0, i = 1, . . . , p,

Ax ≤ c,
x ≥ 0.

(5.5)

Let y = (x1, . . . , xn, r1, . . . , rp)
> and

Pi =



0 · · · 0 0 · · · −di/2 · · · 0
... · · · ...

... · · · ... · · · ...

0 · · · 0 0 · · · ... · · · 0

0 · · · 0 0 · · · 0 · · · 0
... · · · ...

... · · · ... · · · ...

−di
>/2 · · · · · · 0 · · · ... · · · 0
... · · · ...

... · · · ... · · · ...

0 · · · 0 0 · · · 0 · · · 0



,

then problem (5.5) can be formulated as the following form

minimize q0
>y

subject to y>Piy + qi
>y ≤ −ai, i = 1, . . . , p,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u,

(5.6)

where q0 = (01×n,11×p)>; y = (x; r)>; qi = (ni;−biei)>, i = 1, . . . , p; µj =

(Aj•; 0
p×1)>, j = 1, . . . ,m, Aj• is the vector of j-th row. ei is the i-th standard

unit vector.

Because the feasible region for x is convex and nonempty, we can construct a

rectangle Bx = [lx,ux] by solving problem (4.1) and problem (4.2) in Chapter 3.

And for a single linear ratio, it can be equivalently solved by LP when using the

Charnes-Cooper transformation [19]. To construct a rectangle Br = [lr,ur] for r,

Chapter 5 . Convex Relaxations for the SOLR Problem 76

we can solve the following problem (5.7) and problem (5.8) easily.

lri = minimize
(
n>i y

i + aizi
)

subject to d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

zilx ≤ yi ≤ ziux.

(5.7)

uri = maximize
(
n>i y

i + aizi
)

subject to d>i y
i + bizi = 1,

Ayi − czi ≤ 0,
1

βi
≤ zi ≤

1

αi
,

zilx ≤ yi ≤ ziux,

(5.8)

where lri, uri are the i-th member of lr,ur, respectively. Therefore, the rectangle

[lB,uB] can be constructed by the following formula

[lB,uB] =

 lx

lr

 ,

 ux

ur

 . (5.9)

Clearly, problem (5.6), an NP-hard [84] problem, is a quadratic programming

with linear objective and quadratic and linear constraints, and the development of

suitable relaxation is required for problem (5.1). SDP techniques have received a

great deal of attention in optimization literature [86], and several SDP relaxations

have been proposed for solving that kind of prolem [3, 4, 11, 12, 14, 35, 77].

5.2 Lagrangian Relaxation

Lagrangian relaxation, an important technique for constrained optimization prob-

lems, has been applied for semidefinite relaxations for quadratic programming

problems [77, 85].

Chapter 5 . Convex Relaxations for the SOLR Problem 77

The Lagrangian function of problem (5.6) is

L(y,λ,υ,ω,ν) = q0
>y +

p∑
i=1

λi(y
>Piy + qi

>y + ai) +
m∑
j=1

υj(µ
>
j y − cj)

−ω>(y − l) + ν>(y − u)

=

p∑
i=1

λiy
>Piy +

(
q0 +

p∑
i=1

λiqi +
m∑
j=1

vjµj − ω + ν

)>
y

+

(
p∑
i=1

λiai −
m∑
j=1

υjcj + ω>l− ν>u

)
,

(5.10)

where λ ∈ Rp
+, υ ∈ Rm

+ , and ω,ν ∈ Rn
+ are multipliers. The Lagrange dual

problem of problem (5.6) is

fL = maximize
λ,υ,ω,ν

minimize
y

L(y,λ,υ,ω,ν)

subject to λ ≥ 0,υ ≥ 0,ω ≥ 0,ν ≥ 0.

By weak duality, let f ∗ is the optimal value of problem (5.1) and we have

Proposition 5.2. f l ≤ f ∗.

Furthermore, any feasible solution (λ̄, ῡ, ω̄, ν̄) yields a lower bound for f ∗.

