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Radiative Heat Transfer
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By Masayoshi KOBIYAMA **

A modified Monte Carlo method is suggested to reduce the computing time and
improve the convergent stability of the iteration process. This method succeeds
the advantages of the usual Monte Carlo method, that is, adaptability to the
complex geometry of the heat transfer system and to the variable property
problem. In this method, the number of the radiative bundles emitted from the

control elements is proportional

between two successive iterative turns

difference of the emissive energy

and the other kind of the radiative

bundle is defined and used to correct the variation of the radiative property
between two iterative turns. Analytical examples show that this method is able

to reduce the computing time remarkably

sufficiently.

and to improve the convergent stability
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1. Introduction

In the industrial fields, there are
many kinds of heat transfer systems where
it is not possible to explain the charac-
teristics without considering the radia-
tive heat transfer. The energy equation
regarding the problems including the
vadiative heat transfer is an dintegral
equation or an integrodifferential equa-
tion which is solved by some methods of
numerical analysis in general. There is
the Monte Carlo method as one of the nume-
rical methods. The Monte Carlo method that
is a probabilistic method has the excel-
lent feature of easy applications to such
a case that thermal radiative properties
are not uniform and also the geometries
of the systems are complex. Also, in this
method, the mathematical treatment of
numerical analysis is easy. However, the
Monte Carlo method has a defect that it
requires long computing time when the
radiative heat transfer coexists with the
other kinds of heat transfer mechanisms or
when the energy equation is non-linear on
account of the dependency of thermal pro-
perties on temperature and so on. To
resolve this defect, the author already
suggested a method called the Differential
Emissive Power Emission method ( abbre-
viated as DPE method™) in which the number
of radiative bundles emitted from a
control element was taken proportional to
the difference of emissive power between
two successive iterative turns. However,
this method had a restriction in an appli-
cability to a variable property problem.
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In this paper, the author modifies this
DPE method so that it can be applied to
the variable property problem without
losing the excellent feature of the DPE
method and shows an application example to
examine the characteristics of the new
modified DPE method called Differential
Emissive Power Emission Method Applied to
Variable Property Problems ( abbreviated
as DPEV method ).

Nomenclature
A: total area of wall

4dA: area of wall element

cp: specific heat at constant pressure

Cs: coefficient that gives the energy of
a bundle

E: emissive power =gT*

AE: difference of emissive power bet~
ween successive iterative turns
[defined by Eqs.(22),(23)]

,: incident or reflected time of a
bundle
;¢ distance
/: traced distance of a bundle
N,: total number of bundle
Gin heat generating rate

gr: heat flux of radiation

S radiative energy of a energy cor-
recting bundle

s: radiative energy of a property cor-
recting bundle

t:  time

T: temperature

v : total volume of medium

AV : volume of control element
y: coordinate
vo: distance between walls

47 : changing rate of absorbable probabi-
lity [Eqs.(24),(25)]

¢: emissivity of wall
x: absorption coefficient
A:  thermal conductivity
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p: density
o: Stefan-Boltzman constant
$. ¢ : incident and refraction angles of

radiative ray at wall
@ : heat generating rate by friction

Suffixes
;¢ iterative turn g+ medium
0: control element ws wall

2. Calculating Procedure

2.1 Basic equations Consider the
heat transfer field composed of radiation,
convection and the other kinds of heat
transfer mechanisms. For the sake of faci-

litaring the discussion, consider a co-
ordinate system shown in Fig.l where the
flow field is already known. Then the

energy equations regarding the medium and
the wall are expressed as follows:

DT

CPPW:AVZT"I'@—CHV Qrg et (1)

Gu=—AF T = Qru oo (2)
where, D/Dt is the material differential
operator of the fluid dynamics, p2, p
are the Laplacian and gradient opera-
tors, respectively. Where —divgr, and

—gro in Egs.(1l) and (2) are expressed as
follows:

~div Qo= —4x0Eon-t s [EoPudV
+./;€EngdA] ................................. (3)
~ g == coBuwot o [ iEoPodV

-+ EEwadA] ................................. (4 )

o [t
Po=—re+ Bl -e)
nl =

R l@w]

X COS ¢k._‘.7r[z_ ........................... (5)
c»lkw -
Po= 2"COS¢;+ Z"H; ............... (6)
nl 52
¢ [ vat et
HA=~7J?*um¢{£1ﬂ~sﬂ
¢ fnﬂkdl
X cos @5 cos ‘ﬁ}”—ﬂ}—_] --------------- (7)
where, the symbol 2°means that the summa-
tion is taken only for k's which corres-
pond to the heat receiving wall consi-
dered.

