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Abstract—In this paper, we propose a heuristic algorithm to values, and represented by the following decision table:
extract decision rules based on variable precision rough set
models (VPRS models). The VPRS models provides a theoretical DT = (U,C,d), Q)
basis of regarding probabilistic / inconsistent information in the
framework of rough set theory. The main idea of our algorithm Where U is the set of objects(' is the set of condition
is based on construction of suitables-lower approximations by attributes such that each attribute € C is a function
giving up to discern some discernible objects that belong to , . 7 — V. from U to the value set/, of a, andd is a
different decision classes each other. All decision rules extracted functiond : U — V; called the decision attribute.

by our algorithm are guaranteed that the certainty of all L e . .
extracted decision rules are equal to or higher than the predefined 1 he indiscernibility relationRz on U with respect to a

threshold of certainty. subsetB C C is defined by

I. INTRODUCTION 2Rpy < a(z) = a(y), VYa € B. 2

Extraction of decision rules is an imp.ortant application .the equivalent clasi] s of 2 € U by Ry is the set of objects
rough set theory [4], [S] from a viewpoint of data analysishat are not discernible with even though using all attributes
Variable precision rough set models (for short, VPRS modelg) g any indiscernibility relation provides a partition df.
proposed by Ziarko [8] provides a theoretical basis of regarglie denote the partition df’ by Ry, i.e., the quotient set by
ing probabilistic / inconsistent information in the frameworkz . by U/Ry. In particular, the partitio® = {D;,--- , D}
of rough set theory. o . provided by the indiscernibility relatioR, with respect to the

In this paper, we propose a heuristic algorithm to extragecision attributet is called the set of decision classes.
decision rules based on the VPRS models. The main ideg, any decision clas®; (1 < i < m)Othe lower
of our algorithm is based on construction of suitalie approximationB(D;) and theupper approximatiod3(D;) of

lower approximations by giving up to discern some discemiblg " yith respecto the indiscernibility relatior?; are defined
objects that belong to different decision classes each other. All foj10ws respectively:

decision rules extracted by our algorithm are guaranteed that

the certainty of all extracted decision rules are equal to or B(D;) = {rxecU]|l[z]p C D}, 3)
higher than the predefined threshold of certainty. B(D;,) = {xeU|lx|gnD,#0}. 4

The rest of this paper is organized as follows. In Section II,

we review Pawlak’s rough set theory and the VPRS moddiote that a decision table is called consistent if and only if
as the background of this paper. In Section I1l, we introdude(Di) = D; = C(D;) holds forall decision classe®); € D.

a heuristic algorithm to extract decision rules based on theTable | is an example of a decision table used in [2] and this
VPRS models, and describe small examples to explain h@gcision table consists of the set of objelGts= {1, , 26},

the proposed algorithm works. We discuss a few propertiesthf set of condition attributes’ = {ci,---, ¢} and the

the proposed algorithm in Section IV and finally conclude th@ecision attributel. For example, an attribute is a function
paper in Section V. cp U — {O, 1}, and the value of an Ob]thl e U atc

is 1, that is,c1(z1) = 1. The decision attributed provides
Il. ROUGH SETS the following two decision classed); = {xy,22,z3}, and
In this section, we review the foundations of rough sé?2 = {z4, 75,76, z7}. Note that this table is not consistent be-
theory as background for this paper. The contents of tiiguseC(D:) = {z1,x3} and C(D1) = {x1,z2, 3,75, 77},
section are based on [5], [6], [8]. andC(D;) = D, = C(D;) does nothold.

A. Lower and Upper Approximations in Decision Tables B. Decision Rules

In rough set data analysis, objects as targets of analysidVe denote a decision rule constructed from a subset C
are illustrated by combination of multiple attributes and thos# condition attribute, the decision attributeand an object

1568



TABLE | TABLE I

AN EXAMPLE OF DECISION TABLE THE DISCERNIBILITY MATRIX OF TABLE |

[UJei e 3 ca cs ce  d | 1 9 3 T4

o] 1 1 1 1 1 1 M T 0

|1 0 1 0 1 1 M T2 0 0

¢33/ 0 0 1 1 0 0 M 3 0 0 0

z4 |1 1 1 0 0O 1 F T4 {ca,e5} {c2,¢5} {c1,c2,ca,c6} 0

5|1 0 1 0 1 1 F zs5 {c2,ca} 0 {c1,ca,¢5,c6} 0

z¢ | 0 0 0 1 1 0 F xze | {c1,c2,¢c3,c6} {c1,¢3,c4,c6} {c3,¢c5} 1]