In addition, since
p∑
i=1

λiPi 6� 0 because of diag(Pi) = 0, i = 1, . . . , p, which will

make min
y

L(y,λ,υ,ω,ν) go to negative infinity. Since the lagrange dual problem

essentially ignores linear constraints, which will lead to weak relaxations if ally

lagrangian duality to primal problems that contain explicit linear equality con-

straints and bound constraints. An alternative approach it only to dualize the

nonlinear constraints presented in [82]. The resulting Lagrange dual problem for

problem (5.6) is as follows

fL0 = maximize
λ,υ,ω,ν

minimize
y

L(y,λ,0,0,0)

subject to λ ≥ 0,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u.

(5.11)

Clearly, we have

Chapter 5 . Convex Relaxations for the SOLR Problem 78

Proposition 5.3.

fL ≤ fL0 ≤ f ∗.

5.3 Shor Relaxation

A reformulation of problem (5.11) is

fL = maximize
ε,λ,υ,ω,ν

ε

subject to L(y,λ,υ,ω,ν)− ε ≥ 0,∀y ∈ Rn+p,

λ ≥ 0,υ ≥ 0,ω ≥ 0,ν ≥ 0.

(5.12)

Let A(ε,λ,υ,ω,ν) ∈ Sn+1 be



p∑
i=1

λiai −
m∑
j=1

υjcj + ω>l− ν>u− ε 1

2

(
q0 +

p∑
i=1

λiqi +
m∑
j=1

µj − ω + ν

)>

· · ·
p∑
i=1

λiPi

 ,

and we have

L(y,λ,υ,ω,ν)− ε =

1

y

>A(ε,λ,υ,ω,ν)

1

y

 .

The problem (5.12) can be rewritten as the following SDP problem

fDshor = maximize
ε,λ,υ,ω,ν

ε

subject to A(ε,λ,υ,ω,ν) � 0,

λ ≥ 0,υ ≥ 0,ω ≥ 0,ν ≥ 0,

(5.13)

Chapter 5 . Convex Relaxations for the SOLR Problem 79

whose dual is equivalent to the following problem

minimize q0
>y

subject to Pi • Y + qi
>y ≤ −ai, i = 1, . . . , p,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y

 � 0,

Y = yy>.

(5.14)

By dropping the constraint Y = yy>, we obtain the following form due to Shor

relaxation [78]:

fShor = minimize q0
>y

subject to Pi • Y + qi
>y ≤ −ai, i = 1, . . . , p,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y

 � 0.

(5.15)

Since problem (5.13) is a reformulation of SDP form of problem (5.12), and

problem (5.15) is a dual relaxation of problem (5.13), we have the following propo-

sition based on weak duality

Proposition 5.4.

fDshor = fL ≤ fShor ≤ f ∗.

If the following condition are satisfied

Condition: The problem (5.13) and problem (5.15) are feasible, and the set

Y =


(y, Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pi • Y + qi
>y < −ai, i = 1, . . . , p,

µ>j y < cj, j = 1, 2, . . . ,m,

l < y < u, 1 y>

y Y

 � 0.



Chapter 5 . Convex Relaxations for the SOLR Problem 80

is no empty.

According to the conic duality in [8], we have

Proposition 5.5.

fL = fShor ≤ f ∗.

5.4 SDP Relaxation for the SOLR Problem

In this section, we first give some definitions of general multilinear and bilinear

function which can be viewed as a subclass of quadratic function. And we apply an

SDP relaxation for a bilinear programming based on a convex envelop of bilinear

functions.

First we give some definitions: let M be a compact polytope M ⊂ Rn, and

vertM denote all vertices of polytope M . And if ϕ is a real-valued function ϕ :

x → Rn, epi(ϕ) denotes its epigraph : epi(ϕ) = {(z,x)|z ≥ ϕ(x),x ∈ dom(ϕ)},
where dom(ϕ) = {x|ϕ(x) <∞}.

Definition 5.6. Function g(x1,x2, . . . ,xk) is said to be a general multilinear

function if for each i = 1, 2, . . . , k, function g(x1
0,x2

0, . . . ,xi, . . . ,xk
0) linearly

depends on vector xi in the case that all other k − 1 vector arguments are fixed.

A function g(x1,x2) is called bilinear if it reduces to a linear one by fixing

the vector x1 or x2 to a particular value. It is easy to see that bilinear functions

compose a subclass of multilinear functions. Of course, it is also a special case of

a quadratic function. We refer to optimization problems with bilinear objective

and /or constraints as bilinear problems, and they can be viewed as a subclass of

quadratic programming in the case of the diag(Pi) = 0, i = 1, . . . , p in problem

(5.6).