Here, Egs.(3) and (4) are constituted
respectively assuming that the medium and
the wall are gray and that the wall is
isotropic and diffusive. These assum~—
ptions are not restrictive ones for the
present method, but this DPEV method has
the same flexibilities as the conventional
Monte Carlo method.

The following quantities are intro-
duced to facilitate the numerical treat-
ments.

BHD:AVZT+@_CAO% .................. (8)
!
Buo=—AF T — qu «-rrereerrerseerese (9)
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Eqs.(1) and (2) are rewritten as follows
by substituting of Eqs.(8) and (9).

txoEgo= [XEPodV + fA ¢EwPedA+ Byo

2.2 Discussions about the Monte Carlo
method

Egs.(l) and (2) are linear with res-
pect to the emissive power E if the ra-
diative heat transfer dominates the chara-
cteristics of the heat transfer system and
the radiative properties are assumed con-
stant, that is, the properties do not
depend on the other variable. Then, the
solutions of the energy equations can be
obtained by the conventional Monte Carlo
method, used by Howell®™ and Taniguchi® ,
where the radiative bundle is traced until
it 1is absorbed by the wall through the
successive repetitions of emission-
absorption-reemission cycle and the radia-
tive heat of a bundle is calculated from
the heat quantity of the heat source. This
method does not require any iterative
calculation.

However, when the conditions men-
tioned above are not satisfied, the energy
equations become non-linear and the nume-—
rical analysis has to be performed by an
iterative procedure. Thus the author sug-

gested a Standard Method Applied to Non—

linear Problems ( abbreviated as N method
) evolved from the conventional Monte
Carlo method to facilitate application. In
this method, the number of the radiative
bundles emitted from each control
is proportional to the emissive energy of
its own and the individual radiative
bundle is traced from the emission point
to the absorption point with probabilistic
means, which gives easy wunderstanding of
the phenomena of radiative heat transfer.
In general, the Monte Carli method is
not suitable to the numerical calculation
with iteration, because this method needs
long computing time to get the approximate
solution to probability. Therefore, the
author modified it and obtained a method
named the DPE method. In this method, the
number of the radiative bundles is propor-
tional to the difference of emissive power
between two successive iterative turns,
the computing time is much shortened and
the convergent stability is improved rema-

rkably. However, this method cannot be
applied to the iterative calculation of
\ ‘*k(EO)
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the radiative propertics which wvary  at
each iterative turn.
Tn this paper, the aurbor suggesis a

modified DPE method called the DPEV me
which is applicable to vaviable properties
probiems and veduces the computing time
by the same degree as the DPE method.

2.3 A method suggested in this paper

As the N method is used at the first
iter ve turn ox at first several turns
in the execution of the DPEV methed sug-
gested in this paper, the outline of the N
method is given below.

2.3.1 N method In general, a
solution at the i~th iterative turn 1is
calculated from the following equations
which are rewritten as Egs.(10) and (11)
in the form of iterative calculation when
the 0-th value of temperature T° is given,
the values of properties and®'s are cal-
culated with T''s the values of dependent
variables or the values of B''s defined
by Eqs.(8) and (9) are calculated by some
numerical method, for example the finite
difference method.

