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Abstract 

Mobile robots, which have been developed for several decades, have been applied widely in various 

fields. One promising application is environmental surveys of vast areas, which require precise location 

and orientation control. In this research, the two-wheeled and four-wheeled mobile robot are objects of 

study. The path-generating regulator (PGR) was extended to track the arc passage and converge to the 

origin with steering angle saturation.  

The PGR, which is a control method for robots so as to orient its heading toward the tangential 

direction of one of the curves belonging to the family of path functions, is applied to navigation problem 

for two-wheeled robot originally. Driving environments for robots are usually roads, streets, passages, 

and indoor. These tracks can be seen as consist of straight lines and arcs. In the case of small interval, 

arc can be regarded as straight line approximately, therefore we extended the PGR to drive the robot 

move along arc passage based on the theory that PGR along straight passage. In addition, the adjustable 

look-ahead method is proposed to improve the robot trajectory convergence property to the target arc. 

The effectiveness is proved trough MATLAB simulations on both the comparisons with the PGR and 

the improved PGR with adjustable look-ahead method. The results of numerical simulations show that 

the adjustable look-ahead method has better convergence property and stronger capacity of resisting 

disturbance. 

Another focus of this work analyzes the influence of steering angle saturation to the convergent 

property in the PGR under the feedback gain switching strategy for car-like robots. The PGR has been 

extended to car-like robots. Moreover, its convergent region has been expanded by the feedback gain 

switching strategy. However, under this strategy, when the robot restarts after the feedback gain 

switches, the command of the steering angle tends to be close to ±π/2 rad, which might exceed the 

maximum steering angle. This phenomenon causes steering angle saturation. The robot then drives 

along the minimum turning circle. In this paper, the convergent property of the robot under steering 

angle saturation is investigated. Results show that the convergent property is related strongly to the 

number of singular points, which depends on the center location of the minimum turning circle. The 

convergent properties at different locations are clarified through region division. An extended feedback 

gain switching strategy method is proposed to change the convergent property in the specific region. 

Based on simulation and experiment results, we summarize the convergent property related to the 

region and verify the proposed method. 



 

 

論文要旨 

車両型移動ロボットはこの数十年間研究開発が進み、様々な分野に応用されている．そ

の有望な応用の一つに，広大なエリアの環境調査がある．環境調査の用途では正確な位置座

標および方位角の制御が必要であるが，一般の車両は非ホロノミック拘束を持つためそのよ

うな制御が難しいという側面がある．本研究は二輪車両型と四輪車両型の移動ロボットを対

象とする．論文の前段では，経路生成形レギュレータ(以下 PGR と呼ぶ) を拡張し，二輪車

輪型の移動ロボットを円/弧通路に追従させて走行させる手法について述べる．論文の後段で

は，四輪車両用 PGR を操舵角飽和がある場合にも適用できるように，原点への収束特性が分

析することで得た新たな知見について論じる． 

PGR は，運動制御の目的が達成できる経路関数群をあらかじめ用意しておき，移動ロボ

ットはその経路関数一つに原点へ収束させるという手法である．PGR はその後，直線経路へ

の追従問題に拡張された．ロボットの走行環境は道路、廊下および屋内であるが．その走行

経路は多くの直線と円弧で構成される．そこで，PGR を円弧経路への追従問題に拡張するこ

とで，その適用範囲を広げることができる．ロボットの走行時，時間間隔がとても短い場合

には、円弧を直線経路と見なすことができる．したがって，円弧上にその瞬間の局所座標を

設定し，直線経路に沿う PGR 制御を逐次適用することで，円弧経路追従ができると考えられ

る．これを二輪車両型ロボットに適用しシミュレーションにより有効性を確認した．さらに、

目標円弧への経路追従性を改善するために、可調整先読みという手法を提案した．改善した

PGR の特性を MATLAB でシミュレーションした結果，可調整先読みを行うことで，目標円

弧追従特性が向上し，外乱に対しても強い特性を持っていることを示した． 

次に，四輪車両型 PGR の操舵角飽和問題について，原点への収束特性について解析し

た．PGR は前輪操舵後輪駆動の四輪車両型移動ロボット用に拡張され，さらに，制御則に内

在する特異点問題を，フィードバックゲイン切替によって回避する方法が提案されている．

しかし、この方法の下では、フィードバックゲインを切り替えて，ロボットが走行を再開す

る際に、操舵角の指令値は±π/2[rad]になる．この時，指令値がロボットの最大操舵角を超

過するため，操舵角が飽和し、ロボットは最小旋回円に沿って走行することになる．この論

文では、操舵角飽和状態のロボットの収束特性を考察した．その結果、最小旋回円上の特異

点の数と収束特性に強く関係があることを示す、特異点の数は最小の旋回円の中心位置に依

存する．異なる位置での収束特性は領域を分けることによって明確にされる．最後に、特定

領域の収束特性を改善するために、新たなフィードバックゲイン切替方法を提案した．さら

にシミュレーションと実験結果に基づいて、収束特性の改善を確認した．
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1.1 Research Background 

Nonholonomic mobile robots have constraints imposed on the motion that are not integrable, i.e., 

the constraints cannot be written as time derivatives of some function of the generalized coordinates. 

The position control of nonholonomic mobile robots has been an important class of control problems. 

In recently years, a variety of places are making environment surveys. The surveyed areas are 

generally very wide, if surveyed by manpower, it will waste a lot of human capital and time. Moreover, 

some areas have the gas that maybe presents a hazard to investigator because the gas can explode or 

burn. For solved these problems, the robot was considered to using for environment survey. The 

purpose of this research is for the environment survey in landfill with an autonomous car-like robot.  

Shown in Fig. 1.1, Bacteria digest these organic wastes and produce methane gas and carbon 

dioxide as natural byproducts which were named LFG. This presents a hazard because the methane can 

explode or burn. So, the landfill gas must be removed. To do this, a series of pipes are embedded within 

the landfill to collect the gas. In some landfills, this gas is vented or burned.  

Figure 1.2 is a landfill. Many points are LFG monitoring objects at the surrounding the landfill. If 

we are motioning these points by manpower, it will be spent a lot of human capital, time and LFG may 

be harmful. As the result, an on-site LFG monitoring system was proposed based on survey robot. 

Shown in Fig. 1.3, a monitoring pipe stands in the landfill, the robot equipped with a LFG monitoring 

sensor in the arm. When the survey robot closes to the object pipe, it outspreads the arm, puts the LFG 

monitoring sensor into the pipes, to collect the gas information. After the survey robot was finished in 

an object, go to the next object, until finished motioning the all objects. In order to verify the feasibility 

of solving the problem in PGR algorithm, the simulation and experiment was executed in robot car. 

Robot Robot

Waste Water

Gas

bacteria

Sensor

 

Fig. 1. 1: The environment survey robot work in landfill 
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Fig. 1. 2: A landfill 

 

Fig. 1. 3: The environment survey robot 

1.2 Nonholonomic constraints mobile robots 

Nonholonomic systems are characterized by constraint equations involving the time derivatives of 

the system configuration variables. These equations are non integrable. They typically arise when the 

system has less controls than configuration variables. For instance a car-like robot has two controls 

(linear and angular velocities) while it moves in a 3-dimensional configuration space. As a consequence, 

any path in the configuration space does not necessarily correspond to a feasible path for the system. 

This is basically why the purely geometric techniques developed in motion planning for holonomic 

systems do not apply directly to nonholonomic ones. 

We denote by A the robot and W its workspace. A configuration of A is specification of the position 

of every point in A with respect to a Cartesian frame embedded in W. The configuration space of A is 

the space, denoted by C, of all the possible configurations of A. the configuration space of a mechanical 

system made of rigid bodies is a smooth manifold. For instance, the configuration space of a two-

dimensional rigid body translating and rotating in W = R2 is C = R2*S1, where S1 denotes the unit circle. 

In virtually any practical situation, the range of positions reachable by the robot’s bodies can be 

bounded, make C into a compact manifold. 
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In the following, we will represent a configuration q of A by a list of n parameters, (q1, q2, …, qn), 

where n is the dimension of C. This representation corresponds to defining an atlas of C. Each 

configuration q belongs to at least one neighborhood covered by a chart of the atlas. The parameters 

q1, q2, …, qn are the coordinates of q. These parameters are also called generalized coordinates of A. 

For instance, we will represent the configuration of a car-like robot by q = (Xr, Yr, θ), where Xr and Yr 

are the coordinates of the midpoint between the two rear wheels of the car in Cartesian frame embedded 

in W and θ is the orientation of the main axis of the robot relatively to the x axis of this Cartesian frame. 

Obviously, there is not a unique set of generalized coordinates for a given robot. By definition, the 

various charts put on a smooth manifold are C-related, which allows to extend differential properties 

established in a chart.  

Now suppose that a scalar constraint of the form: 

F(q, t) = 0        (1-1) 

With 𝑞 ∈ 𝐶 and t denoting time, applies to the motion of A. Let us further assume that F is smooth 

with non-zero derivative. Then, in theory one could use the equation to solve for one of generalized 

coordinates in terms of the other coordinates and time. Thus, equation (1-1) defines a (n-1)-dimensional 

submanifold of C. this submanifold in fact the actual configuration space of A and then n-1 remaining 

coordinates its actual generalized coordinates. Constraint (1-1) is called a holonomic equality constraint. 

More generally, there may be k constraints of the form (1-1). If they are independent, i.e., their Jacobian 

matrix has full rank, they determine a (n - k) - dimensional submanifold of C, which is the actual 

configuration space of A. 

A constaint of form: 

F(q, t) < 0 or F(q, t) ≤ 0 

Where F is smooth with non-zero derivative, is a holomomic inequality constraint. It typically acts 

as a mechanical stop or an obstacle. It simply determines a submanifold of C having the same dimension 

as C. 

Constraint (1-1) is only a kinematic constraint of some sort. Now, suppose that a scalar constraint 

of the form: 

𝐺(𝑞, 𝑞̇, 𝑡) = 0        (1-2) 

applies to the motion of A, with 𝑞̇ ∈ 𝑇𝑞(𝐶), the tangent space of C at q. the pair (𝑞, 𝑞̇) belongs to 

TB(C), the tangent bundle associated with the manifold C. the tangent space represents the space of the 

velocities of A. the tangent bundle is also called the phase space in physics and the state space in control 

theory. The tangent space of a smooth manifold is a vector space of the same dimension as the manifold. 

Hence, 𝑇𝑞(𝐶) has dimension n for every 𝑞 ∈ 𝐶. The tangent bundle TB(C) is a smooth manifold of 

dimension 2n. 

A kinematic constraint of the form (1-2) is holonomic if it is integrable, i.e. 𝑞̇ can be eliminated 

and equation (1-2) rewritten in the form (1-1). Otherwise, the constraint is called a nonholonomic 

equality constraint. As we will see below, a nonholonomic equality constraint restricts the space of 

velocities achievable by A at any configuration q to a (n-1)-dimensional linear subspace of 𝑇𝑞(𝐶), 

without affecting the dimension of the configuration space. If there are k independent nonholonomic 

equality constraints of the form (1-2), the space of achievable velocities is a subspace of 𝑇𝑞(𝐶) of 
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dimension n-k. 

A constraint of the form: 

𝐺(𝑞, 𝑞̇, 𝑡) < 0 or 𝐺(𝑞, 𝑞̇, 𝑡) ≤ 0 

where G is not integrable, is a nonholonomic inequality constraint. It restricts the set of achievable 

velocities at any configuration q to a subset of 𝑇𝑞(𝐶)  having the same dimension as 𝑇𝑞(𝐶) . A 

constraint bounding the steering angle of a car-like robot is a typical nonholonomic inequality 

constraint. 

