

繰返し荷重を受ける構造物基礎の形状の相違による 地盤の動的挙動の変化

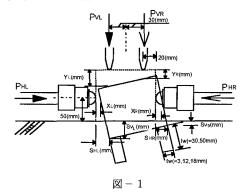
, , _ ^ _	
メタデータ	言語: jpn
	出版者: 土木学会
	公開日: 2013-02-25
	キーワード (Ja):
	キーワード (En):
	作成者: 川村, 志麻, 荻原, 義雄, 横浜, 勝司, 三浦, 清一,
	宮浦, 征宏
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/1757

繰返し荷重を受ける構造物基礎の形状の相違による 地盤の動的挙動の変化

著者	川村 志麻,荻原 義雄,横浜 勝司,三浦 清一 ,宮浦 征宏			
雑誌名	土木学会年次学術講演会講演概要集			
巻	51			
号	3A			
ページ	200-201			
発行年	1996-09			
URL	http://hdl.handle.net/10258/1757			

Ⅲ-A100 繰返し荷重を受ける構造物基礎の形状の相違による地盤の動的挙動の変化

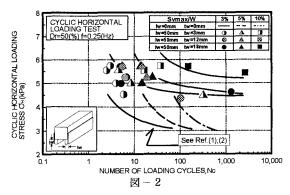
室蘭工業大学	工学部	正会員	川村志麻
鉄建建設		正会員	萩原義雄
室蘭工業大学	大学院	学 生 員	横浜勝司
室蘭工業大学	工学部	正会員	三浦清一
室蘭工業大学	大学院	学 生 員	宮浦征宏


1 まえがき

波浪などの繰返し鉛直荷重を受ける構造物基礎の形状は、地盤の支持力特性に大きな影響を与えることが明らかにされている^{1) 2)}。本報告では、前報¹⁾と同様の側壁を模型構造物に設置して繰返し水平載荷試験を行い、その形状差が地盤の流動化機構に与える影響を考察した。

2 試験装置及び試験法

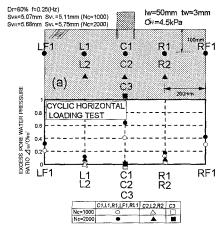
使用した装置は、長さ2000mm、高さ700mm、奥行き600mmの二次元平面ひずみ模型土槽及び繰返し水平載荷装置 $^{2)}$ である。任意の密度の模型地盤は、豊浦標準砂をサンドホッパーから空中落下させることにより作成した。模型構造物は幅、高さ100mm、奥行き580mm、重量 13 . 2 2kgfの剛な直方体であり、図 $^{-1}$ 1に示すように根入れ深さ 10 2kgfの剛な直方体であり、図 $^{-1}$ 2kgfの剛な直射である。また比較のために用いた繰返し鉛直載荷試験結果と側壁を設けない場合の繰返し水平載荷試験結果は以前に報告している $^{-1}$ 2kg型地盤内には間隙水圧計が載荷板直下100mm間隔に3個、左右対称200mm間隔に6個計9個設置されている。

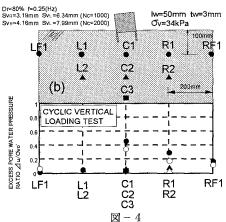

繰返し載荷試験では2個のベロフラムシリンダーを用い、載荷ロッドにより模型地盤上50mm(構造物の中心)の点に載荷した(図ー1参照)。また、それぞれの載荷ロッドにはロードセル、変位計が設置されている。載荷板の変形量は、載荷板の左右どちらかの底端点の卓越する方を沈下量Svと定義し、載荷板の幅Wに対する沈下の割合を沈下量比Sv/Wとして、この値を変形量の指標とした。なお、沈下量は載荷ロッドに設置された変位計により計測された値を基に幾何学的関係により算出している 3)。載荷方法は、周期4秒の半正弦波荷重を左右の載荷位相差 π で載荷している 1 ²⁾。

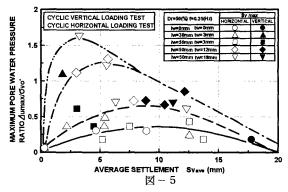
3 試験結果と考察

図ー2は異形載荷板の側壁の根入れ深さ1w、幅twが地盤の繰返し強度にどのような影響を与えているかを調べるため、繰返し水平載荷応力 σ нと沈下量比Sv/Wが3, 5, 10%に至るに必要な繰返し載荷回数Ncの関係で示

したものである。なお地盤の相対密度は50%である。図より、側壁を設けることにより繰返し強度は確実に増加していることが確認できる。このことをさらに明確にするために、図-3は載荷回数Nc=1000回時に沈下量比が3%に至るに必要な最大モーメントM(載荷板底面に作用する最大のモーメント)を側壁を設けない場合のモーメントMoで正規化したものと側壁の根入れ深さに対する幅の割合tw/1wの関係として示したものである。なお、地盤の相対密度は50及び80%である。側壁を設けることにより、繰返し強度






は増加するようであるが、特にゆるい堆積条件に対する鉛直 載荷試験とは異なり、急激な増加傾向とはならず、ある根入 れ幅比tw/1w(÷0.1)を境に一定値になるようである。また、 相対密度による強度変化はないことが注目される。本荷重条 件と基礎底部のこの形状条件では、すべり破壊モードで議論 できること²⁷を示唆するものである。このことから、繰返し 水平荷重が卓越するような場合においても前報の繰返し鉛直 載荷試験¹⁷と同様、側壁を設けることによって地盤の流動化 破壊の阻止に効果をもたらすことが示されたが、荷重条件の 違いによる破壊のモードの違いによってこの阻止機構は異な ることに注意する必要があろう。

次に間隙水圧発生挙動と沈下の関係を検討した。図-4(a) (b)は繰返し水平及び鉛直載荷試験における繰返し回数Nc=1000,

2000時の最大過剰間隙水圧 Δu_{max} を初期有効鉛直応力 $\sigma vo'$ で正規化して示している。なお示した結果は側壁が1w=50mm、tw=3mmのケースである。両図より間隙水圧は載荷板直下C1において顕著に上昇していることがわかる。また繰返し鉛直載荷試験(b図)において、変形が卓越する方向の間隙水圧は、沈下の少ない方向の間隙水圧に比べて低くなっていることに注目したい。さらに両試験での平均沈下量 $Sv_{ave}=(Sv_{R}+Sv_{L})/2$ と地盤に発生する最大間隙水圧比 $\Delta u_{max}/\sigma vo'$ (C1地点)の関係を示したのが図一

5 である。 Sv_{ave} は載荷回数Nc=2000回までの最大間隙水圧が発生した時の値である。図より Δ u_{max} と Sv_{ave} の関係は構造物底部の形状によって異なるものの、載荷法によらず一義的な関係にあることがわかる。また、側壁のボリュームの増加(twの増加)によって Δu_{max} は急増し、引続き急激に低下しているが、これは側方流動の発生を示唆するものである。

<u>謝辞</u>:最後に実験及びデータの整理に室蘭工業大学卒業生 吉田満和君(現 大日コンサルタント(株))の協力を 得た。記して深甚なる謝意を表します。

<u>〈参考文献〉</u> (1)Miura et al(1995):Proc. of 1st ICEGE, pp.743-748.(2)三浦ら(1995):海岸工学論文集、第42号、pp. 1016-1020.(3)川村ら(1996):波浪を受ける地盤・構造物系の変形挙動と評価、第31回地盤工学研究発表会講演集(投稿中).