zz |1 0 1 0 1 1 F @7 {e2,ca} 0 {e1,ca,c5,c63 O

z € U by (B,z) — (d,z). The concepts of certainty anddecision table(U,C,d) is given. For any setsX,Y C U
coverage are well-known criteria for evaluating decision rulegf objects, the measure(X,Y) of the relative degree of
however, we only use the certainty in this paper. For ampisclassification of the seX with respect to the seY is
decision rule(B,z) — (d,z), the scoreCer(-) of certainty defined by
of the decision rule is defined by
Il2]s N Dy OV iy
L7 (5) c(X,Y) = |X| ’
|[2]5] 0, if [ X| = 0.
where|X | is the cardinality of the seX and D; is the decision
class such that € D;.
For example, a decision rulg3, z7) — (d, x7) constructed
from a setB = {c1, c2 }, the decision attributé and an object
x7 € U has actually the following form:

Cer((B,z) — (d,x)) = (8)

The relative degree:(X,Y) represents that if we were to
classify all objects ofX into Y, then the misclassification
error ratio would bec(X,Y) x 100%. It is easy to confirm

that the following property holds for any set§ Y C U:

(c1=1) A (ca =0) — (d = F), XCY <= c¢X,Y)=0. 9
and its certainty i%. Thus, by setting an admissible classification error ratio, called
a precisions (0 < 8 < 0.5), the set inclusion is generalized
C. Discernibility Matrices by

The discernibility matrix [7] is generally used for computing
all relative reducts in the given decision table. L2T" be a

decision table withU| objects, whergU| is the cardinality | ot Ry be an indiscernibility relation with respect to

of U. The discernibility matrixDM of DT is a symmetric p ~ C, and U/Rp be the quotient set based ddy. For

|U| x |U| matrix whose element atth row andj-th column  o5ch decision clas®;, the 3-lower approximationB ;(D;)

is the following set of condition attributes to discern betweegndthe j3-upper approximatiorB;(D;) with respect toRp
two objectsz; andz;. Each element. € ¢;; represents that ’

x; andz; are discernible by checking the value af

XéY<:>c(X7Y)§ﬁ. (20)

are introduced by

B oty o) dle ey an ByDy) = \Jllels € U/Rs |12l € D} (1)
a€C|a(x;) #a Tji)g, if d(z; #d zj)an _ {:E cU | C([:C}B,Di) < 6}7 (12)
{2, 23} N POSC(D) # 0, By(D) = {eeU|ca]sD)<1-8). (13)

0, otherwise,
©) i is eas i B,
. " . y to confirm thaBB,(D;) = B(D;) and By(D;) =
ghf?reg)gSB(D) Is the positive region oD by B ¢ ¢ and B(D;) hold, i.e., the 3-lower (upper) approximation is iden-
efined by tical to Pawlak’s lower (upper) approximation in the case of
POSp(D) = | B(Dy). ™M 5o

D.ep Similar to the case of Pawlak’s rough sets, thepositive
Table Il is the discernibility matrix of the decision tableregion of D; by B C C is defined by
presented by Tab. I. Note that we omit upper triangular

components of the discernibility matrix and the columns of POS}(D) = U Bgs(D;). (14)
x5, Tg, andxy in Table II. D;€D
D. Variable Precision Rough Set Models l1l. A HEURISTICALGORITHM FOR GENERATING

VPRS models [8] generalize Pawlak’s rough set models DECISIONRULES IN VPRS MODELS

by generalizing the notion of the standard set inclusion, In this section, we propose a heuristic algorithm for generat-
and provide a theoretical basis for dealing with inconsisteimg decision rules in VPRS models and show a small example
information in the framework of rough sets. Suppose thatta explain how the proposed algorithm works.
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A. Main Idea and Motivation Algorithm 1 Decision rules generation algorithm

For generating decision rules with some exceptions in VPRRPUL:  decisiontable DT = (U, C, d), precisionf & [0,0.5)
models, the main idea of our algorithm that we propose lateUtPut: set of decision ruledtules
is to give up discerning some discernible objects that belong’ Rules = (), Cond = C

to different decision classes each other This idea is based gnh Compute the disceribility matri) A/ of DT
the following motivations: 3: Compute the complement gkpositive region ofD by C,