A nonholonomic constraint is generally caused by a rolling contact between two rigid bodies. It 

expresses that the relative velocity of the two points of contact is zero. When the motion in contact 

combines rolling and sliding, the expression, which depends on the friction coefficient of the two bodies, 

is nonlinear. When there is no sliding, the nonholonomic constraint is linear in 𝑞̇. The second case, 

although less general than the first, is much simpler and quite widespread in practice. 

In this research, the two kinds of nonholonomic mobile robots as the research projects, which are 

two-wheeled mobile robots and four-wheeled car-like robots. 

1.3 Previous Research 

1.3.1 Previous Research on Nonholonomic Mobile Robots Control 

Nonholonomic systems cannot be applied to methods of linear control theory, and they are not 

transformable into linear control problems. Due to both their richness and hardness, such nonlinear 

control problems have motivated a large number of researches involving various techniques of 

automatic control. Another difficulty in controlling nonholonomic mobile robots is that in the real 

world there are uncertainties in their modeling. Taking into account intrinsic characteristics of mobile 

robots such as actual vehicle dynamics, inertia and power limits of actuators and localization errors, 

their dynamic equations could not be described as a simplified mathematical model. A survey of recent 

developments in control of nonholonomic systems is described in [2]. To the authors’ knowledge, the 

problem of dealing with model uncertainties is one of research problems for nonholonomic systems 

that require much attention but have yet to be extensively studied. Among previous researches, Jiang 

and Pomet [3, 4] applied back stepping technique to the adaptive control of nonholonomic systems 

with unknown parameters. A controller robust against localization errors of nonholonomic mobile 

robots was proposed by Hamel et al. [5], which considered the parking problem of mobile robots. In 

[6], a robust path-following controller for mobile robots was proposed guaranteeing exponential 

stability.  

Nonholonomic mobile robots, which have been developed for several decades, have been applied 

widely in various fields. It is known that stabilization of nonholonomic wheeled mobile robots with 

restricted mobility to an equilibrium state is in general quite difficult. A well-known work of Brockett 

identifies nonholonomic systems as a class of systems that cannot be stabilized via smooth state 

feedback. It implies that problems of controlling  

One promising application is environmental surveys of vast areas [7], which require precise 

location and orientation control. Car-like robots are nonholonomic systems. They are characterized by 
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constraint equations involving the time derivatives of the system configuration variables. It is difficult 

for the robot to converge to the target state by deriving a control law. Some earlier reports [24, 29, 31, 

33] have proposed approaches to control the nonholonomic systems with closed loop control. Most 

such approaches design the feedback control system by converting variables such as input conversion 

and coordinate transformation of the mathematical model to a format called Chained form. It is 

noteworthy that the conversion variables can not be defined globally in such approaches. As a result, 

the feedback control law can not be defined globally either. 

As described in this paper, the Path-generating Regulator (PGR) algorithm is applied to robot 

control [15]. Unlike other methods, the PGR is neither the coordinate transformation nor the input 

transformation. It is a control method that carries out asymptotic convergence of nonholonomic mobile 

robots to a given path function group. Its member functions pass through the origin. The gradient at the 

origin is equal to zero. This method has been extended to car-like robots. The convergent regions have 

been discussed [16]. The convergent regions are surrounded by singular points. If the robot starts from 

outside of the convergent regions, then it reaches the singular points on the way to the origin. At that 

instant, the speed command of the PGR becomes zero. To solve the limitation on singular points, the 

feedback gain switching strategy has been proposed [34]. Under this strategy, after the robot stops at 

the singular point, a new feedback gain is applied to shift the singular surfaces from the original position. 

However, when the robot restarts after the feedback gain switches, the command of the steering angle 

tends to be close to ±π/2 rad, which might exceed the maximum steering angle. This phenomenon 

causes steering angle saturation. In some cases, it might happen that the robot intersects with the new 

singular surface. 

1.3.2 Previous Research on Arc Tracking 

Over the last few years, the development on robots has been paid close attention. There are some 

research projects such as cleaner robot of iRobot (IRBT) [8], office robot of Double Robotics [9], 

remote-presence robot of Mobile Access Consultation Services [10], and so on. These two-wheeled 

robots have common characteristic that move along the given route. So path tracking serves as an 

essential task for such autonomous robots.  

For arc tracking problem, many approaches have been proposed, a dual estimation algorithm 

estimated the robot’s position and wheel slips based on the Kalman filtering [11], but it is necessary to 

have previous knowledge about the system and measuring devices. A block iterative method known as 

Four Point-Explicit Group via Nine-Point Laplacian (4EG9L) was used for solving robot path planning 

problem [12]. Most such approaches design the feedback control system by converting variables such 

as input conversion of the mathematical model to a format called Chained form. It is noteworthy that 

the conversion variables can not be defined globally in such approaches.  

Compared with the other papers, the originality of this paper is proposed the PGR and improved 

PGR with adjustable look-ahead method to track the arc for two-wheeled robot. It is a control method 

that carries out asymptotic convergence of nonholonomic mobile robots to a given path function group.  

Two-wheeled robots belong to nonholonomic constraints system [13], which make it difficult for 

robots to converge to the target state by deriving a control law [14]. In one of our previous works, we 
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proposed the path-generating regulator (PGR) method, which controls the robot to move forward the 

tangential direction of the curve which passes through the robot current position among the family of 

path functions [15-17]. This method allows us to make the robot stop at the origin of the rectangular 

coordinate system. Simultaneously, the global asymptotic stability of PGR has been proven. Because 

driving environments for robots are usually roads, streets, passages, and ridges. These tracks can be 

seen as the consist of straight lines and arcs. Recently, the PGR has been extended to path tracking 

problem along straight passage for two-wheeled robots [18] and the validity has been verified by 

simulations and experiments. Therefore, we further investigate the PGR and the improved PGR with 

adjustable look-ahead algorithm to track the arc passage in this paper. 

1.3.3 Previous Research on the Influence of Steering Angle Saturation to Robot Control  

For the influence of steering angle saturation to robot control, some approaches have been proposed. 

For instance, on linear sliding mode control for an unmanned agricultural tractor has been analyzed in 

the presence of sliding and control saturation [23]. Semiglobal stabilization for nonholonomic mobile 

robots has been discussed based on dynamic feedback with inputs saturation [27]. The influence to the 

multi-axles driving for wheeled mobile robots with geometry and kinematical constraint control has 

been addressed [29]. However, these approaches are not incorporated directly into the PGR.  

1.4 Organization of Paper 

This study investigates the extended PGR to track arc passage and the improved PGR with the 

adjustable look-ahead method first, then we investigates the influence of steering angle saturation to 

the convergent property in the PGR under the feedback gain switching strategy for car-like robots, and 

clarifies the convergent properties at different locations through region division. Moreover, we propose 

a method of extension to feedback gain switching to change the convergent property in the specific 

region. 

The remainder of this paper is organized as follows. Chapter 2 reviews the PGR converge to the 

origin and along straight passage for two-wheeled robots. In Chapter 3, we propose Extended PGR to 

track arc passage and the improved PGR with the adjustable look-ahead method. This is the first main 

issue of this paper. As explained in Chapter 4, the PGR is extended for car-like robot converge to 

origin.  Chapter 5 introduce the singular points in the extend PGR and proposed the solving method of 

feedback gain switching strategy. The second main issue of this paper is Chapter 6 that analysis the 

influence of steering angle saturation based on the minimum turning circle. The simulation and 

experiment are conducted and discussed based on the analysis. Concluding remarks are presented in 

Chapter 7. 
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Chapter 2 

The Original PGR Control of Two-wheeled Mobile Robot 
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2.1 The PGR Converge to the Origin (PGR-O) for Two-wheeled Robots 

2.1.1 Mathematic Model  

u2

u1

(xr, yr)

xg

yg

ϕ

o

 

Fig. 2. 1: Two-wheeled robot mathematic model 

In this research, the mathematic model shown in Fig. 2.1. The kinematic variables of the two- 

wheeled robot are as follows: 𝑥𝑟 and 𝑦𝑟 are the coordinates of the robot in the world reference frame. 

The translational velocity of the center of the robot 𝑢1, is related to the velocity in the 𝑥 and 𝑦 

directions, 𝑥̇𝑟 and 𝑦̇𝑟, through (2-1) and (2-2), where 𝜃 is the orientation angle of the robot with 

respect to the reference frame. The steering angle of the robot 𝑢2 , is the change rate 𝜃̇  of the 

orientation angle, through (2-3). 

𝑥̇𝑟 = 𝑢1𝑐𝑜𝑠𝜙         (2-1) 

𝑦̇𝑟 = 𝑢1𝑠𝑖𝑛𝜙           (2-2) 

𝜃̇ = 𝑢2        (2-3)  

Path tracking serves as an essential task for autonomous mobile robots. To solve the nonholonomic 

problem of mobile robot, A control method called Path-generating Regulator or PGR in short has been 

proposed which designs a nonlinear regulator carrying out asymptotic convergence to a given trajectory 

family. It is a method aimed at controlling mobile robot to move in the tangential direction of the path 

which passes through the current position of the robot among the path group [16]. The purpose is to 

make the robot stop at the origin of the rectangular coordinate system fixed to the ground. And the 

global asymptotic stability of this method for two-wheeled mobile robots has been proved [17]. 

The control target is to make the robot start at random initial state (x, y, θ) and converge at the 

origin (0, 0, 0).  

Here we set the target angle as θr and we will have the following function.  

 ( , ) : (0,0) 0r r rx y           (2-4) 

We use the θr to control the angle of robot when it moves to the origin. The deviation between target 

angle θr and the actual angle θ is set as e. 
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re            (2-5) 

We use e to set up the following first order system in which λ > 0. 

e           (2-6) 

The following expression can be obtained based on (2-3) and (2-6). 

2
r r

re u x y
x y

 
 

 
    

 
      (2-7) 

Therefore, we set u2 as follows to satisfy the expression (2-6). 

2
r ru x y

x y

 


 
   

 
      (2-8) 

According to (2-1), (2-2) and (2-8), we will get the following expression of u2. 

2 1cos( ) sin( )r r
r ru e e e u

x y

 
  

  
      

  
    (2-9) 

We set up the error system by rewriting the mathematical model of two-wheeled mobile robot with 

deviation. 

1

1

cos( )

sin( )

r

r

x u e

y u e

e e







 

 

 

       (2-10) 

To study the stability of this control method, a candidate of Lyapunov function can be set as follows.  

2 2 2

1 2

1
( )

2
V e x y           (2-11) 

Here, λ1, λ2 > 0. The time derivative can be obtained as follows.  

2

1 2 1 2 1cos( ) sin( )r r

t

d
V ee xx yy e x e y e u

d
                 (2-12) 

Here, if we set u1 as follows, 

1 1 2cos( ) sin( )r ru x e y e             (2-13) 

We will get the following expression. 


22

1 2cos( ) sin( )r r

t

d
V e x e y e

d
              (2-14) 

From the expression (2-14), we can know that it will not be positive definitely beside origin. Thus, (2-

11) can be used as Lyapunov function. We choose the following function as the path function.  

ny ax         (2-15) 

Here, n > 1, a is random constant. Then we can get its partial differential. 

1ndy
anx

dx

         (2-16) 

After some calculations, we can have the target angle θr. 
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tan r

ny

x
          (2-17) 

Finally, the expressions of control law can be listed as follows. 

1 1 2( cos sin )u x y            (2-18) 

1

2 12 2 2

( sin cos )
tan ( )

ny n x y
u u

x x n y

 
   

    


    (2-19) 

2.1.2 Simulations 

The parameters of control law are set to n=2, λ=4, λ1=2, λ2=1. We will change the initial states of the 

robot from 1 to 5 and in state 6 we will only change the value of n. 