A ‘Eéo:j;k"‘[i;"l’édl'+]£5‘ EL U PidA

FBEGY  rereererree e (12)
a’;"E&,o:ﬁx"‘Eg"’PédV+)Ce"‘E.:."P.£,dA
+B‘%1 .......................................... (13)
where
-1
Bia'=A"'"PiT " 4+ @ —cpo Dg; = (14)
:;El:"A‘A‘?T"!—(ZLﬂ ..................... (15)
331 ................................................... (16)

and, P''s are the transfer probability of
the radiative heat calculated by the
Monte Carlo method through Eqs.(5) and
(6). In the DPEV method, the vradiative
heat onto the wall is absorbed in propor-
tion to the emissivity of the wall and
this treatment of the absorption of radia-
tive energy differs from those by Howell'
and Taniguchi”. This special treatment is
introduced to reduce the use of random
number and the quantity of radiative
energy carried by a radiative bundle. The
radiative energy of a bundle emitted S is
calculated by

s'=[ BB av g emEs aal /N,

alldv BlldA

where, N. dis the total number of the
radiative bundles, and 4V and 44 are the
volume of the control volume and the area
of the control area, respectively. From
this equation, the number of bundles
emitted from a control element considered
N’ ig calculated by the following equa~
tions.

A=hu TIES T AVIST e (18)
NE=€ DB VAAIST cooverrrenenranies (19)
The radiative energy transported to the

medium or the wall S°' is calculated by the
following equations.

2.3.2 DPEV wmethod  The iterative
calculation is performed bv the DPEV
meihod except that the first several
turns at which the calculation is perfor-
med by the N method.

a, Calculation procedure Define JE"
and 42" s by

AE(;;NFIE,;»‘_,{!»LHZ ..................... (22)
ARG = Vi e g Ui e (23)
Azé:l,,j)!g-l/pgl ................................. (24)
AZiy= 1 PPy e (25) -

The radiative energy transfered Ci's are
calculated by the following equations
using Jf¢ 5, dz'and pils,

Cio=Cin'+ [ [dES+ x* 264 "2\ PaV
+ B+ e B AZAPLA o (26)

Cho= Cla' + f (LEi+ 3 2 E *AZL PLdV

Eqs.(10) and (11) are rewritten into the
following equation by means of Egs.(26)
and (27).

43 Ejo= Chot Big' -eereees -+ (29)
€87 Eluo= Chot Bi'

That is to say, the values of the first
term in the right-hand side of Eqs.(26)
and (27) are calculated just as in the N
method except that the numbers of radia-
tive bundles are proportional to JEY
given by Eqs.(22) and (23) ; this kind of
bundles is called the energy correcting
bundle because the quantities of emissive
power emitted at each iterative turn are
corrected with these bundles. In the cal-
culation of the second term, the radiative
bundles and the quantities involved in 4Z°
are used; this kind of bundles is called
the property correcting bundle because the
values of the radiative property used at
each iterative turn are corrected with
these bundles. The temperature or the
emissive power of the control element at
the i-th iterative turn is calculated by
Egs.(29) and (30) just as in the N method,
after the calculations are performed over
the region considered. Furthermore, in the
case that P'=pP‘', that is, if the radia-
tive properties are kept constant at each
iterative turn, the relation 4Z'=0 1is
satisfied and the DPEV method is reduced
to the DPE method.

b. Some quantities used in the calcu-
lation First of all, define the

radiative energy of the correcting energy
bundle S' by the following equaton.

ST= 81 Cly, Gl srvemmeeememmneeeerins (31)
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where, (), 1s a variable that controls the
quantity of S . The number of vradia-
tive  bundles N*' is assigned to each
element through the following equation
which is deduced from Egs.(31),(22) and
(23).

Ni=|4E]av/s’

Ni=|4Eil4A/S*
where, S* takes the following values
according to the sign of JE'.

AE'20: S'=|S7] }
AE'<0: Si=—|SY

The radiative heat transfered by a radia-
tive bundle S*' is calculated from Eq.(20)
or (21).

Next, consider the correcting proper-
ty bundle. In the Monte Carlo method, the
most time consuming parts are those of the
trace of the radiative bundles and of the
generation of the random number. Then the
number of the property correcting bundles
is set the same values as that of the
energy correcting bundles and it traces
the same trajectory as that of the correc-—
ting energy bundle in order to avoid the
overlap of the use of radiative bundles
and to reduce the computing time. That is
to say, the calculation of 4Z' is done in
accordance with that of P'. If the radia-
tive bundle is reflected k-times until it
is absorbed, then 4z 1is given as
follows.

xo""[ I_'[(l-—s}"‘)cos ¢/ %cos ¢'i7"

AZi=1— [ N i
xﬂ—l[}1(1—~e}”)cos @' cos ¢!