« In some cases, by giving up discerning some discernible Le., U — POS@(D) S
objects, we can generate decision rules with shortef' for' all o;; € DM such thati > j do
antecedents. 5 if 0;; # Cond and ¢;; # 0 then
« Even though the given decision table is consistent, giving” Igni; o {zr € Uldp € DM, 6 C 635} U (U —
up discerning some discernible objects may enable us to POSc(D))
present concise decision rules that ignore small differ-’ Eij = {[zr]cona—s.; | 2k € Ignij}
ences between objects as exceptions. 8 for all [z)] € &; do

. . . . ko ka] N Dy, |
Thus, in the algorithm we propose later, we intend to generat@ Cerg; = phax 7| [za]]
decision rules that satisfy the following constraints: 10: end for " b
1) The certainty of all generated decision rules is at least: Cer;; = miny, Oerfj
equal to or higher than the given precisiére [0,0.5) 12: else
in the VPRS model. 13: Ceri; =0
2) The length of antecedents of generated decision rules end if
are as short as possible. 15: end for

B. Algorithm for Generating Decision Rules i? ?egw: ilixfeﬂntjhen

Based on the idea and motivations described in the previous F — {_51.3. € DM | Cer* = Cery;}
subsection, we introduce a heuristic algorithm for generats:  Select oneS* € F such that|6*| > |6],Vd € F
ing decision rules in VPRS models. For any decision tablgy: Cond := Cond — 6*
DT = (U,C,d) and any precisiors € [0,0.5), our algorithm 21:  Remove all attributes ia* from DM
guarantees that the certainty of each generated rule is at legst Go back to Step. 4

equal to or higher than — . 23: else
Algorithm 1 consists of mainly the following three compo-24:  Construct a quotient séf/Rcong
nents: 25 for all D,, € D do
1) Calculation of certainty for selecting objects to stops: Construct the3-lower approximatiorCond ;( D)
discerning (Steps. 4-15). 27: for all [z] € U/Rcona such thatix] N Cond (D) N
2) Elimination of condition attributes that are not using for D,, # 0 do
generating decision rules (Steps. 18-22). 28: Rules := Rules U {(Cond,z) — (d,x)}
3) Construction of decision rules (Steps. 24-30). 29: end for

To guarantee the minimum certainty of generated decisi@q: end for
rules, we need to carefully select objects to stop discerningt: end if
Thus, for each pair of discernible objects in different decisiop2: return  Rules
classes, we need to check the influence of stopping these two
objects. In Steps. 4-15, the scater;; of each elemend;;
that corresponds to the pair of objeatsandz; means that, the biggest, among the elements of the discernibility matrix
if we would stop discerning;; andz;, the minimum certainty with the highest certainty score.
of generated decision rules would ber;;. Consequently, we  Finally, in Steps. 24-30, we need to use objects that are not
have to select a pair; and z; that satisfies the condition regarded as exceptions to generate decision rules that satisfy
Cer;; > 1 — [3 in Steps. 18-22, and we have to stop thithe conditionCer(-) > 1 — 3. As such the suitable objects,
selection if all scores of certainty are less than 3 because we select objects that belong to both a decision clagsand
further selection causes decrease of the minimum certaintyitsf 3-lower approximatiorCond;(D,,) by the set of selected
decision rules below to the threshald- 3. condition attributesCond. It is easily confirmed that all the

Moreover, to generate decision rules with as short agenerated decision rules by our algorithm satisfy the condition
tecedents as possible, we also need to decrease the numbe(:) > 1 — .
of condition attributes using for generating decision rules in
Steps. 18-22. Thus, for eliminating as many condition attribute Small Examples
as possible without decreasing the certainty of decision rulesin this subsection, we show two small examples to explain
below to the threshold — 3, we should select the longesthow the proposed algorithm works for consistent decision table
element, i.e., the number of contained condition attributesasd inconsistent decision table.
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TABLE Il TABLE IV

THE SCORECer;; OF EACH ELEMENTS;; IN TAB. Il THE REVISED DISCERNIBILITY MATRIX
1 X2 3 xr1 T2 x3 x4
zs | 05 0.75 05 x1 [
zs | 0.5 0 0.5 T2 0 0
z¢ | 0.67 0.75 0.67 x3 0 0 0
z7 | 05 0O 0.5 zq | {es}  {e2,e5)  {c2} 0
x5 | {c2 0 st 0
ze | {c2} 1] {c5} 0
xz7 | {c2} 0 {c5} 0