 

Fig. 2. 2: Simulation results of two wheeled mobile robot 

We can see from the results of simulations in Fig. 2.2 that in all the simulations the robot will 

finally converge at the origin. When the values of n change, the slope of trajectories will also change. 

What’s more, when all the parameters are set to the same, the generated trajectories can be different 

when the initial states are different. For example, as explained before, we use y = ax2 as path function. 

In state 2, a is set to be -1.1092. In state 3, it is set to be -0.1304 and 0.1470 in case 4. In these examples, 

the robot will move forward first then move backward to the origin. 

2.1.3 Experiments 

The proposed conventional path-generating regulator is used to carry on experiment on the two 

wheeled mobile robot in the Fig. 2.3. The distance between two wheels is 71 mm and the radius of the 

wheel is 27 mm. An infrared LED is equipped on the top of the robot and a PSD is used to get the 

absolute position of the robot.  
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Fig. 2. 3: Two wheeled mobile Robot 

  

Fig. 2. 4: Result of the experiment for two wheeled mobile robot 

One example of experiments is shown in Fig. 2.4. The initial state is set to be (x0, y0, θ0) = (- 0.7[m], 

0.3[m], π[rad]). And the parameters are set to be n=2, λ=0.1, λ1=0.1, λ2=0.1. We can see from the figure 

that the robot moved backward first until x was around -0.5 m, then it turned to move forward and 

converged at the origin. 
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2.2 The PGR along Straight Passage (PGR-S) for Two-wheeled Robots 

The PGR was used to solve the path tracking problem along straight passage for two-wheeled 

robots. To illustrate this method clearly, we establish the robot’s mathematic model, definite the path 

functions and carry out necessary mathematical calculation, and then deduce the steering angle and the 

moving speed formulas. 

2.2.1 Path Functions for Straight Passage 

The family of path functions for a half-side of straight passage is defined as the following formula 

from reference [11].  

x

y
W1

-W2

 

Fig. 2. 5: The coordinate system and the path functions for straight passage. The robot drives 

toward the positive direction of the x-axis. The horizontal lines 𝑦 = 𝑊1 and 𝑦 = −𝑊2  

represent the boundary of passage, such as walls. 

𝑦 =

{
 
 

 
 𝑊                           𝑥 <

−𝜋+𝑏

𝑎
𝑊

2
(1 − 𝑐𝑜𝑠(𝑎𝑥 − 𝑏))

𝜋+𝑏

𝑎
< 𝑥 <

𝑏

𝑎

0                            𝑥 >
𝑏

𝑎

     (2-20) 

where 𝑎 is a positive constant which adjusts the slope of the curve, 𝑏 is a translation value of path 

functions family, and 𝑊 is the half-width of the passage. Instead of 𝑊, we take 𝑊1 as the left half 

width, i.e., in the domain of 𝑦 >  0, 𝑊2 as the right half width, i.e., in the domain of 𝑦 <  0. When 

𝑦 is negative, the sign of the right side of (2-20) needs to be changed. The graph of the functions is 

shown in Fig. 2.5. The robot drives through the passage toward the positive direction of the 𝑥-axis. 

𝜙𝑟 can be expressed as (5). 

𝜙𝑟 = {
𝑡𝑎𝑛−1(−𝑎√(𝑊1 − 𝑦)𝑦) 𝑦 ≥ 0

𝑡𝑎𝑛−1(𝑎√−(𝑊2 + 𝑦)𝑦) 𝑦 < 0
     (2-21) 

Note that 𝜙𝑟 is calculated only by the 𝑦 coordinate in the region −𝑊2 ≤ 𝑦 ≤ 𝑊1. The partial 

derivative of 𝜙𝑟 with respect to 𝑦 is calculated as follows. 

𝜕𝜙𝑟

𝜕𝑦
= {

−
𝑎(𝑊1−2𝑦)√(𝑊1−𝑦)𝑦

2𝑦(1+𝑎2(𝑊1−𝑦)𝑦)(𝑊1−𝑦)
𝑦 ≥ 0

𝑎(𝑊2+2𝑦)√−(𝑊2+𝑦)𝑦

2𝑦(1−𝑎2(𝑊2+𝑦)𝑦)(𝑊2+𝑦)
𝑦 < 0

     (2-22) 
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2.2.2 Steering Angle u2 

The deviation between the target angle 𝜙𝑟 and the actual angle 𝜙 is set as 𝛿. 

𝛿 = 𝜙 − 𝜙𝑟        (2-23) 

Under the control of 𝑢2, 𝛿 obeys the following derivative equation of the first order delay system. 

𝛿̇  = −𝜆𝛿        (2-24) 

where 𝜆  is a coefficient constant, when 𝛿  converges to 0, 𝜙  approaches 𝜙𝑟  simultaneously. 

According to (3), (6) and (8), we obtain 𝑢2 for straight passage as follows. 

 𝑢2 = {
𝑔1(𝑦, 𝜙) 0 < 𝑦 < 𝑊1 − 𝜀

𝑔2(𝑦, 𝜙) −𝑊2 + 𝜀 < 𝑦 < 0
     (2-25) 

𝑔1(𝑦, 𝜙) = −𝜆 (𝜙 + 𝑡𝑎𝑛−1(𝑎√(𝑊1 − 𝑦)𝑦)) −
𝑎(𝑊1−2𝑦)√(𝑊1−𝑦)𝑦

2𝑦(1+𝑎2(𝑊1−𝑦)𝑦)(𝑊1−𝑦)
𝑢1𝑠𝑖𝑛𝜙 (2-26) 

 𝑔2(𝑦, 𝜙) = −𝜆 (𝜙 − 𝑡𝑎𝑛−1(𝑎√−(𝑊2 + 𝑦)𝑦)) +
𝑎(𝑊2+2𝑦)√−(𝑊2+𝑦)𝑦

2𝑦(1−𝑎2(𝑊2+𝑦)𝑦)(𝑊2+𝑦)
𝑢1𝑠𝑖𝑛𝜙 (2-27) 

where 𝜀 is a small positive constant. To avoid division by zero in computer calculation of (10) and 

(11), when the value of 𝑦 is around 0, 𝑊1 or 𝑊2 and the speed command 𝑢1 need to be nonzero 

value. 

2.2.3 Translational Velocity u1 

The 𝑢1 is derived by Lyapunov’s stability method. A hybrid continuous control algorithm in (12), 

of which the second part puts more emphasis on advance close to the 𝑥 -axis and the first part 

guarantees stability in other location, is applied. The control algorithm can be expressed as follows. 

𝑢1 = −(1 − 𝐾𝑚𝑒−𝑐𝑚𝑦2
)
1−𝑒−𝑐𝑦𝑠𝑖𝑛𝜙

1+𝑒−𝑐𝑦𝑠𝑖𝑛𝜙 𝑉𝑚 + 𝐾𝑚𝑒−𝑐𝑚𝑦2
𝑉𝑚    (2-28) 

where, 𝐾𝑚𝑒−𝑐𝑚𝑦2
 is the modification coefficient used to adjust the emphasis between two parts. 𝐾𝑚 

is within the limit of 0 ≤ 𝐾𝑚 ≤ 1 and 𝑒−𝑐𝑚𝑦2
 will be equal to 1 on the 𝑥-axis and close to 0 away 

from the 𝑥-axis. 𝑐𝑚 is an adjustable parameter and 𝑐𝑚 > 0.  
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Chapter 3 

The Extended PGR to Track the Arc Passage (PGR-A) for 

Two-wheeled Robots 
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3.1 The extended PGR to Track Arc Passage (PGR-A) 

In a small interval, arc can be seen as line approximately. The PGR along arc passage based on the 

theory of straight passage is proposed in this Section. 

γ

xg

yg

o

y0

x0

r

σ=1
c θ

(x(s), y(s))

 

Fig. 3. 1: The path of target arc 

As shown in Fig. 3.1, we set the target arc path functions as (3-1) and (3-2). 

𝑥(𝑠) = 𝑥0 + 𝑟𝑐𝑜𝑠 (𝜎
𝑠

𝑟
+ 𝛾)      (3-1) 

𝑦(𝑠) = 𝑦0 + 𝑟𝑠𝑖𝑛(𝜎
𝑠

𝑟
+ 𝛾)      (3-2) 

where s is the length of arc, 𝑟 is the radius of arc, 𝛾 is the inclination angle of arc. 𝑐(𝑥0, 𝑦0) is 

the center of arc. 𝜎 determines the move direction of arc, 𝜎 = 1 means counterclockwise direction, 

𝜎 = −1 means clockwise direction. 𝜃 is central angle, 0 < 𝜃 ≤ 2𝜋 and 𝜃 = 𝑠/𝑟. 
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o
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Fig. 3. 2: Global and local coordinate systems 

The global and local coordinate systems are shown in Fig. 3.2. 𝑜-𝑥𝑔𝑦𝑔 is the global coordinate 

system, 𝑝𝑙-𝑥𝑙𝑦𝑙 is the local coordinate system. (𝑥𝑟 , 𝑦𝑟 , 𝜙) is the pose of robot in the global coordinate 

system. 𝑐(𝑥0, 𝑦0) is the central point of arc. The angle between the line which passes through (𝑥𝑟 , 𝑦𝑟) 

and 𝑐(𝑥0, 𝑦0) and 𝑥-axis is name as 𝛼 that expressed as (3-3). The width of passage inside of the arc 

is 𝑊1 and 𝑊1 < 𝑟, the opposite side is 𝑊2.  
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𝛼 = 𝑡𝑎𝑛−1(
𝑦𝑟−𝑦0

𝑥𝑟−𝑥0
)       (3-3) 

The theory of PGR-S along straight passage can be used for arc passage in a small interval 𝑑𝑡 in 

the local coordinate system 𝑝𝑙-𝑥𝑙𝑦𝑙. In order to simplify computation, we select the intersection point 

𝑝𝑙 (𝑥𝑙 , 𝑦𝑙), expressed as (3-4), (3-5), the line through 𝑐(𝑥0, 𝑦0) and (𝑥𝑟 , 𝑦𝑟) with the arc as the origin 

of the local coordinate system. 𝑥𝑙-axis is the tangential direction of the arc, 𝑦𝑙-axis is the normal 

direction. 𝜇 means the rotation angle that the local coordinate system relatives to global coordinate 

system from (3-6).  

𝑥𝑙 = 𝑥0 + 𝑟𝑐𝑜𝑠α       (3-4) 

𝑦𝑙 = 𝑦0 + 𝑟𝑠𝑖𝑛α       (3-5) 

𝜇 =
𝜋

2
+ 𝛼        (3-6) 

Therefore, we can obtain the pose of robot (𝑥𝑟
′ , 𝑦𝑟

′, 𝜙′) in the local coordinate system. 