/”(/}TI‘)Z][Z‘I" di/ﬂ.-(l. | z]

As the second term in the right hand side
equals to Pj/Pi' and the locus of FPi™' is
the same as that of Pf, Eq.(35) is tran-
sformed as follows,

iR

Xexp[ - [fGet AL s (36)

<,

Similarly, the next equation is obtained
for 4Zi.

seser- (Y R

Xexp[—_/(;u l(;t"':"*;r"‘)tz'L:, ------- (37)

where, Lw-1 indicates the total length of
the locus of the radiative bundle to the
(k~1)th incident on the wall. Through
Eqs.(26),(27),(36) and (37), the quanti-
ties of the heat transfered to the medium
and wall by the property correcting bundle
s*'s are written as Egs.(40) and (41) when
the energy of a bundle s''s are expressed

by Eqs.(38) and (39).

SEZRITEEITRAVING coveveereneeieenecai (38)

SL,:E"_ZEL_ZAA/NI:; .......... Cererreniaiiie (39)
L3

sir= s 10 €] aze v (40)
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sv= 3o {stf fra=esnfaze) s (1)

From the comparison of the radiative
energy of the energy correcting bundle S*
and of the property correcting bundle s‘,
it is understood that the truncation error
of the property correcting bundle is
larger than that of energy correcting
bundle. The reason that s’ becomes larger
than S’ as the iteration advances, for s*
is proportional to the absolute value of
radiative energy while S‘ is proportional
to the difference of the radiative energy
calculated at successive iterative turns.
This truncation error tends to accumulate
for the asymptote formulae of Eqs.(26) and
(27) are used. Therefore, this error has
to be reduced with the aid of the heat
balance of the system. The following equa-
tion 1is obtained from the definition of
Eqs.(24) and (25) if the number of bundles

is large enough to  estimate the
probability.
[xitEiaziav + [¢*EiazbdA=0
v A
............ (42)

It is assumed that the truncation error
mentioned above 1is proportional to the
radiative energy of each control element
in order to make the calculation easy.
Then the correcting rate 4z° is deduced
from Eq.(42) and given by Eq.(43). The
corrections 48''s are to be added to Ci's
are expressed by the following Eqs.(44)
and (45).

i Jx et aziav + [ B azbdA

fv,(-'—z ‘;‘7dV+f‘e‘“’E."f2dA

c. The proof of the equivalence of
the DPEV method with the N method
To simplify the discussion, the fol-
lowing quantities are introduced here.

Cloo=Cigd+ [ [AES+ '~ ESAZi\PldV

Then, Egs.(26) and (27) can be rewritten
as follows:
Cio= Cigot Ciogo - (50)
Clho= Chuwot Chugrrrrorrerverrrosieriinnieiiinn (51)

Here, for example, the following equation
can be deduced from expansion of Eq.(46)

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

3004

using Eqs.(22) and (24). Qi ATV Gy = () oveeremresmee e 5N

g : X A G =) e S
Ciao= [ A+ 5 B AZI iV Tt Q= (60)
A

where, —div gze and —gre are used after the

4"ﬁ[AEE”*FMFaE?3425q]P5ﬂd‘/+‘”+ transformation into the one-dimensional
o form from Eqs.(3) and (4) respectively is
fﬁLLﬁEZ+vﬁkﬁAZﬁlﬁd" perxformed. Although there are many kinds
of the functions proposed for the tempera-

+»[K“EgP§dV ture dependence of the radiative absor-
Y ption coefficient ¥ and the emissivity €.
:u[xr4Ff4fng41f[x““E§”}$”’ in this paper, the following functions are

v v employed.