1) Case of Inconsistent Decision Tablelset DT be the

decision table presented by Tab.DM be the discernibility TABLE V
matrix of DT presented by Tab. I, and = 0.3. First, THE SCORECEer;; OF EACH ELEMENTO;; IN TAB. IV
we construct thes-unpredictable region by the set of all | &1 2 a3
condition attributesC. For both D; = {x;,z2,23} and i“ 8'2 8 g‘g
Dy = {x4,xs5,26,27}, only an equivalence class:s]c = ze | 05 0 05
{z2, 5,27} € U/Rc does not satisfy the condition gf- z7 | 05 0 05
lower approximation (11). Then, the complement of ke
positive region ofD by C is
U— posg(p) = {29, 25, 27} discerning can not provide decision rules wittr(-) > 1—,

and therefore we finish the selection of condition attributes and
Table Il presents the scor€er;; of each non-empty fix the setCond = {cs,¢s}.
elementd;; in Tab. Il. Note that all the omitted scores in Finally, for generating decision rules frofiond = {c2, ¢5},
Tab Ill are 0. For example, the value 0.5 that correspongg construct the quotient sef/Rcynq and the 3-lower

to objectsz; and T3 means thatcerm i.e., the score of ‘approximation of each decision class. Equivalence classes in
973 = {c1,cq,¢5,¢6}, 15 0.5 and is calculated as follows; F'FStU/RCO,,Ld are

we construct the sdynrs = {z2, x4, x5, 27} becausé,, ds3,

and §-3 itself are included invz3 andzs € U — POSS(D) [21]cona = {71}, [22]cond = {72, 75, 76, 27},
holds. . [23]cona = {z3}, [4]cona = {z4}
Then, using the sefond — d73 = {c2,c3}, we have a set
573 of equiva|ence C|asses that Consists of The 6'|0Wer apprOXimatiOHS Of deCiSion Classes are
[332} = {$2,$37l'5,$7}, ['rll] = {.1:173,'4}. Mﬁ(Dl) = {xlny}y
Condg(D2) = {w2,24,75, 26,77}

This meant that we could not discern any objects[ig]

(similarly, any objects inz,]) if we stopped discerning the  consequently, we get the set of decision ruRges that

two objectsz; andx3 by rejecting all condition attributes in -gnsists of the following four decision rules such that(-) >
d73. Finally, we calculate the following certainty scores[ef] | _ B=0.7:

and(z4J: e (2=1)A(c5b=1)— (d=M), Certainty = 1.
Cor2. - @2lNDs| 1 e (2=0)A(ch=0)— (d=M), Certainty = 1.
T )l 2 e (2=0)A(c5h=1)— (d=F), Certainty = 0.75.
4 [za) N Dy 1 e (2=1)A(ch =0) — (d=F), Certainty = 1.
Cerzs = ] 2 Note that these rules are based on giving up discerning two

discernible elementsg and z, andx, € D, is regarded as
an exception olCond;(D>).

2) Case of Consistent Decision Tabletet DT2 be a
consistent decision table presented by Tab. VI. There is just
one difference between Tab. | and Tab. VI, i. e., the value of the
anddgs = {c1, s, ca,co) and we selectiz becausedss| — objectxg_ at th_e attribute:; and this difference enable us to dis-

4 > 2 = |04| holds. This selection corresponds to give ufc"" objects inDy = {z1,2,z3} and Dy = {x4, 25,35, 27}

discerning the objectss andz,. Then, we revise the sébnd completely. Tab. VII presents the discernibility matrix, denoted
as followg' ) 6 2 " by DM2, of DT2. Differences between Tab. Il and Tab. VII

appear in elementd,s, 52, dg2, anddro. Similar to the case

of inconsistent decision table, let the precisione- 0.3.

We also remove all condition attributes dg, from Tab. II. Because Tab. VI is consistent, it is clear that all equivalence
Table IV and Tab. V present the revised discernibility matriglasses inJ/R¢ satisfy the condition of3-lower approxima-

and the scores of non-empty elements in Tab IV, respectivetipn (11) and the complement of th&positive region ofD

From the scores in Tab. V, further selection of objects to stdqy C' is empty, i.e.,U — POS@(D) = 0.

andconsequently we have the scafer;3 = 0.5 of 3. This
score indicates that the minimum certainty of decision rul
would be 0.5 if we construct decision rules by the Getd —
d73 = {c2, c3}.