𝑥𝑟
′ = 𝑥𝑟 cos𝜇 + y𝑟sin𝜇 − 𝑥𝑙𝑐𝑜𝑠𝜇 − 𝑦𝑙𝑠𝑖𝑛𝜇     (3-7) 

𝑦𝑟
′ = −𝑥𝑟 sin 𝜇 + y𝑟cos𝜇 + 𝑥𝑙𝑠𝑖𝑛𝜇 − 𝑦𝑙𝑐𝑜𝑠𝜇     (3-8) 

𝜙′ = 𝜙 − 𝜇        (3-9) 

Establish global coordinate system o-xgyg

Establish local coordinate system pl-xlyl  

according to  (3-3)-(3-6)

PGR along x-axis in local coordinate system  in a time 

interval dt according to (2-25) and (2-28)

The robot moves to a new pose

that is converted  to global coordinate value 

according to the inverse transformation of (3-7)-(3-9)

Start

End

Reach goal
No

Yes

Transform robot pose to local coordinate  value

 (xr', yr', ϕ') according to (3-7)-(3-9)

  

Fig. 3. 3: Flaw chart under PGR-A along arc passage 



19 

The flow chart is shown in Fig. 3.3. We establish global coordinate system 𝑜-𝑥𝑔𝑦𝑔 and local 

coordinate system 𝑝𝑙 -𝑥𝑙𝑦𝑙  according to (3-3) - (3-6) firstly, Then the pose of robot (𝑥𝑟 , 𝑦𝑟 , 𝜙) is 

converted to the local coordinate value (𝑥𝑟
′ , 𝑦𝑟

′, 𝜙′) according to (3-7) - (3-9). Within the time interval 

𝑑𝑡, the PGR-S along x-axis of local coordinate system is to control robot and a new pose is obtained 

according to (2-25) and (2-28). Then the new pose of robot is converted to global coordinate value 

according the inverse transformation of (3-7) - (3-9). Finally, the robot judges whether the new location 

is the goal or not. If the new location is not the goal, the new local coordinate system is needed to 

establish based on the new robot pose and the center of arc. Program is running along this cycle process 

until the robot reaches the goal. 

3.2 The Improved PGR-A with the Adjustable Look-ahead Method 

The PGR-S is extended to drive the robot move along arc passage based on the straight passage 

theory in Section 3.1. The improved PGR-A with the adjustable look-ahead method is proposed to 

make the robot’s trajectory converge to the target arc. 
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Fig. 3. 4: Global and local coordinate systems for the improved PGR-A  

with the adjustable look-ahead method 

Global and local coordinate systems with the adjustable look-ahead method are shown in Fig. 3.4. 

The distance between the robot location (𝑥𝑟, 𝑦𝑟) and the center of the arc 𝑐(𝑥0, 𝑦0) is assumed as 𝑑 

in (3-10). The central angle between robot location and local coordinate origin is assumed as 𝛽 in (3-

11), which is named as adjustable look-ahead central angle, because 𝛽 will change if 𝑑 changes. 

𝑑 = √(𝑥𝑟 − 𝑥0)2 + (𝑦𝑟 − 𝑦0)2       (3-10) 

𝛽 = 𝑐𝑜𝑠−1 (
𝑟

𝑑
)         (3-11) 

The origin 𝑝𝑙
′(𝑥𝑙

′, 𝑦𝑙
′) which is described in (3-12), (3-13) in the new local coordinate system is the 

tangent point of the arc at the front of the robot location, whose tangent line passes through the (𝑥𝑟 , 𝑦𝑟). 

𝑥𝑙
′-axis is the tangential direction of the arc, 𝑦𝑙

′-axis is the normal direction. 𝜇′ means the rotation 

angle that the new local coordinate system relatives to the global coordinate system.  

𝑥𝑙
′ = 𝑥𝑟 + 𝑑𝑠𝑖𝑛𝛽𝑐𝑜𝑠 (

3𝜋

2
− 𝛽 − 𝛼)      (3-12) 
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𝑦𝑙
′ = 𝑦𝑟 + 𝑑𝑠𝑖𝑛𝛽𝑠𝑖𝑛 (

3𝜋

2
− 𝛽 − 𝛼)      (3-13) 

𝜇′ =
𝜋

2
+ 𝛼 + 𝛽        (3-14) 

The local coordinate system is established at the front of robot location and is adjusted with the 

change of 𝛽, so this method is named as adjustable look-ahead method. 

Establish global coordinate system  o-xgyg

Establish local coordinate system pl-xlyl 

 according to (3-3)-(3-6)

PGR along x-axis of the local coordinate system  in a time 

interval dt according to (2-25) and (2-28)

The robot moves to a new pose

that is converted  to global coordinate value

 according to the inverse transformation of (3-7)-(3-9)

Calculate the distance d from the robot new location 

to the center of circle  according to (3-10)

If d > r 

 Calculate the adjustable look-ahead 

central angle β according to (3-11)

No

Yes

End

Reach goal

Start

No

Yes

Transform robot pose to local coordinate value

 (xr', yr', ϕ') according to (3-7)-(3-9)

Establish new local coordinate system  

according to (3-12)-(3-14)
 

Fig. 3. 5: Flow chart under the improved PGR-A with the adjustable look-ahead  

method along arc passage 

The flow chart under the improved PGR-A with the adjustable look-ahead method along arc 

passage is shown in Fig. 3.5. The difference with the method in Section 3.1 is the introduction of 𝛽. 

When the robot’s new location is outside of target arc, i.e., 𝑑 > 𝑟, the program calculates 𝛽, then the 

new local coordinate system is established based on (3-12) - (3-14). Otherwise, when the robot’s new 
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location is inside of target arc, i.e., 𝑑 < 𝑟, the process is same with the flow chart in Fig. 3.3. 

3.3. Numerical Simulations 

To confirm the efficiency of the proposed PGR-A method in Section 3.1 and Section 3.2 for the 

robot’s path tracking along arc passage, the numerical simulations are performed with 

counterclockwise and clockwise in several aspects respectively.   

We investigate the influence of coefficient constant 𝜆 and the time interval 𝑑𝑡  to the robot’s 

trajectory. In addition, limited random disturbances are imposed to the inputs of velocity 𝑢1  and 

steering angle 𝑢2 to investigate the robustness of the two methods. The overall simulation results are 

discussed finally. In the simulation, the simulation time t is set separately as 40 seconds in arc passage 

and 50 seconds in the S-shaped passage, that is to say, when the simulation time t is equal to 40 seconds 

or 50 seconds, the robot receives a command of velocity u1=0 and steering angle u2=0 and stop. 

Table 3. 1: Default parameter values for all the numerical simulations. 

Parameters Values Unit 

𝑟 4 m 

𝑊1, 𝑊2 2.5 m 

𝑎 1 - 

𝜀 0.001 - 

𝑉𝑚 1 m/s 

𝑐 1 - 

𝑐𝑚 1 - 

𝑘𝑚 1 - 

𝛾 𝜋/4 rad 

𝜃 2𝜋 rad 

Initial condition (0,−1,− 𝜋/4) - 

The numerical simulations are performed along the counterclockwise and clockwise direction with 

the software MATLAB 7.11.0 (The MathWorks, Inc.). The default parameter values for the simulations 

are listed in Table 3. 1. In the simulation results, the red dashed line of (c) or (d) represents the target 

arc. The red cross represents the center of arc. The robot’s trajectories are shown in the 𝑥-𝑦 plain. 

Initial condition is designated by an icon with an arrow. The thick arrow represents the direction of the 

robot’s motion. 

3.3.1 The Influence of Coefficient Constant λ 

In the numerical simulation process, we only change the value of coefficient constant  𝜆, and keep 

the other parameters constant. The parameters are listed in Table 3. 2. 

The robot’s trajectories along the counterclockwise direction and control commands of PGR-A 

proposed in Section 3.1 at different λ values are depicted in Fig. 3.6. The value of λ is 0.2 for (a), 

0.5 for (b), and 0.9 for (c). As described in (8), 𝜆 is a coefficient constant for adjusting the response 

speed of 𝑢2, therefore, the trajecotry tends to converge the target circle if 𝜆 becomes large. It is found 
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Table 3. 2: Parameter values for numerical simulations with different coefficient constant. 

No. 𝜆 𝑑𝑡 t Color 

(a) 0.2 0.1s 40s green 

(b) 0.5 0.1s 40s magenta 

(c) 0.9 0.1s 40s blue 

 

 

Fig. 3. 6: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time response of 

control commands 𝑢1, 𝑢2 by the method in Section 3.1 at different values of λ, from (a) to (c). 

from the top of Fig. 3.6 that the convergence property is the best when 𝜆 is 0.9, but the trajectory 

doesn’t yet converge to the target arc.  

Figure 3.7 depicts the robot’s trajectories along the counterclockwise direction and control 

commands of the improved PGR-A with the adjustable look-ahead method at different 𝜆 values. The 

value of 𝜆 is 0.2 for (a), 0.5 for (b), and 0.9 for (c). It is observed from the top of Fig. 3.7 that even if 

𝜆 is large or small, the trajectories can converge to the target arc well, which indicates that the value 

of 𝜆 has no influence to the convergence property. The improved PGR-A with the adjustable look- 
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Fig. 3. 7: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time response of 

control commands 𝑢1, 𝑢2 by the PGR-A with the adjustable look- ahead method at different values  

of 𝜆, from (a) to (c). 

ahead method has improved the performance of path tracking along arc passage for robot. In the bottom 

two graphs, the values of 𝑢1 and 𝑢2 have small fluctuation after 5 seconds when 𝜆 is 0.5 and 0.9, 

respectively. The fluctuation range of 𝑢1 is 0.04 m/s when 𝜆 is 0.5, and 0.09 m/s when 𝜆 is 0.9. 

Because the fluctuation range is very little, it can be ignored. The fluctuation range of 𝑢2 is 0.3 rad 

when 𝜆 is 0.5, and 0.5 rad when 𝜆 is 0.9. It is considered that the fluctuation is caused by the local 

coordinate system changing constantly, and fluctuation range of 𝑢2 has proportional relation with 𝜆. 

The robot’s trajectories along the clockwise direction and control commands of PGR-A proposed 

in Section 3.1 at different λ values are depicted in Fig. 3.8. The value of λ is 0.2 for (a), 0.5 for (b), 

and 0.9 for (c). The results have the same properity with the trajectory along the counterclockwise 

direction in Fig. 3.6.  
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Fig. 3. 8: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time response of control 

commands 𝑢1, 𝑢2 by the method in Section 3.1 with clockwise at different values of λ,  

from (a) to (c). 

-8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

x (m)

y  
(m

)

T rajectory

0 10 20 30 40

0

0.5

1

Cont rol commands

t (sec)

u
1
 (

m
/s

)

0 10 20 30 40

-3

-2

-1

0

t (sec)

u
2
 (

ra
d
)

(a)
(b)
(c)
(d)

(a)
(b)
(c)

(a)
(b)
(c)



25 

 

 

Fig. 3. 9: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time response of control 

commands 𝑢1, 𝑢2 by the PGR-A with the adjustable look- ahead method at different values of 𝜆, 

from (a) to (c). 

Figure 3.9 depicts the robot’s trajectories along the clockwise direction and control commands of 

the improved PGR-A with the adjustable look-ahead method at different 𝜆 values. The value of 𝜆 is 

0.2 for (a), 0.5 for (b), and 0.9 for (c). it is the same with the results along the counterclockwise in Fig. 

3.7. It is observed from the top of Fig. 3.9 that even if 𝜆 is large or small, the trajectories can converge 

to the target arc well, which indicates that the value of 𝜆 has no influence to the convergence property 

in the improved PGR-A with the adjustable look-ahead method.  

3.3.2 The Influence of Time Intervals dt 

In this numerical simulation, three values of time interval 𝑑𝑡 are given. The parameters are listed 
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in Table 3. 3. 

The robot’s trajectories along the counterclockwise direction and control commands of PGR-A 

proposed in Section 3.1 at different time intervals 𝑑𝑡 are depicted in Fig. 3.10. The value of 𝑑𝑡 is 

0.1s for (a), 0.5s for (b), and 1s for (c). When the value of time interval 𝑑𝑡 becomes short, the move 

distance of the robot becomes short and the orientation is unchange. The results point out that the  

Table 3. 3: Parameter values for numerical simulations in different time intervals. 

No. 𝑑𝑡 𝜆 t Color 

(a) 0.1s 0.5 40s green 

(b) 0.5s 0.5 40s magenta 

(c) 1s 0.5 40s blue 

 

 

Fig. 3. 10: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time response of 

control commands 𝑢1, 𝑢2 by the method in Section 3.1 at different time interval values of 𝑑𝑡,  

from (a) to (c). 
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convergence property tends to be better when the time interval 𝑑𝑡 becomes shorter, but the trajectory 

isn’t able to converge to the target arc. The velocity 𝑢1 tends to be stable after 8 seconds. The steering 

angle 𝑢2 tends to be stable after 6 seconds. 