R B Pl B AZEAY

g Heat Generating Zome - x=0.5( T/ 1500) m™!
- 00 P ,oLg 30 4 O‘OJZE,PZ 4V
1 ./V[K ESPs ~x°EoPp+x"Eg ﬂ] Non—heat Cenerating Zome x=0.2( Tg/l 000)"' m™'

= [ piav e BB Wall : e=0.8( T/ 600)"

301 i :n“ i /1Y s (52)
(PSP =1+ 425 d ” Furthermore, the heat generating rates are

From Eq.(24), the second term in the right assumed with a parabolic  distribution
hand side of Eq.(52) becomes zero. There- taking maximum value at the center and
fore, Eq.(52) reduces to zero at the interfaces of the heat genera-
ting =zone and no heat generating zome as
shown in Fig.3; the mean value of the heat
generating rate is 2.09x10°kJ/(m*h) [5x10°
kcal/(m*h)] , the wall temperature 600K,
the distance between the two plates # 1m,

C";gu—:ﬂ;:""ﬁ;*lpé(ig/ ....................... (53)

Similarly, Eqs.(47)-(49) are rewritten as

follows:

the total number of elements in medium n
‘ it i 20, the total number of the radiative

Choo= [ Bl PIdA s (54 bundles N, 100 000 and C, unity.
The solutions by the methods used in
Chm:¥LX““Eé”fﬁdV """""""""""""" (55) this paper are verified with the compari-
son with the solutions by Usisikinfor the
waziﬁe“’E&”f%dﬂ """"""""""""""" (56) . constant radiative properties and heat
generating rate and with the solutions by
By substitution of Egs.(53)-(56) dnto Taniguchi” which took into account of the
Egs. (50) and (51) the following equations temperature dependence of the emissivity
are obtained. of the wall in addition to the properties

considered in this chapter.
Cho= [x' B PidV + [ EL PidA (5T)
|4 A

i - P— P i -1 i I
c-wczjv,,- B PdV ff VEL PhdA (58) o | 0
e(T 7 E(T;)
By substitution of Egs.(57) and (58) into ;) xg (TP kg (T % xg(Tg) r
Eqs.(29) and (30), it is made clear that w ! 7 v
the solution by the DPEV method coincides 40 2 4, O 940 p Y

with that by the N method. \\\:ﬂhatcmwmadng////
Zone

Non-heat Generating Zone

3. An Example of Application TFig.2 Heat transfer model with the
of the DPEV Method internal heat generation

A one-dimensional heat transfer model
with internal heat generation shown in . ’
Fig.1 1is considered here to discuss the 200p N MEthod (Comventional Method) E _ix10*
reduction of the computing time and the &3 o DPEV Method (Developed Method) 37X
improvement of the convergent stability by = Temperature #@\
the DPEV method. In this model, a radia- 20001 ) /% bomar,
tive medium fills the space between two ° T\ RN
parpllel plates with infinite length and a \T}V\\
heat generating zone is placed in the 18001 f ; )
center of the medium. — A“"‘} \

It is assumed that the medium is a L6001- H ' A
gray gas as to thermal radiation and its
value differs depending on whether there 9-8-84F
is the heat generation or not and that the 1400 \ 40.2
walls are isothermal and are diffuse as to | 0th Assumption of T 0000
the thermal radiation. Furthermore, the GWL, ! L o o

. ) . 1 1 1

system .15 n the.Steady state a[.ld .the 0 0.11 OTZ Of} Ol.A 0.50.60.7 0.8 0.9 1.0
convection, conduction and energy dissipa- ¥/¥,
tion can be ignored. By substitution of
these conditions into Egs.(1l) and (2), the Fig.3 Temperature distribution and
following energy equations are deduced. values used in calculation

M

10.8

kJ/m*h

43

imn

10.6

Absorption Coefficient
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An example of the temperature distri-~
bution calculated here is shown in the
left half of Fig.3. The distribution of
temperature by the N method is the result
of the 28th iterative turn at which the
iterative solution by the DPEV method is
considered to converge.

Although, there are some peculiar
values as to the probability calculation
in  the vicinity region of the wall, the
solutions of DPEV method agree on the
whole with those of the N method irrespe-
ctive of the presence of heat generation
or not. Fig.3 also shows the O-th profiles
of the temperature and radiative absor-
ption coefficient.