Definition 5.7. Let g(x) be a real valued lower semicontinuous function, defined

a convex set M , dom(g) = M . Set X(g) is said to be a generating set of this

function, if

X(g) = {x|(x, f(x)) ∈ vert(epi(convMg(x))}.

Thus, the generating set of a function g(x) is the set of all x-coordinates of

all vertices of the epigraph of the convex envelop of this function.

Chapter 5 . Convex Relaxations for the SOLR Problem 81

Let g(x) be a multilinear function on n-dimensional convex polytope M ⊂ Rn,

and convMg(x) be a polyhedral function. And there exist n+1 linear independent

vertices of M : εi, i = 1, . . . , n+ 1.

Remark 5.8. Because of convMg(x) = g(x), ∀x ∈ vertM . Let us define function

g∞(x) such that g∞(x) = g(x) if x ∈ vertM and g∞(x) =∞ otherwise. Thus the

necessary and sufficient condition of the polyhedrality of the function convMg(x)

can be rewritten in the following form:

convMg(x) = convf∞(x) ∀x ∈M. (5.16)

LetM = conv {εi|i = 1, . . . , n+ 1}. Let x0 ∈M , according to Caratheodory’s

theorem we have:

convMg(x0) = min


n+1∑
i=1

αig(xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 =
n+1∑
i=1

αix
i,

n+1∑
i=1

αi = 1, αi ≥ 0,∀i = 1, . . . , n+ 1,

xi ∈ P.


(5.17)

Considering the following SDP programming for bilinear programming problems:

f bl = minimize q0
>y

subject to Pi • Y + qi
>y ≤ −ai, i = 1, . . . , p,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y

 � 0,

diag Y = y.

(5.18)

Chapter 5 . Convex Relaxations for the SOLR Problem 82

We assume that the relative interior of the following set, (y, Y), is nonempty:

Y =


(y, Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pi • Y + qi
>y < −ai, i = 1, . . . , p,

µ>j y < cj, j = 1, 2, . . . ,m,

l < y < u, 1 y>

y Y

 � 0,

diag Y = y.


We will show that problem (5.18) is an valid SDP relaxation for problem (5.6).

Theorem 5.9. Considering problem (5.6) with diag(Pi) = 0, i = 1, . . . , p. The

problem (5.18) provides a lower bound for problem (5.6).Thus

f bl ≤ f ∗.

To prove theorem 5.9, we fist prove the following lemma.

Lemma 5.10. Considering the following linearly constraints bilinear programming

problem:

f ∗l = minimize P • Y + q>0 y

subject to µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u,

(5.19)

where diag(P)=0. Then the following provides a lower bound for problem (5.19).

f bll = minimize P • Y ′ + q>0 y
subject to µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y ′

 � 0,

diag Y ′ = y.

(5.20)

Thus,

f bll ≤ f ∗l .

Chapter 5 . Convex Relaxations for the SOLR Problem 83

Proof. Assume y is a feasible solution of problem (5.19). LetM = [l, u]n, vert(M) =

{πi} ∈ {l, u}n. Since y ∈M , there exist multipliers αi such that

x =
n+1∑
i=1

αiπ
i,

n+1∑
i=1

αi = 1, αi ≥ 0. (5.21)

Since diag(Pi) = 0, the quadratic expression P • Y is a bilinear and, hence, mul-

tilinear function. Using formula (5.17), there exist αi satisfying (5.21) and such

that

P • Y ≥
n+1∑
i=1

αiP • Yπi ,

where Yπi = (π)t(πi)>. Let Y ′ =
n+1∑
i=1

(π)t(πi)>, we have

P • Y ≥ P • Y ′. (5.22)

Considering the matrix

 1 y>

y Y ′

. By formula (5.21), we have

 1 y>

y Y ′

 =
n+1∑
i=1

 1 (πi)>

π (π)(πi)>

 =
n+1∑
i=1

 1

πi

 1

πi

> � 0. (5.23)

In addition, diagY ′ =
n+1∑
i=1

αiπ
i = y. Then, we have

 1 y>

y Y ′

 � 0,

diag Y ′ = y.