Figure 3.11 depicts the robot’s trajectories along the counterclockwise direction and control 

commands by improved PGR-A with the adjustable look-ahead method at different 𝑑𝑡 values. The 

value of 𝑑𝑡  is 0.1s for (a), 0.5s for (b), and 1s for (c). From the top of figure, we discover when the 

value of 𝑑𝑡 is 1s, the trajectory in the interval of 𝑑𝑡 tends to become straight line, the trajectory 

fluctuates around the target arc, which indicates that the convergence property becomes poor when 𝑑𝑡 

becomes long. If we chose the proper 𝑑𝑡 value, the robot trajectory is able to converge to the target 

arc perfectly. The bottom two graphs show that the fluctuation range of velocitiy  

 

 

Fig. 3. 11: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time response of 

control commands 𝑢1, 𝑢2 by improved PGR-A with the adjustable look-ahead method at different 

time interval values of 𝑑𝑡, from (a) to (c). 
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Fig. 3. 12: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time response of control 

commands 𝑢1, 𝑢2 by the method in Section 3.1 at different time interval values of 𝑑𝑡,  

from (a) to (c). 

𝑢1 tends to be wide when the value of 𝑑𝑡  becomes long. The steering angles 𝑢2  have the same 

fluctuation range with the different values of 𝑑𝑡, but the fluctuation period tends to be long when 𝑑𝑡 

becomes long. 

The robot’s trajectories along the clockwise direction and control commands of PGR-A proposed 

in Section 3.1 at different time intervals 𝑑𝑡 are depicted in Fig. 3.12. The value of 𝑑𝑡 is 0.1s for (a), 

0.5s for (b), and 1s for (c). It is simular with the result of Fig. 3.10 along the counterclockwise direction. 

When the value of time interval 𝑑𝑡 becomes short, the move distance of the robot becomes short and 

the orientation is unchange. The results point out that the convergence property tends to be better when 

the time interval 𝑑𝑡 becomes shorter, but the trajectory is not able to converge to the target arc.  
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Fig. 3. 13: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time response of control 

commands 𝑢1, 𝑢2 by improved PGR-A with the adjustable look-ahead method at different time 

interval values of 𝑑𝑡, from (a) to (c). 

Figure 3.13 depicts the robot’s trajectories along the clockwise direction and control commands by 

improved PGR-A with the adjustable look-ahead method at different 𝑑𝑡 values. The value of 𝑑𝑡  is 

0.1s for (a), 0.5s for (b), and 1s for (c). The results are simular with the Fig. 3.11. it indicates that the 

convergence property becomes poor when 𝑑𝑡 becomes long. If we chose the proper 𝑑𝑡 value, the 

robot trajectory is able to converge to the target arc perfectly. The bottom two graphs show that the 

fluctuation range of velocitiy 𝑢1 tends to be wide when the value of 𝑑𝑡 becomes long. The steering 

angles 𝑢2 have the same fluctuation range with the different values of 𝑑𝑡, but the fluctuation period 

tends to be long when 𝑑𝑡 becomes long. 
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3.3.3 The Influence with Disturbance Imposed on the Inputs of u1 and u2  

In fact, because of the restrictions of robot itself and external environment, the inputs are often 

accompanied by some disturbance. For instance, when the robot runs on uneven ground, the steering 

wheel may receive disturbance force from the ground. To investigate the robustness of the two proposed 

PGR-A methods, two different sizes limited random disturbance 𝑒1 and 𝑒2 (listed in Table 3. 4) are 

imposed to the inputs of velocity command 𝑢1 and steering angle command 𝑢2, respectively.  

Table 3. 4: Parameter values for numerical simulations imposed disturbance. 

No. 𝑒1, 𝑒2 𝜆 𝑑𝑡 t Color 

(a) 0.2 × rand(1) − 0.1 0.5 0.1s 40s blue 

(b) 0.5 × rand(1) − 0.25 0.5 0.1s 40s green 

 

 

Fig. 3. 14: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time response of 

control commands of PGR-A proposed in Section 3.1 at different disturbance values of 𝑒1, 𝑒2,  

from (a) to (b). 
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The robot’s trajectories along the counterclockwise direction and control commands by the method 

proposed in Section 3.1 at different disturbances are depicted in Fig. 3.14. The trajectories are same 

with the two different disturbances, which indicates that this method has strong capacity of resisting 

disturbance. The fluctuation range of control commands tends to be wide with the increasement of 

disturbance. 

 

 

Fig. 3. 15: Trajectories in the 𝑥-𝑦 plain along the counterclockwise direction and time responses of 

control commands by improved PGR-A with the adjustable look-ahead method for robot at different 

disturbance values of 𝑒1 and 𝑒2, from (a) to (b). 

Similarly, Figure 3.15 depicts the robot’s trajectories along the counterclockwise direction and 

control commands by the improved PGR-A with the adjustable look-ahead method at different 

disturbances. The results point out that the trajectories converge to the target perfectly with the two 

different disturbances, which indicates that the improved PGR-A has strong capacity of resisting 

disturbance as well. The fluctuation range of control commands tends to be wide with the increasement 

of disturbance. 
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Fig. 3. 16: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time response of control 

commands of PGR-A proposed in Section 3.1 at different disturbance values of 𝑒1, 𝑒2, from (a) to 

(b). 

The robot’s trajectories along the clockwise direction and control commands by the method 

proposed in Section 3.1 at different disturbances are depicted in Fig. 3.16. the results indicate that this 

method has strong capacity of resisting disturbance. The fluctuation range of control commands tends 

to be wide with the increasement of disturbance. 
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Fig. 3. 17: Trajectories in the 𝑥-𝑦 plain along the clockwise direction and time responses of control 

commands by improved PGR-A with the adjustable look-ahead method for robot at different 

disturbance values of 𝑒1 and 𝑒2, from (a) to (b). 

Similarly, Figure 3.17 depicts the robot’s trajectories along the clockwise direction and control 

commands by the improved PGR-A with the adjustable look-ahead method at different disturbances. 

The results point out that the trajectories converge to the target perfectly with the two different 

disturbances, which indicates that the improved PGR-A has strong capacity of resisting disturbance as 

well. The fluctuation range of control commands tends to be wide with the increasement of disturbance. 

3.3.4. The PGR-A and Improved PGR-A with Adjustable Look-ahead Method to Track 

the S-shaped Passage.  

In this Section we apply that the PGR-A and the improved PGR-A with the adjustable look-ahead 

-6 -4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

5

6

x (m)

y  
(m

)

T rajectory

0 10 20 30 40

0

0.5

1

Cont rol commands

t (sec)

u
1
 (

m
/s

)

0 10 20 30 40

-4

-3

-2

-1

0

1

t (sec)

u
2
 (

ra
d
)

(a)
(b)
(c)

(a)
(b)

(a)
(b)



34 

method applied to track the S-shaped passage. 

xg

yg

o

y2

x1

o1

o2

x2

y1

p(xp, yp)

 

Fig. 3. 18: The S-shaped model 

Shown as Fig. 3.18, the S-shaped passage consists of two arcs. The centers of two arcs are o1(x1, 

y1) and o2(x2, y2), the radiuses are r1 and r2, the intersection point of two arcs is p(xp, yp) that can be 

solved by (3-15) and (3-16). 

𝑥𝑝 =
1

2
(𝑥1 + 𝑥2)       (3-15) 

𝑦𝑝 =
1

2
(𝑦1 + 𝑦2)       (3-16) 

Firstly, the robot moves along the arc o1 countclockwise, when it reaches the intersection point p, 

then starts from p and moves along the arc o2 clockwise.  

The condition (a) does not consider error in input, the condition (b) imposes the disturbance on the 

inputs of 𝑢1 and 𝑢2. The default parameter values for numerical simulations are shown in Table 3. 5. 

Table 3. 5: Parameter values for numerical simulations for S-shaped passage 

No. Method 𝜆 𝑑𝑡 t Color 

(a) The PGR-A  0.35 0.1s 50s blue 

(b) The improved PGR-A 0.35 0.1s 50s green 

 

Figure 3.19 depicts the robot’s trajectories and control commands by the PGR-A and the improved 

PGR-A with adjustable look-ahead method to track the arc passage. As can be seen in the upper graph, 

the trajectory by the PGR-A is distributed in the outside of the target S-shaped passage, the trajectories 

converge to the target perfectly by the improved PGR-A with adjustable look-ahead method. In the 

below graph, around the intersection point p, the steering angle have two sudden changes from 29 

seconds to 31 seconds. The first sudden change depicts that the trajectory switches from arc o1 to o2, 

the second sudden change depicts that the trajectory changes from inside to outside of o2. The steering 

angle of u2 has only a sudden change in 28 seconds at intersection point p, which indicates that the 

improved PGR-A method with adjustable look-ahead method has well performance to converge the 

target S-shape passage. Similarly, the PGR-A and the improved PGR-A also can be applied in the 

complicate passage which consists of many arcs. 
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Fig. 3. 19: Trajectories in the 𝑥-𝑦 plain and time responses of control commands by the PGR-A in 

(a) and the improved PGR-A with the adjustable look-ahead method in (b). 

3.3.5 Discussion on Numerical Simulation Results  

According to the above simulation results, we discuss the convergence property of the two methods 

for two-wheeled robot in this Section.  

The first issue concerns the influence of 𝜆 in the two methods. By the PGR-A method in Section 

3.1, the trajecotry is closer to the target circle if the value of 𝜆 is larger, but the trajectory does not 

converge to the target arc. However, by the improved PGR-A with adjustable look-ahead method, even 

if 𝜆 is large or small, the robot trajectory is able to converge to the target arc perfectly. The change of 

the value of 𝜆 has no influence to the convergence property. The improved PGR-A with the adjustable 

look-ahead method for two-wheeled robot has better performance. 

The second issue concerns the influence of time interval 𝑑𝑡. By the PGR-A method in Section 3.1, 

convergence property has some improvement as 𝑑𝑡  becomes short, but the trajectory isn’t able to 
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converge to the target arc. However, by the improved PGR-A with adjustable look-ahead method, when 

𝑑𝑡   becomes long, the trajectory fluctuates around the target arc. If we choose the proper 𝑑𝑡 value, 

the robot trajectory is able to converge to the target arc perfectly. 

The third issue concerns the capacity of resisting disturbance by the two methods. The two sizes of 

bound random disturbances are imposed, the results point out two methods have strong capacity of 

resisting disturbance.  

The fourth issue concerns the application in S-shaped passage. The simulations are performed on 

the PGR-A and the PGR-A with the adjustable look-ahead method. The results show that robot 

trajectory is consistent with the target S-shaped passage on the improved PGR-A with adjustable look-

ahead method.  

In general, the improved PGR-A with adjustable look-ahead method has better performance along 

arc passage. Compared with the other research, like references [13-20], the improved PGR-A with the 

adjustable look-ahead method has not only the merits of convergence perfectly, but also the strong 

capacity of resisting disturbance. However, this method has the limitation in application that is just for 

arc passage problem. It will be extended to the complicate passage environment in the future work. 

3.4 Conclusion 

This section presented the PGR-A and the improved PGR-A with the adjustable look-ahead method 

to track the arc passage for two-wheeled robots. The robot’s trajectory tended to deviate outward from 

the target circle in the first method. To improve this weakness, the adjustable coefficient angle 𝛽 is 

introduced. The robot adjusted the local coordinate system constantly according to the deviate between 

the trajectory and the target arc, which made the trajectory converge to the target arc perfectly. The 

simulation results also verified the improved PGR-A with adjustable look-ahead method had better 

performance on path tracking along the arc passage. This approach was also validated on the S-shaped 

passage, which indicated that it could be applied to multi-arc passage tracing problem.  