The maximum values of the relative
error of the temperature in each iterative
turn are shown in Fig.4. As the relative
error corresponding to the N method suf-
fered a vibration at the vicinity of the
error of 10™ even the iterative turn
advanced, the convergence cannot be
achieved in the mathematical sense. Thus
the N method does not seem to be suitable
methed applicable to the numerical analy-
sis that needs higher convergent accuracy.
The convergent process of the relative
error concerning to the DPEV method is
very smooth and stable nevertheless the
same quantity of radiative energy of a
radiative bundle is used as the N method,
that is Cek=1.

In Fig.5, the result of the traced
bundle number and the computing time at
each iterative turn are shown in the form
of the ratio with the mean values of those
in the N method. 1In the DPEV method, the
traced bundle number decreases as an expo-
nential function with advance of iterative
turn and this value becomes less than
1/1000 at the 16th iterative turn. It is
obvious that the computing time decreases
as the traced bundle number decreases. At

10 °r

MAXTMM KRELATIVE ERROR OF TEMPERATURE

10°*®

10°¢ L L J L L L J

1 4 8 12 16 20 24 28
ITERATIVE TURN

Fig.4 Convergency of maximum relative
error of temperature
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the second iterative turn, the computing
time increases in spite of the decrease of
the traced bundle number. This is because
it imposes double tasks of the energy
correcting and property for individual
radiative bundles. Therefore, the compu~
ting time of a radiative bundle by the
DPEV  method being 2.5-3 times that by the
N method, the computing time of the DPEV
method can be vreduced by using the N
method at the second iterative turn too.

In the result shown in Fig.5, a total
computing time for the radiative heat
transfer by DPEV method is less than 15%
of that by N method.

The convergent processes of the tem-
perature at different zones are shown in
Fig.6. At the highest temperature zomne,
the convergent process of the N method is
smooth and shows the same tendency as that
of the DPEV method, but at the lower tem-
perature part, that of the N method shows
a peculiar vibration of the probability
calculation, This is because the number of
the absorbed radiative bundles in the
lower temperature region being small for
the absorbed bundle which is proportional
to the absolute value of the emissive
power in the case of the N method.
However, in case of the DPEV method,
there is not any peculiar vibration, for
the number of absorbed bundles is propor-
tional to the difference of the emissive
power.

This stability of convergence is an
excellent feature of the DPEV method and
this feature means that the DPEV method
can be applied easily to multi-dimensional
problem even when the total radiative
bundle number is small.

In Fig.7, the convergent processes of
the heat balance of the system are shown.
In this example, the stability of conver-
gent process seems to be satisfactory
except from the first period to middle
period even in the N method because of

107

5| ) A 1 L 1 A J
14 8 12 16 20 24 28
ITERATIVE TURN

Fig.5 Traced bundle number
and computing time
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many radiative bundles being used but the this method, ©he number of the radiative
relative error of the N method is conver- bundles, which are emitted from the
ging to the value 107 which is 1 figuve control element and transfer the radistive
smaller than that of the DPEV method. energy by the probabilistic means, are
From the above discussions, it is proportional to the difference of the
clear that the DPEV method is excellent emissive power between two successive
with stability of convergence and reduc- iterative turns. And at the same time,
tion of computing time except in the first those rtadiative bundles correct the radia-
few iterative turns. The stability of tive properties changing at each itevative
convergence and the reduction of computing turn.
time by the DPEV method would be great An  example of its application showes
benefit when the simultaneous equations that this modified Monte Carlo method is
composed  of the momentum equation of excellent with reduction of calculation
complex flow, the energy equation inclu- time and the stability of convergence.
ding the radiative heat transfer and so on This method can be used with great bemefit
are to be solved by numerical analysis. when the heat transfer combined with
radiation and the other kinds of heat
4, Conclusions transfer mechanisms is to be solved by
numerical analysis or when the vradiative
In this paper, the author presents a properties depend on the other variables.
modified Monte Carlo method to reduce the
calculating time and to improve the con- REFERENCES
vergent stability without losing the exce-
ilent feature of the Monte Carlo method 1) Usiskin,C.M. and Sparvow,E.M., Int. J.
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