It follows that (y, Y ′) is feasible to the SDP programming (5.20). Furthermore,

because of inequality (5.22), we have

P • Y + q>0 y ≥ P • Y ′ + q>0 y.

Therefore f bll ≤ f ∗l .

Chapter 5 . Convex Relaxations for the SOLR Problem 84

Now we show theorem (5.9) is valid.

Proof. According to the Largrangian dual problem of problem (5.11) in Section

5.2. Since diag(Pi) = 0 for i = 1, . . . , p, the dual subproblem f sl0 = min
y

L(y,λ,0)

is a linearly bilinear programming problem. According lemma 5.10, the SDP

relaxation for the dual subproblem is

f ∗l = minimize P • Y + q>0 y

subject to µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u,

(5.24)

where diag(P)=0. Then the following provides a lower bound for problem (5.19).

f bll0 = minimize

(
p∑
i=1

λiPi

)
• Y ′ +

(
q0 +

p∑
i=1

λiqi

)>
y +

p∑
i=1

λiai

subject to µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y ′

 � 0,

diag Y ′ = y.

(5.25)

Let a symtric matrix A(λ,υ,ω,ν,β) ∈ Sn+1 be



p∑
i=1

λiai
1

2

(
q0 +

p∑
i=1

λiqi +
m∑
j=1

υjµj − ω + ν + β

)>

· · ·
p∑
j=1

λjPk − diag(β)


.

Under this notation, the dual of problem (5.25) is

fdbll0 = maximize
υ,ω,ν ,β

−
p∑
j=1

υjcj − ν>u+ ω>l

subject to A(λ,υ,ω,ν,β) � 0,

υ ≥ 0,ω ≥ 0,ν ≥ 0.

(5.26)

Chapter 5 . Convex Relaxations for the SOLR Problem 85

By weak duality, we have

fdbll0 ≤ f bll0 ≤ f sl,∀λ.

Thus, the optimal value for the dual of problem (5.18), fdbl, is a low bound of f sl,

where

fdblsl = maximize
υ,ω,ν ,β

−
p∑
j=1

υjcj − ν>u+ ω>l

subject to A(λ,υ,ω,ν,β) � 0,

λ ≥ 0,υ ≥ 0,ω ≥ 0,ν ≥ 0.

(5.27)

The dual of problem (5.27) is :

f bl = minimize q0
>y

subject to Pi • Y + qi
>y ≤ −ai, i = 1, . . . , p,

µ>j y ≤ cj, j = 1, 2, . . . ,m,

l ≤ y ≤ u, 1 y>

y Y

 � 0,

diag Y = y.

(5.28)

With the Slater Condition, we have f bl = fdbl. Therefore,

f bl ≤ f lg0 ≤ f ∗.

5.5 Conclusions

In this chapter, we reformulated the SOLR problem into a quadratic program-

ming with linear objective and quadratic and linear constraints. The reformulated

problem are characterized by the zero diagonal elements of the constraint matrix.

Then we reviewed several SDP relaxations and presented a number of new SDP

relaxations which can be applied for solving the reformulated problem. Further-

more, the reformulated programming is a bilinear programming that is a special

Chapter 5 . Convex Relaxations for the SOLR Problem 86

case of general quadratic programming. Then an SDP relaxation for this partic-

ular problem based on the convex envelop of bilinear function can be applied for

optimization. Of course, it provides an lower bound for the reformulated problem.

In this chapter, some relationship of programmings with different relaxation meth-

ods are theoretically proved. Comparisons of these relaxations based on branch

and bound algorithm should be addressed by further research.

Chapter 6

Conclusions and Further Works

6.1 Conclusions

We give contributions/conclusions of this dissertation in this section. The main

contributions/conclusions of this dissertation falls in the following aspects:

1. Studied the performance of the DIRECT algorithm for solving the SOLR

problem with lower dimension. We conducted numerical experiments to

show the validness and to measure the probability of the DIRECT algorithm

for obtaining a “good” solution for solving the SOLR problem within a given

tolerance.