We focused on the control method to track the arc passage and verify the efficiency on simulation 

environment without considering obstacles. However it does not mean that we neglect the obstacle 

avoidance problem. Actually, some members in our research group have proposed and are testing the 

obstacle avoidance algorithms with the PGR-A. In the future work, we will perform the experiments to 

verify the effectiveness of the method proposed in this paper in the real environment in the future.  
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Chapter 4 

The Extended PGR Converge to the Origin (PGR-O) 

for Car-like Robots 
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In this Section, we briefly introduce the PGR for car-like robot converge to origin (PGR-O). The 

purpose of PGR algorithm is to make main direction angle converge to the target direction angle and 

location converge to origin.  

4.1 Car-like Robots State Equations 

The car-like robot is steering by the front wheel, and driving by the rear wheels. From the driver's 

point of view, a car-like robot has two controls, the velocity and the steering angle. The reference point 

with coordinates (x, y) is the midpoint of the rear wheels. The distance between rear and front axles 

was assumed as L and denote u2 as the steering angle of the front wheels and the main direction angle 

θ of the car-like robot in global coordinates. Moreover a mechanical constraint imposes |u2|<u2max. In 

the PGR-O, the steering angle theoretical maximum value is u2max=pi/2. 

x

y

y

x

θ

u2

u1

L

 

Fig. 4. 1: The two-wheel model is equivalent to the four-wheel car-like robot 

We assume the two wheel model that is equivalent to the four-wheel car-like robot was shown in 

Fig. 4.1. The state equations of the car-like robot are expressed as (4-1), (4-2) and (4-3). 

1 cos( )x u          (4-1) 

1 sin( )y u          (4-2) 

2
1

tan( )u
u

L
          (4-3) 

4.2 Steering Angle and Velocity Control  

The error between direction angle and target direction angle was defined as (4-4) 

re            (4-4) 

For regulation on the target direction angle, the e has to converge to 0. The steering angle u2 use 

the follow (4-5) in control law. 

1

2 1 1

1

tan cos( ) sin( )r r
r r

L
u e u e u e

u x y

 
  

    
       

    
 (

1 0u  )  (4-5) 

Where, 0  , based on the (4-5), the first delay system was built as (4-6) 

1

1

0

0 0

e u
e

u

 
 


        (4-6) 

A Lyapunov function with parameters of λ1 and λ2 was used which guarantees the stability of car-
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like robot shows as (4-7). 

2 2 2

1 2

1
( )

2
V e x y           (4-7) 

Where, λ1, λ2>0, the system trajectory perform of differentiation to time t and substitute to (4-6). 

2

1 2 1 1

1

( cos( ) sin( )) 0

0 0

r re x e y e u ud
V

dt u

         
 


    (4-8) 

where, we defines the u1 as (4-9), 

1 1 2cos( ) sin( )r ru x e y e              (4-9) 

(4-9) was substituted to (4-8), 

2 2

1 1

1

0

0 0

e u ud
V

dt u

  
 


      (4-10) 

The value of the (4-10) were negative expect origin. Therefore, control system is stable with the 

Lyapunov function, and the robot is converging no matter in anywhere.  

4.3 Path Function Group 

Conference the paper [9], (4-11) is used for the path function group in PGR-O.  

ny ax         (4-11) 

Where, a is a positive real constant number, n is a positive integer.  

Differential to the both side of (4-11) on the x can get the (4-12) 

1ndy
anx

dx

         (4-12) 

The target direction angle shows in (4-12) was derived from (4-11). 

1tan ( )r

ny

x
          (4-13) 

Fig. 4.2 is the target pose angle at lattice points when n=2. 

 

Fig. 4. 2: Target pose angle θr at lattice points when n=2 

Based on (4-13), the (4-9) and (4-5) can be changed to (4-14) and (4-15) 

 1 1 2cos( ) sin( )u x y             (4-14) 
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 1 1

2 2 2 2

1

sin( ) cos( )
tan tan

Ln x yL ny
u

u x x n y

 
 

    
       

   
       (4-15) 

The robot in any poses converges to the origin with the u1 as the velocity input, and u2 as the 

steering angle input. 
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Chapter 5 

Singular Points and Feedback Gain Switching Strategy 
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5.1 Singular Points 

When u1 is equal to 0, 𝑥̇, 𝑦̇ and 𝜃̇ are respectively equal to 0 from Eqs. (4-1), (4-2) and (4-3). 

Therefore the point which satisfies (5-1) is regarded as the equilibrium point. 

1 2cos sin 0x y                                 (5-1) 

Recalling (4-14), when u1 approaches zero, inside of tan-1{} trends towards ±∞. These points other 

than the origin are also regarded as singular points. (5-1) can be rewritten as (5-2). 

1 1

2

tan ( )
x

y






            (5-2) 

     

Fig. 5. 1: Singular surfaces when 𝜆1 = 𝜆2 
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Fig. 5. 2: Initial poses which do not pass singular points 

When 𝜆1 = 𝜆2, helical surfaces formed by the singular points satisfying (5-2) in the x-y-θ state 
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space are presented in Fig. 5.1. Two surfaces can be formed by the straight line y = -xcosθ/sinθ, which 

rotates counterclockwise around the θ-axis from -π to π. Upper and lower surfaces are designated 

respectively as S1 and S2. The plane x = 0 is expressed by the red rectangle. When x < 0, the space 

between the two surfaces is defined as D1. The outside of D1 is defined as 𝐷1
   . When x > 0, the space 

between the two surfaces is defined as D2. The outside of D2 is defined as 𝐷2
   . According to a previous 

report [9]. When the initial pose is in D1, the robot moves forward and converges to the origin, when 

the initial pose is in D2, the robot moves backward and converges to the origin. Shown in Fig. 5.2, the 

small red circles stand for the robot initial poses, which do not pass the singular points. When the initial 

pose is in 𝐷1
    or 𝐷2

   , the robot intersects with S1 or S2 and stops at the singular point. In order to make 

robot restart at the singular point, the feedback gain switching strategy has been proposed.  

The simulation including three parts, the first is the initial poses in the outside of D1 and D2. The 

second is applied for the feedback gain switching strategy without steering angle saturation. The third 

is the applied for the feedback gain switching strategy with steering angle saturation. 

The simulation results are shown in Fig. 5.3 and Fig. 5.4. The trajectories when the initial poses in 

the outside of D1 and D2. 

 
a. The trajectories in x, y, θ coordinate system          b. The trajectories in x-y plane 

Fig. 5. 3: The trajectories of initial poses in the outside of D1 

 
a. The trajectories in x, y, θ coordinate system          b. The trajectories in x-y plane 

Fig. 5. 4: The trajectories of initial poses in the outside of D2 



46 

5.2 Feedback Gain Switching Strategy 

If the robot starts from 𝐷1
    or 𝐷2

   , then it reaches S1 or S2 on the way to the origin. At that instant, 

u1 of the PGR-O becomes zero. In Fig. 5.5, P0 is defined as start point, P1 is defined as a singular point 

on S1, and the target point is the origin. When the robot reaches S1, it stops at P1. To restart the robot, 

𝜆1 or 𝜆2 can be changed to an appropriate value to satisfy u1 ≠ 0. The new velocity 𝑢1
’  is obtainable 

by changing 𝜆2 to 𝜆2
’  > 0 from (5-3). Similarly, the new velocity 𝑢1

’  is obtainable by changing 𝜆1 

to 𝜆1
’  > 0. 

' '

1 1 2cos sinu x y            (5-3) 

However in the practical application, when the robot stops at a singular point, a small new velocity 

𝑢1
’  is given. Its sign is opposite that of velocity u1 before stopping at the singular point. Then the new 

feedback gain 𝜆2
’  is obtained from (5-4). 

'
' 1 1
2

cos

sin

u x

y

 




 
         (5-4) 

The singular surfaces S1 and S2 are changed to the new singular surfaces 𝑆1
’  and 𝑆2

’  , as depicted in 

Fig. 5.5 from (5-5). 

'

2

1 1

'

2

tan ( )
x

y






          (5-5) 

In the numerical example presented in Fig. 5.5, the robot starts from P0 = (-4000 mm, 3000 mm, 

5π/6 rad). Then it intersects with S1 at P1 = (-3834.5 mm, 2399.9 mm, 1.1 rad). A new velocity 𝑢1
’  = 30 

mm/s is given. Then 𝜆2 = 0.1 is changed to 𝜆2 
’ = 0.0701 from (5-5). The robot restarts and converges 

to the origin.  

 

Fig. 5. 5: Robot restarts after 𝜆2 is changed equivalent to the car-like robot to 𝜆2
’  

The trajectories in Fig. 5.6 and Fig. 5.7 were adopted the feedback gain switching strategy.  
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a. The trajectories in x, y, θ coordinate system           b. The trajectories in x-y plane 

Fig. 5. 6: The trajectories was adopted the feedback gain switching strategy when the  

initial poses outside of D1 

 
a. The trajectories in x, y, θ coordinate system        b. The trajectories in x-y plane 

Fig. 5. 7: The trajectories was adopted the feedback gain switching strategy when the  

initial poses outside of D2 
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Chapter 6 

The Influence of Convergent Property on PGR-O with 

Steering Angle Saturation 
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6.1 Running Area Division based on the Convergence 

In this section, we present an investigation of the behavior of the robot under steering angle 

saturation. When the robot restarts with a small value of u1 after gain switches, u2 is close to ±π/2 rad, 

which might exceed u2max. This phenomenon causes steering angle saturation, where the robot drives 

along the minimum turning circle. 

First, the minimum turning circle is defined. Next, the process of robot restart is discussed in detail 

under steering angle saturation. Then, we point out that the convergent property is related strongly to 

the number of the singular points. The running area is divided into four regions to clarify the convergent 

properties at different locations. 

6.1.1 Minimum Turning Circle under Steering Angle Saturation 

As portrayed in Fig. 6.1, assuming that the robot turns without slipping of the tires, the minimum 

turning circles are defined on both sides of it. The inner of the two circles is the area where the robot 

can not reach because of the steering angle saturation. The minimum turning radius R of the robot is 

expressed as (6-1). 

2maxtan

L
R

u
                   (6-1) 

The center of the left minimum turning circle is expressed as (6-2) and (6-3) 

sinlx x R              (6-2) 

cosly y R                   (6-3) 

The center of the right minimum turning circle is expressed as (6-4) and (6-5) 

sinrx x R                    (6-4) 

cosry y R                   (6-5) 
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Fig. 6. 1: Minimum turning circles in x-y plane 

6.1.2 Robot Restart after Feedback Gain Switching Strategy 

Figure 6.2a shows the trajectory which the robot drives along the minimum turning circles in the 

x-y-𝜃  state space, whereas Figure 6.2b shows the trajectory in the x-y plane. The two blue lines 

represent the minimum turning circles. Here, P0 is the start point, P1 is the singular point or restart 

Right minimum 

turning circle 

Left minimum 

turning circle 
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point, P2 is defined as the point of leaving the minimum turning circle. Here, A, B, C, and D 

respectively represent the directions along minimum turning circles at the singular point. We assume 

that the center of the right minimum turning circle locates in the second quadrant and that P0 locates in 

𝐷1
   . The robot drives along the left minimum turning circle with two singular points from the start pose. 

When the car-like robot stops at P1, the new velocity 𝑢1
′  is obtained using the feedback gain switching 

strategy. In this case, x < 0, y > 0, 0 < θ < π/2, λ > 0, n > 0, L > 0, 𝑢1
′ > 0, and 𝑢1

′  is close to zero. 

Therefore, u2 tends to be -π/2 rad from (4-15), under steering angle saturation, u2 = -u2max. Because u1 > 

0 and u2 = -u2max, the robot restarts and drives to the A direction along the right minimum turning circles 

until it reaches P2. 

Similarly, when the center of minimum turning circle locates in the other quadrants, the robot can 

also restart. If the number of the singular points is two, the robot can leave the circle at the leaving 

point between them. However, if the number of the singular points is more than two, the robot might 

reach the second singular point before the leaving point. This is a main result of this paper. 

 

   
a. x-y-𝜃 state space      
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Fig. 6. 2: Trajectory which the robot drives along the minimum turning circles 
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6.1.3 Region Division based on the Center Location of Minimum Turning Circle 

At the foundation of the analysis about the center location of the minimum turning circle, we divide 

the running area of the robot into four regions. 

First, the number and location of the singular points are analyzed when the center of the right 

minimum turning circle is in the third quadrant. The robot is assumed to drive along the right minimum 

turning circle. u1 is written as (6-6). 

1 1 2( sin )cos ( cos )sinr ru x R y R              (6-6) 

The two sides of (6-7) are multiplied by sec(θ)csc(θ) to become F(θ). 

1 2( ) ( csc ) ( sec )r rF x R y R       
 

(sin 0,cos 0)  
    

(6-7) 

Defining 𝐹1(𝜃) = 𝜆1(𝑥𝑟csc𝜃 − 𝑅), 𝐹2(𝜃) = 𝜆2(𝑦𝑟sec𝜃 + 𝑅) , F(θ) is the sum of F1(θ) and F2(θ). 

Figure 6.3 presents the outlines of F1(θ), F2(θ), and F(θ). We define a as the value of F1(θ) when θ is 

equal to -π/2, b as the value of F1(θ) when θ is equal to π/2, c as the value of F2(θ) when θ is equal to 

0, d as the value of F2(θ) when θ is equal to ±π, e as the minimum value of the F(θ) when -π < θ < -

π/2, and f as the maximum value of F(θ) when 0 < θ < π/2. If F(θ) = 0, u1 = 0, then the number of the 

singular points can be expressed by the number of interaction points of the curve of F(θ) with the 

horizontal axis. 

When xr < -R, yr < -R, a = - xr - R > 0, b = xr - R < - 2R, c = yr + R < 0, and d = -yr + R > 2R. 

Therefore, e > 0, f < 0. The outline of F(θ) is portrayed in Fig. 6.4. There is only one interaction point 

(singular point) separately when θ is within the two intervals of -π < θ < 0 and 0 < θ < π. 

When -R < xr < 0, -R < yr < 0, a = -xr - R, -R < a < 0, b = xr - R, -2R < b < -R, c = yr + R, 0 < c < R, 

d = -yr + R, R < d < 2R. Therefore, e might be less than 0 and f might be greater than 0. The outline of 

F(θ) is presented in Fig. 6.5. One or three interaction points (singular points) might exist separately 

when θ is within the two intervals of -π < θ < 0 and 0 < θ < π. 

When xr < -R, -R < yr <0, a = -xr - R > 0, b = xr - R < -2R, c = yr + R, 0 < c < R, d= -yr + R, and R < 

d < 2R. Therefore, e > 0 and f might be greater than 0. The outline of F(θ) is shown in Fig. 6.6. There 

might be one or three interaction points (singular points) when θ is within the interval of 0 < θ < π or 

only one interaction point (singular point) within the interval of -π < θ < 0. 

When -R < xr < 0, yr < -R, a = -xr - R, -R < a < 0, b = xr - R, -2R < b < -R, c = yr + R < 0, d = -yr + 

R > 2R. Therefore e might be less than 0, and f < 0. The outline of F(θ) is presented in Fig. 6.7. One or 

three interaction points (singular points) might exist when θ is within the interval of -π < θ < 0 and only 

one interaction point (singular point) within the interval of 0 < θ < π. 

Similarly, in the other quadrants, the number and location of the singular points have the same 

property in the same region. To clarify the convergent property at different locations, we divide the 

running area into four regions presented in Fig. 6.8 based on the analysis above. Among them, |xr| > R 

and |yr| > R are defined as region I. |xr| < R and |yr| > R are defined as region II. |xr| > R and |yr| < R are 

defined as region III. |xr| < R and |yr| < R are defined as region IV. The subscript denotes the quadrant 

in Fig. 6.8. 

This section explains the simulation and experiment conducted to verify the reasonability of region 

division on the convergent property. In the resulting discussion, we also address an example in which  
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    Fig. 6. 7: F(θ) (-R < xr < 0, yr < -R)       Fig. 6. 8: Region division based on the center 

                                      location of minimum turning circle 

the number of the singular points and convergent property can be changed by adjusting λ1 and λ2 in 

region III. 

6.2 Equipment 

As presented in Fig. 6.9, a robot car (RoboCar(R) 1/10; ZMP Inc.) with length × width × height = 

-π -π/2 π/2 π 0 -π -π/2 π/2 π 0 

-π -π/2 π/2 π 0 -π -π/2 π/2 π 0 

-π -π/2 π/2 π 0 
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429.0 mm × 195.0 mm × 212.2 mm is used. Its kinematic parameters are L = 256 mm, and u2max = π/6 

rad. Its minimum turning radius R = 443.4 mm from (6-1). It is equipped with LRF (URG-04LX; 

Hokuyo Electric Inc.) to identify landmarks for autonomous navigation, a wireless LAN adapter to 

allow a remote access to the car from a distant computer. The MATLAB/Simulink is used for 

programming. Figure 6.10 presents the experiment environment. A pipe, used as a landmark, has 

diameter of 115 mm and height of 400 mm. 

 

  

Fig. 6. 9: Robot car 

  

Fig. 6. 10: Experiment environment 

6.3 Simulation and Experiment Method 

6.3.1 The Theory of Extended Kalman Filter SLAM 

The extended Kalman filter (EKF) is as the name suggests an extension of the basic Kalman filter. 

The basic Kalman filter is a recursive algorithm used for estimation of state variables in a linear system 

with noisy measurements. As most real systems are far from being linear, the basic Kalman filter is 

inadequate for estimation of states in these systems. The extended Kalman filter can be used instead as 

Driving wheels 

Steering wheels 

LRF 
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it allows state transitions and state observations to be non-linear functions. The EKF linearizes the state 

transition and observations functions around the estimated state mean. The covariance estimate of the 

states is thus dependent of the mean estimate of the state in contrast to the basic Kalman filter. 

The EKF algorithm has as earlier mentioned two phases, predict and update. The prediction phase 

projects new estimations to the state vector and the covariance matrix, based on the previous 

estimations. 

This algorithm is applied for sensor model with known correspondence. To implement this 

measurement model, we need to define a variable that establishes correspondence between the feature 

i

tf  and the landmark 
jm  in the map. This variable will be denoted by 

i

tc  with 

{1,2,..., 1}i

tc N  ; N is the number of landmarks in the map m. If 
i

tc j N  , then the i-th feature 

observed at time t corresponds to the j-th landmark in the map. In other words, 
i

tc  is the true identity 

of an observed feature. The only exception occurs with 1i

tc N  : Here a feature observation does 

not correspond to any feature in the map m. This case is important for handling spurious landmarks; it 

is also of great relevance for the topic of robotic mapping, in which the robot regularly encounters 

previously unobserved landmarks. 

In SLAM, the initial pose is taken to be to origin of the coordinate system. This definition is 

somewhat arbitrary, in that it can be replaced by any coordinate. None of the landmark locations are 

known initially. The following initial mean and covariance express this belief: 

 0 0 0 0 0
T

 
       (6-8) 

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 

 
 
 
  
 



 

     (6-9)
 

The covariance matrix is of size (3N+3) × (3N+3). It is composed of a small 3 × 3 matrix of zeros 

for the robot pose variables. All other covariance values are infinite.  

As the robot moves, the state vector changes according to the standard noise-free (noise is zero) 

velocity model. In SLAM, this motion model is extended to the augmented state vector: 
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Because the motion only affects the robot’s pose and all landmarks remain where they are, only the 

first three elements in the update are non-zero. This enables us to write the same equation more 

compactly: 
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Here xF  is a matrix that maps the 3-dimensional state vector into a vector of dimension 3N + 3. 

3
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The full motion model with noise is then as follows 
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where 
T

x t xF R F  extends the covariance matrix to the dimension of the full state vector squared.  

As usual in EKFs, the motion function g is approximated using a first degree Taylor expansion  

1 1( , ) ( , ) ( )t t t t t t tg u X g u G X    
     (6-14)

 

where the Jacobian 
'

1( , )t t tG g u  is the derivative of g  at tX  as in Equation 
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Obviously, the additive form in (6-13) enables us to decompose this Jacobian into an identity 

matrix of dimension (3N + 3) × (3N + 3) (the derivative of tX ) plus a low-dimensional Jacobian tg  

that characterizes the change of the robot pose:  

' T

t x t xG I F g F 
        (6-16)
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Obviously, several of the matrices multiplied are sparse, which should be exploited when 

implementing this algorithm. The result of this update are the mean t  and the covariance t  of 

the estimate at time t after updating the filter with the control tu , but before integrating the 

measurement tz . 

The derivation of the measurement update is similar to the parts in the localization algorithm. In 

particular, we are given the following measurement model  
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i is the index of an individual landmark observation in tz , and 
i

tj c  is the index of the observed 

landmark at time t. the variable r denotes the range to a landmark,   is the bearing to a landmark, and s 

is the landmark signature; the terms r ,   and s are the corresponding measurement noise 

covariance. 
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This expression is approximated by the linear function 

( , ) ( , ) ( )i

t t t th X j h j H X   
     (6-19)

 

Here 
i

tH  is the derivative of h with respect to the full state vector tX . Since h depends only on two 

elements of that state vector, the robot pose tX  and the location of the j-th landmark 
jm  , the 

derivative factors into a low-dimensional Jacobian 
i

th  and a matrix 
,x jF  , which maps 

i

th  into a 

matrix of the dimension of the full state vector: 

,

i i

t t x jH h F  
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Here 
i

th  is the Jacobian of the function ( , )th X j  at t , calculated with respect to the state 

variables tx  and 
jm : 
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The scalar 
2 2

, , , ,( ) ( )t j x t x j y t yq m m     , and as before, 
i

tj c  is the landmark that 

corresponds to the measurement 
i

tz . The matrix ,x jF  is of dimension 6 × (3N+3). It maps the low-

dimensional matrix 
i

th  into a matrix of dimension 3 × (3N + 3).  

,

3 3 3 3
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  (6-22)

 

These expressions make up for the gist of the Kalman gain calculation in Lines 8 through 17 in 

our EKF SLAM algorithm, with one important extension. When a landmark is observed for the first 

time, its initial pose estimate in Equation (2-1) leads to a poor linearization. This is because with the 
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default initialization in (2-1), the point about which h is being linearized is

   , , ,
ˆ ˆ ˆ 0 0 0

T T

j x j y j s    , which is a poor estimator of the actual landmark location. A 

better landmark estimator is given in Line 10. Here we initialize the landmark estimate 

 , , ,
ˆ ˆ ˆ

T

j x j y j s    with the expected position. This expected position is derived from the expected 

robot pose and the measurement variables for this landmark 
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We note that this initialization is only possible because the measurement function h is bijective. 

Measurements are two-dimensional, as are landmark locations. In cases where a measurement is of 

lower dimensionality than the coordinates of a landmark, h is a true projection and it is impossible to 

calculate a meaningful expectation for  , , ,

T

j x j y j s    from a single measurement only. 

Finally, we note that the EKF algorithm requires memory that is quadratic in N, the number of 

landmarks in the map. Its update time is also quadratic in N. The quadratic update complexity stems 

from the matrix multiplications that take place at various locations in the EKF. 