2. Proposed a branch and bound algorithm based on bisection branching rules

to globally solve the SOLR problem with lower dimension. We transformed

the SOLR problem into an equivalent problem which is a kind of quadratic

problem with linear objective and quadratic and linear constraints. We made

a linear relaxation for all the quadratic constraints instead of dropping them

out. To invest the performance of proposed algorithm, we conducted numer-

ical experiments using randomly generated data sets. And numerical results

show that the proposed branch and bound algorithm based on bisection rules

outperforms the existing algorithm proposed in [16]. More precisely, the pro-

posed algorithm achieves superiority over the algorithm in [16]: i) reduced at

least 93% in CPU time on average; ii) reduced at least 98% in the number of

branches on average; iii) reduced at least 98.3% in the number of iterations

87

Chapter 6. Conclusions and Further Works 88

on average; iv) greatly reduced the CPU time, number of branches, number

of iterations on max and min values.

3. Proposed a branch and bound algorithm based on advanced branching rules

to globally solve the SOLR problem. The relaxed model enforces a strong

approximation for the quadratic constraints of the original problem, which

push us to develop an advanced branching rules. If selected rectangle which

contains the current best solution are divided into two sub-rectangles, the

advanced branching rules guarantes that the current best solution is belonged

to a common edge of the two sub-rectangles. In addition, we proved the

advanced branching rule is convergent. And the numerical results indicate

that the average CPU time solved using advanced branch rules is less than

it solved by bisection branching rules when p ≥ 30. And the CPU time will

be decreased much more with p growing.

4. Reformulated the SOLR into an SDP programming, reviewed several existing

SDP relaxations for the reformulated programming and made comparisons

for these relaxations.

6.2 Further Works

It is worthwhile to further work on the following directions based on the work we

have conducted in this thesis.

1. To find a stopping criterion for the DIRECT algorithm for solving the SOLR

problem within a given tolerance.

2. To make an analysis on the number of iteration in which the proposed al-

gorithm finds a minimizer, and find an error bound between the minimizer

and ε-minimizer.

3. To conduct larger scale experiments to look into the detail behavior of the

proposed algorithms, e.g., to reduce constraints of the relaxed model.

4. To develop a branch and bound algorithm for globally solving the SOLR

problem with SDP programming. Comparing the relaxations mentioned in

Chapter 6. Conclusions and Further Works 89

Chapter 5 by conducting numerical experiments is also worthwhile to be

addressed.

Bibliography

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules

revisited. Operations Research Letters, 33(1):42–54, 2005.

[2] Yoram Almogy and Oded Levin. Parametric analysis of a multi-stage stochas-

tic shipping problem. Operational Research, 69:359–370, 1970.

[3] Kurt M Anstreicher. Semidefinite programming versus the reformulation-

linearization technique for nonconvex quadratically constrained quadratic

programming. Journal of Global Optimization, 43(2-3):471–484, 2009.

[4] Kurt M Anstreicher and Samuel Burer. Dc versus copositive bounds for

standard qp. Journal of Global Optimization, 33(2):299–312, 2005.

[5] Esther M. Arkin, Y-J Chiang, Martin Held, Joseph S. B. Mitchell, Vera Sac-

ristan, SS Skiena, and T-C Yang. On minimum-area hulls. Algorithmica,

21(1):119–136, 1998.

[6] Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawarmalani. Semidefinite

relaxations for quadratically constrained quadratic programming: A review

and comparisons. Mathematical programming, 129(1):129–157, 2011.

[7] Philippe Baptiste, Jacques Carlier, and Antoine Jouglet. A branch-and-bound

procedure to minimize total tardiness on one machine with arbitrary release

dates. European Journal of Operational Research, 158(3):595–608, 2004.

[8] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex opti-

mization: analysis, algorithms, and engineering applications, volume 2. Siam,

2001.

[9] Harold P Benson. Solving sum of ratios fractional programs via concave

minimization. Jouranl Optimization Theory Application, 135(1):1–17, 2007.

91

Bibliography 92

[10] HP Benson. On the global optimization of sums of linear fractional functions

over a convex set. Journal of Optimization Theory and Application, 121(1):19–

39, April 2004.

[11] Immanuel M Bomze, Florian Frommlet, and Martin Rubey. Improved sdp

bounds for minimizing quadratic functions over the \ ellˆ{1}-ball. Optimiza-

tion Letters, 1(1):49–59, 2007.

[12] Immanuel M Bomze, Marco Locatelli, and Fabio Tardella. New and old

bounds for standard quadratic optimization: dominance, equivalence and in-

comparability. Mathematical Programming, 115(1):31–64, 2008.

[13] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[14] Samuel Burer and Dieter Vandenbussche. A finite branch-and-bound al-

gorithm for nonconvex quadratic programming via semidefinite relaxations.

Mathematical Programming, 113(2):259–282, 2008.

[15] Alberto Cambini, Laura Martein, and Siegfried Schaible. On maximizing a

sum of ratios. Journal of Information and Optimization Sciences, 10(1):65–79,

1989.

[16] John Gunnar Carlsson and Jianming Shi. A linear relaxation algorithm for

solving the sum-of-linear-ratios problem with lower dimension. Operations

Research Letters, 41(4):381–389, 2013.

[17] Giorgio Carpaneto, Mauro Dell’Amico, and Paolo Toth. Exact solution of

large-scale, asymmetric traveling salesman problems. ACM Transactions on

Mathematical Software (TOMS), 21(4):394–409, 1995.

[18] R Chandrasekaran. Minimal ratio spanning trees. Networks, 7(4):335–342,

1977.

[19] Abraham Charnes and William W Cooper. Programming with linear frac-

tional functionals. Naval Research logistics quarterly, 9(3-4):181–186, 1962.

[20] Danny Z Chen, Ovidiu Daescu, Yang Dai, Naoki Katoh, Xiadong Wu, and

Jinhui Xu. Optimizing the sum of linear fractional functions and applications.

Bibliography 93

In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete

algorithms, pages 707–716. Society for Industrial and Applied Mathematics,

2000.

[21] Danny Z Chen, Ovidiu Daescu, Yang Dai, Naoki Katoh, Xiadong Wu, and

Jinhui Xu. Efficient algorithms and implementations for optimizing the sum

of linear fractional functions, with applications. Journal of Combinatorial

Optimization, 9(1):69–90, 2005.

[22] Danny Z Chen, Ovidiu Daescu, Xiaobo Sharon Hu, Xiaodong Wu, and Jinhui

Xu. Determining an optimal penetration among weighted regions in two and

three dimensions. Journal of Combinatorial Optimization, 5(1):59–79, 2001.

[23] Jae Chul Choi and Dennis L Bricker. Effectiveness of a geometric program-

ming algorithm for optimization of machining economics models. Computers

& operations research, 23(10):957–961, 1996.

[24] Jens Clausen. Branch and bound algorithms-principles and examples. De-

partment of Computer Science, University of Copenhagen, pages 1–30, 1999.

[25] ILOG CPLEX. High-performance software for mathematical programming

and optimization, 2005.

[26] Yang Dai, Jianming Shi, and Shouyang Wang. Conical partition algorithm for

maximizing the sum of dc ratios. Journal of Global Optimization, 31(2):253–

270, 2005.

[27] Karen Daniels. The restrict/evaluate/subdivide paradigm for translational

containment. In Fifth MSI Stony Brook Workshop on Computational Geom-

etry, 1995.

[28] George Bernard Dantzig. Linear programming and extensions. Princeton

university press, 1965.

[29] Anton Dekkers and Emile Aarts. Global optimization and simulated anneal-

ing. Mathematical programming, 50(1-3):367–393, 1991.

[30] Daniele Depetrini and Marco Locatelli. Approximation of linear fractional-

multiplicative problems. Mathmatical Programming, 128(1-2):437–443, 2011.

Bibliography 94

[31] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software

with performance profiles. Mathematical programming, 91(2):201–213, 2002.

[32] MLDM Eigen and Lo DeMaeyer. Relaxation methods. Techniques of organic

chemistry, 8(Part II), 1963.

[33] James E Falk and Susan W Palocsay. Image space analysis of generalized

fractional programs. Journal of Global Optimization, 4(1):63–88, 1994.

[34] Roland W Freund and Florian Jarre. Solving the sum-of-ratios problem by an

interior-point method. Journal of Global Optimization, 19(1):83–102, 2001.

[35] Tetsuya Fujie and Masakazu Kojima. Semidefinite programming relax-

ation for nonconvex quadratic programs. Journal of Global Optimization,

10(4):367–380, 1997.

[36] Jorg M Gablonsk. Modification of the DIRECT algorithm. PhD thesis, North

Carolina State University, Raleigh,North Carolina, 2001.