6.3.2 The Control of Car-like Robot with PGR-O and EKF-SLAM 

The flow chart showing the robot car control system is presented in Fig. 6.11. The inputs of u1 and 

u2 are derived from the present pose based on the PGR-O. Using the EKF-SLAM algorithm [17, 19], 

the next pose is estimated according to the pose estimate model. When the robot receives scanning data 

from LRF, the landmarks can be identified based on circle feature extracting algorithm [35]. Then the 

data association is implemented with prediction and features. If the features are associated, then the 

robot adopts the current map and state model. If the features are not associated, then the robot ignores 

the fake features, adds new features, and updates the map. 

6.4 Simulation and Experiment Conditions 

The conditions of the simulation and experiment are that the center location of the right minimum 

turning circle is in the third quadrant. The default parameter values for numerical simulation and 

experiment are shown in Table 1. The robot initial poses in numerical simulation and experiment are 

shown in Table 2. Condition 1 is that the center of right minimum turning circle is in region I3. 

Condition 2 is that the center of right minimum turning circle is in region II3. Condition 3 is that the 

center of the right minimum turning circle is in region III3. Condition 4 is that the center of right 

minimum turning circle is in region IV3. 

 



59 

System state 

model

Update map 

features

Add new 

features

Ignore fake 

features

Data 

association

Correction 

stage

Prediction

Features Extraction 

Circle/Arc

u2u1

Controller

LRF scanning

Map
If new features, then the SLAM 

system state is increased

Correct 

association
Features without 

association

PGR

Saturation

 

Fig. 6. 11: Flow chart of control system applied for robot car 

Table 6. 1: Default parameter values for numerical simulation and experiment 

Name Parameter Value 

Initial feedback gains  λ, λ1, λ2 1, 0.1, 0.1 

Power number of the  

path function group 
n 2 

Landmarks positions (x, y) 

(-2000 mm, 1000 mm), (0, 1000 

mm), (500 mm, 0), (-1000 mm, -

1000 mm) 

Table 6. 2: The robot initial poses in numerical simulation and experiment 

Condition Initial pose (x, y, θ)  
Region (the center of right 

minimum turning circle) 

condition 1 
(-3000 mm, -2000 mm, 8π/9 

rad) 

I3 

condition 2 (-800 mm, -200 mm, 5π/6 rad) II3 

condition 3 
(-2000 mm, 300 mm, 35π/36 

rad) 

III3 

condition 4 (-400 mm, -2500 mm, -8π/9 rad) IV3 

6.5 Simulation Results 

The robot location and pose angle are presented in the simulation results. Figure 6.12 depicts the 

results obtained for condition 1, when the robot stops at the singular point (-2798.6 mm, -2138.4 mm, 

2.26 rad), 𝑢1
’  = 20 mm/s is given, then 𝜆2

’  = 0.1162 from (5-4), it restarts and reaches the origin. Figure 

6.13 depicts the results obtained for condition 2, when the robot stops at the first singular point (-678.2 
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mm, -327.7 mm, 2.21 rad), 𝑢1
’  = 20 mm/s is given, then 𝜆2 

’ = 0.2416 from (5-4), the robot restarts at 

the first singular point, but it stops at the second singular point (-708.3 mm, 86.5 mm, 1.24 rad). Figure 

6.14 depicts the results obtained for condition 3, when the robot stops at the first singular point (-1601.2 

mm, -88.5 mm, 1.69 rad), 𝑢1
’  = 20 mm/s is given, then 𝜆2

’  = 0.5754 from (5-4), the robot restarts at the 

first singular point, but it stops at the second singular point (-1589.3 mm, 38.4 mm, 1.39 rad). Figure 

6.15 depicts the results obtained for condition 4, when the robot stops at the first singular point (-416.1 

mm, -1677.2 mm, -0.32 rad), 𝑢1
’  = 20 mm/s is given, then 𝜆2

’  = 0.0334 from (5-4). The robot restarts 

at the first singular point. Then the robot passes through the y-axis and stops at the second singular 

point (147.4 mm, -1504.2 mm, 0.26 rad) in 𝑆2. 

 

 

a. Location (x, y)      b. Pose angle θ 

Fig. 6. 12: Simulation results for condition 1 (𝜆2
’  = 0.1162) 

 

                a. Location (x, y)             b. Pose angle θ 

Fig. 6. 13: Simulation results for condition 2 (𝜆2
’  = 0.2416) 
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a. Location (x, y)      b. Pose angle θ 

Fig. 6. 14: Simulation results for condition 3 (𝜆2
’  = 0.5754)  

 

a. Location (x, y)      b. Pose angle θ 

Fig. 6. 15: Simulation results for condition 4 (𝜆2
’  = 0.0334) 

6.6 Experiment Results 

The experiment is conducted with the robot car using the same configuration parameters. The 

location, pose angle, and the command value and measured value of u1, and the command value and 

measuring value of u2 are shown in the experiment results. The command values of u1 and u2 are shown 

as the red line. The measuring values of u1 and u2 are shown as the blue line. For condition 1, the results 

are presented in Fig. 6.16. When the robot stops at the singular point of (-2767.4 mm, -2169.2 mm, 

2.25 rad), 𝑢1
’  = 20 mm/s is given. Then 𝜆2

’  = 0.1231, it restarts and reaches the origin. For condition 

2, the results are presented in Fig. 6.17. When the robot stops at the first singular point (-667.4 mm, -

320.3 mm, 2.2 rad), 𝑢1 
’ = 20 mm/s is given. Then 𝜆2

’  = 0.2577, it restarts at the first singular point, but 

it stops at the second singular point (-746.2 mm, 38.5 mm, 1.41 rad). For condition 3, the results are 

presented in Fig. 6.18. When the robot stops at the first singular point (-1575.3 mm, -81.2 mm, 1.71 

rad), 𝑢1
’  = 20 mm/s is given. Then 𝜆2

’  = 0.5882, the robot restarts at the first singular point, but it stops 

at the second singular point (-1582.1 mm, 43.6 mm, 1.39 rad). Figure 6.19 depicts the results obtained 

for condition 4. When the robot stops at the first singular point (-392.3 mm, -1667.1 mm, -0.27 rad), 

𝑢1
’  = 20 mm/s is given. Then 𝜆2 

’ = 0.0311, the robot restarts at the first singular point, and it passes 

through the y-axis, then stops at the second singular point (120.1 mm, -1567.2 mm, 0.29 rad) in 𝑆2. 

Moreover, the robot has a pause interval at the first singular point restart because the value of new 
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velocity 𝑢1
’  is smaller. It has no effect on the purposes of this experiment. 

 
a. Location (x, y)         b. Pose angle θ 

 
c. u1         d. u2 

Fig. 6. 16: Experiment results for condition 1 

 
a. Location (x, y)      b. Pose angle θ 

 
c. u1                 d. u2 

Fig. 6. 17: Experiment results for condition 2 
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a. Location (x, y)        b. Pose angle θ 

 
c. u1                 d. u2 

Fig. 6. 18: Experiment results for condition 3 

 
a. Location (x, y)      b. Pose angle θ 
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Fig. 6. 19: Experiment results for condition 4 
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6.7 Discussion 

The results of simulations and experiments demonstrate the convergent properties of the four 

regions in the third quadrant under steering angle saturation. 

In region I3, singular points exist separately within the two intervals of -π < θ < 0 and 0 < θ < π. 

Consequently, the robot can converge to the origin. 

In region II3, three singular points might exist separately within the two intervals of -π < θ < 0 and 

0 < θ < π. The robot restarts at the first singular point, but it might stop at the second singular point. 

Moreover, as presented in Fig. 6.20, the robot can not converge to the origin when the distance between 

the center of the minimum turning circle and the origin is less than R. 

x

y

R

-R

-R R

Ⅱ Ⅱ

Ⅱ Ⅱ

 

Fig. 6. 20: Running area can not converge to origin in region II 

Region III3 has only a singular point within the interval of -π < θ < 0. Three singular points might 

exist within the interval of 0 < θ < π. The robot restarts at the first singular points, but it might stop at 

the second singular point. 

  

Fig. 6. 21: F(θ) when 𝜆1 = 0.1 , 𝜆2
’  = 0.5346  Fig. 6. 22: F(θ) when 𝜆1

’  = 0.2 , 𝜆2
’  = 0.5346 
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a. Location (x, y)   b. Pose angle θ 

  
c. u1         d. u2 

Fig. 6. 23: Experiment results for condition 3 with the extended feedback gain switching strategy 

In condition 3, based on (6-6), it is able to obtain Fig. 6.21 after applying the feedback gain 

switching strategy. If f < 0, the two singular points within the interval of 0 < θ < π will vanish. Because 

the other parameters are immutable, except for 𝜆1, it must give larger 𝜆1
’  than 𝜆1 such that f < 0. In 

this example, when 𝜆2 is changed to 𝜆2
’ , the new 𝜆1

’  = 0.2 is given. The F(θ) is presented in Fig. 6.22. 

Experiment results presented in Fig. 6.23 show that the robot can restart at the singular point and 

converge to the origin. 

In region IV3, there might be three singular points within the interval of -π < θ < 0 and only a 

singular point within the interval of 0 < θ < π. The robot restarts at the first singular point, but it might 

stop at the second singular point in 𝑆1 or might pass through the y-axis and then stop at the singular 

point in 𝑆2. 

Similar convergent properties are apparent when the center of minimum turning circles is in the 

other quadrants. The analysis clarifies the following situations: under steering angle saturation, when 

the center of the minimum turning circle is in region I, the car-like robot restarts at the singular point 

and converges to the origin; when the center location of minimum turning circle is in regions II, III and 

IV, the car-like robot might stop at the second singular point. Based on the number of singular points 

described in the summary presented above, the region division on the convergent property is 

reasonable. Moreover, if the value of 𝜆1 on 𝜆2
’  at the singular point in region III is changed, then the 

robot might be able to converge to the origin. 
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Chapter 7 

Conclusion 
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In this research, the two-wheeled and four-wheeled mobile robot are objects of study. The PGR 

was extended to track the arc passage and converge to the origin with steering angle saturation.  

This research presented the PGR-A and the improved PGR-A with the adjustable look-ahead 

method to track the arc passage for two-wheeled robots first. The robot’s trajectory tended to deviate 

outward from the target circle in the first method. To improve this weakness, the adjustable coefficient 

angle 𝛽 is introduced. The robot adjusted the local coordinate system constantly according to the 

deviate between the trajectory and the target arc, which made the trajectory converge to the target arc 

perfectly. The simulation results also verified the improved PGR-A with adjustable look-ahead method 

had better performance on path tracking along the arc passage. This approach was also validated on the 

S-shaped passage, which indicated that it could be applied to multi-arc passage tracing problem.  

We focused on the control method to track the arc passage and verify the efficiency on simulation 

environment without considering obstacles. However it does not mean that we neglect the obstacle 

avoidance problem. Actually, some members in our research group have proposed and are testing the 

obstacle avoidance algorithms with the PGR-A. In the future work, we will perform the experiments to 

verify the effectiveness of the method proposed in this paper in the real environment in the future.  

Another issue of this study analyzes the influence of steering angle saturation to the convergent 

property in the PGR-O under the feedback gain switching strategy for car-like robots. The convergent 

property of the robot under steering angle saturation is investigated firstly. We report that the 

convergent property is related closely to the number of the singular points that are dependent on the 

center location of the minimum turning circle. Secondly, the convergent properties at different locations 

are clarified through region division. A method that extends the feedback gain switching strategy is 

proposed to change the convergent property in the specific region. Based on simulation and experiment 

results, we summarize convergent property related to the region and verify the validity of the extended 

method. 
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