[37] Lianbo Gao, Shashi K Mishra, and Jianming Shi. An extension of branch-and-

bound algorithm for solving sum-of-nonlinear-ratios problem. Optimization

Letters, 6(2):221–230, 2012.

[38] Michael R Garey and David S Johnson. Computers and intractability: a

guide to np-completeness, 1979.

[39] M Grant and S Boyd. Cvx: Matlab software for disciplined convex program-

ming, version 1.21 (2011). Available: cvxr. com/cvx, 2010.

[40] Patrick JF Groenen and Willem J Heiser. The tunneling method for global op-

timization in multidimensional scaling. Psychometrika, 61(3):529–550, 1996.

[41] Christoph Helmberg. Semidefinite programming for combinatorial optimiza-

tion. Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000.

[42] Reiner Horst and Hoang Tuy. Global optimization: Deterministic approaches.

Springer, 1996.

[43] Yongwen Hu and Jianming Shi. Algorithms for the sum of linear ratios prob-

lem with lower dimension and related problems. Oral presentation at The

Bibliography 95

9th International Conference on Optimization: Techniques and Applications.

Taipei, Taiwan, December 2013.

[44] Yongwen Hu, Jianming Shi, and Shinya Watanabe. A new liner relaxation

algorithm for sum of linear ratios problem with lower dimension. Oral presen-

tation at Satellite Conference: The Fourth Conference on Nonlinear Analysis

and Optimization. Taipei, Taiwan, August 2014.

[45] Yongwen Hu, Jianming Shi, and Shinya Watanabe. A revised algorithm for

solving the sum of linear ratios problem with lower dimension using linear

relaxation. International Journal of Operations Research, 11(1):28–39, 2014.

[46] Hongwei Jiao, Qigao Feng, Peiping Shen, and Yunrui Guo. Global optimiza-

tion for sum of linear ratios problem using new pruning technique. Mathe-

matical Problems in Engineering, 2008:1–13, 2008.

[47] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian

optimization without the lipschitz constant. Journal of Optimization Theory

and Application, 79(1):157–181, 1993.

[48] Narendra Karmarkar. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the sixteenth annual ACM symposium on Theory of

computing, pages 302–311. ACM, 1984.

[49] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[50] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR

Computational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[51] Jong-Sung Kim and Ki-Sang Hong. A recursive camera resectioning tech-

nique for off-line video-based augmented reality. Pattern recognition letters,

28(7):842–853, 2007.

[52] Hiroshi Konno and Natsuroh Abe. Minimization of the sum of three linear

fractional functions. Journal of Global Optimization, 15(4):419–432, 1999.

[53] Hiroshi Konno and Kenji Fukaishi. A branch and bound algorithm for solving

low rank linear multiplicative and fractional programming problems. Journal

of Global Optimization, 18:283–299, 2000.

Bibliography 96

[54] Hiroshi Konno and Michimori Inori. Bond portfolio optimization by bilinear

fractional programming. Journal of the Operations Research Society of Japan,

32(2):143–158, 1989.

[55] Hiroshi Konno, Takahito Kuno, and Yasutoshi Yajima. Global minimization

of a generalized convex multiplicative function. Journal of Global Optimiza-

tion, 4:47–62, 1994.

[56] Hiroshi Konno and Hidetoshi Watanabe. Bond portfolio optimization prob-

lems and their applications to index tracking: a partial optimization ap-

proach. Journal of the Operations Research Society of Japan-Keiei Kagaku,

39(3):295–306, 1996.

[57] Hiroshi Konno, Yasutoshi Yajima, and Tomomi Matsui. Parametric simplex

algorithms for solving a special class of nonconvex minimization problems.

Journal of Global Optimization, 1(1):65–81, 1991.

[58] J Kostrowicki and L Piela. Diffusion equation method of global minimization:

Performance for standard test functions. Journal of Optimization Theory and

Applications, 69(2):269–284, 1991.

[59] Takahito Kuno. A branch-and-bound algorithm for maximizing the sum of

several linear ratios. Journal of Global Optimization, 22(1-4):155–174, 2002.

[60] Takahito Kuno and Toshiyuki Masaki. A practical but rigorous approach to

sum-of-ratios optimization in geometric applications. Computational Opti-

mization and Applications, 54(1):93–109, 2013.

[61] Jayanth Majhi, Ravi Janardan, Jörg Schwerdt, Michiel Smid, and Prosenjit

Gupta. Minimizing support structures and trapped area in two-dimensional

layered manufacturing. Computational Geometry, 12(3):241–267, 1999.

[62] Richard Kipp Martin. Large Scale Linear and Integer Optimization: A Unified

Approach: A Unified Approach. Springer, 1999.

[63] Tomomi Matsui. Np-hardness of linear multiplicative programming and re-

lated problems. Journal of Global Optimization, 9(2):113–119, 1996.

Bibliography 97

[64] R Garey Michael and David S Johnson. Computers and intractability: A

guide to the theory of np-completeness. WH Freeman & Co., San Francisco,

1979.

[65] Donald L Miller and Joseph F Pekny. Exact solution of large asymmetric

traveling salesman problems. Science, 251(4995):754–761, 1991.

[66] Gurobi Optimization. Gurobi optimizer reference manual. URL: http://www.

gurobi. com, 2012.

[67] Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one

negative eigenvalue is np-hard. Journal of Global Optimization, 1(1):15–22,

1991.

[68] J Pinter. Global optimization in action, volume 6 of nonconvex optimization

and its applications, 1995.

[69] Imre Polik. Sedumi. Download from http://sedumi. ie. lehigh. edu, 2010.

[70] Siegfried Schaible. A note on the sum of a linear and linear-fractional function.

Naval Research Logistics Quarterly, 24(4):691–693, 1977.

[71] Siegfried Schaible. Fractional programming: applications and algorithms.

European Journal of Operational Research, 7(2):111–120, 1981.

[72] Siegfried Schaible and Toshidide Ibaraki. Fractional programming. European

Journal of Operational Research, 12(4):325–338, 1983.

[73] Siegfried Schaible and Jianming Shi. Fractional programming: the sum-of-

ratios case. Optimization Methods and Software, 2(18):219–229, 2003.

[74] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency,

volume 24. Springer, 2003.

[75] AE Sepulveda and L Epstein. The repulsion algorithm, a new multistart

method for global optimization. Structural optimization, 11(3-4):145–152,

1996.

[76] Hanif D Sherali. Rlt: A unified approach for discrete and continuous noncon-

vex optimization. Annals of Operations Research, 149(1):185–193, 2007.

Bibliography 98

[77] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer

and Systems Sciences, 25(6):1–11, 1987.

[78] NZ Shor. Dual quadratic estimates in polynomial and boolean programming.

Annals of Operations Research, 25(1):163–168, 1990.

[79] Christopher C Skiscim and Susan W Palocsay. Minimum spanning trees with

sums of ratios. Journal of Global Optimization, 19:103–120, 2001.

[80] IM Stancu-Minasian. Fractional programming. Springer, 1997.

[81] Said F Tantawy. A new method for solving linear fractional programming

problems. Australian Journal of Basic and Applied Sciences, 1(2):105–108,

2007.

[82] Tim Van Voorhis. A global optimization algorithm using lagrangian under-

estimates and the interval newton method. Journal of Global Optimization,

24(3):349–370, 2002.

[83] RJ Vanderbei. Linear programming: foundations and extensions, 1998.

[84] Stephen A Vavasis. Quadratic programming is in np. Information Processing

Letters, 36(2):73–77, 1990.

[85] Henry Wolkowicz. Semidefinite and lagrangian relaxations for hard combi-

natorial problems. In System Modelling and Optimization, pages 269–309.

Springer, 2000.

[86] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of

semidefinite programming: theory, algorithms, and applications, volume 27.

Springer, 2000.

[87] R Yamamoto and H Konno. An efficient algorithm for solving convex–convex

quadratic fractional programs. Journal of Optimization Theory and Applica-

tions, 133(2):241–255, 2007.

[88] Wang Yanjun, Shen Peiping, and Liang Zhian. A branch-and-bound algorithm

to globally solve the sum of several linear ratios. Applied Mathematics and

Computation, 168(1):89–101, 2005.

Bibliography 99

[89] Y Zhang. Lipsol: a matlab toolkit for linear programming. Department

of Mathematics and Statistics, University of Maryland, Baltimore County,

Maryland, 1995.