Here, the highest score in Tab. Ill is 0.75&% = {co, 5}

Cond := C — dg2 = {ca,¢5}-
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TABLE VI TABLE VI

AN EXAMPLE OF CONSISTENT DECISION TABLE THE SCORECer;; OF EACH ELEMENTS;; IN TAB. VII
[U e c2 c3 ca o cg  d] | 1 ® w3
T 1 1 1 1 1 1 M T4 0.5 0.75 05
) 0 0 1 0 1 1 M x5 0.67 0.67 0.5
T3 0 0 1 1 0 0 M zg | 0.67 05 0.5
T4 1 1 1 0 0 1 F z7 | 0.67 0.67 0.5
Ts5 1 0 1 0 1 1 F
g 0 0 0 1 1 0 F
zz |1 0 1 0 1 1 F TABLE IX
THE DISCERNIBILITY MATRIX OF TABLE VI
xy x2 x3 x4
TABLE VI 1 1)
THE DISCERNIBILITY MATRIX OF TABLE VI o 0 0
- - %3 Ty - z3 0 0 0
1 1] x4 {ca} 1] {ca,c6} 0
x2 ) 0 w5 | {ca} 0 {ca,c6} 0
x3 0 0 0 xz6 | {c3,c6} {c3,ca,c6} {c3} 0
T4 {ca,c5} {c1,c2,c5}  {c1,c2,c4,c6} [1} 7 {ca} 0 {ca,c6} 0
z5 {e2,ca} {e1} {c1,c4,¢c5,c6} 0
xz6 | {c1,c2,c3,c6} {c3,ca,c6} {e3,c5} 1]
x7 {e2,ca} {e1} {c1,ca,¢5,c6} 0

e (B3=0)A(cd=1)A(c6=0)— (d=F),
Certainty = 1.
Note that these rules are based on giving up discerning two
discernible elements, andz, andxz, € D, is regarded as
an exception olCond;(Dy).

Table VIII presents the scor€er;; of each non-empty
elements,; in Tab. VII by computing the scor€er;; of each
elementd;; in DM?2 with the same procedure of the case i
Tab. Ill. Note that all the omitted scores in Tab VIII are 0. IV. DISCUSSION

Here, the highest score in Tab. VIilis 0.75@% = {cz, c5} As we described in Sec. IlI-A, the main idea of this paper is
and we seleci,, which corresponds to give up d|scern|ng they give up discerning some discernible objects that belong to
objectsz, andxz. Then, we revise the s€ond as follows:  gigterent decision classes each other. The examples presented

Cond := C — 649 = {c3, 4, c6}- in the previous se_c'_[ion indicate that this idea may enable us
N ) to generated decision rules such that the certainty of each
We also remove all condition attributes o, from Tab. VII. generated rule is at least equal to or higher than 3. In

Table [X and Tab. X present the revised discernibility matrixarticular, the example of the case of consistent decision table
and the scores of non-empty elements in Tab IX, respectivelygicate the possibility of generating decision rules with some
After this revision, however, further selection of objects to Stogkceptions from consistent decision tables. Thus, combining
discerning can not provide decision rules withr(-) > 1— 0,  the proposed algorithm to a heuristic attribute reduction al-
and therefore we finish the selection of condition attributes a@@rithm based on generating reduced decision tables [3], it
fix the setCond = {c3, cs, c6}. is possible to generated decision rules with some exceptions

Finally, for generating decision rules frotbnd = {c4},  from decision tables with numerous condition attributes.
we construct the quotient set/Rcona and the g-lower  Here, we consider the relationship between the Getd
approximation of each decision class. Equivalence classes kg for constructing decision rules at Steps. 24-30 in Algo-
U/Rcona are rithm 1 andg-reducts proposed by Beynon [2}-reducts are

[21)cond = {71}, [22)cond = {22, T4, 75, 27}, based on the quality of classification defined by

) = {z X = {1q ep | Bg(D;
[w3]cona = {3}, [26]cona = {6} 23(D) = Zmeomg( )| (15)
The -lower approximations of decision classes are _ N _
Formally, a 5-reduct is a set of condition attributes C C'
Condg(D1) = {x1,73}, that satisfies the following two conditions:

Mﬁ(DQ) = {LL‘27£L'4,1'5,$6,LL'7}. 1) ’Yg(D) :’Y%(D)
Consequently, we get the set of decision rulesles that 2) 7p(D) # 'VC(D)_ for any proper subse CA .
consists of the following four decision rules such tfat(-) > Thus, theg-reduct A is a minimal set of condition attributes

1-3=0.T: that preserves the quality of classification by the set of all
— _ _ _ condition attributes”.
) ggrgi%t(cf =UAB=1) = ([d=M), The setCond = {cz, ¢5} used in Section IlI-C1 is, however,
e (3=1)A (04' — 1) A(c6=0) — (d=M) not ag-reduct because it does not preserve the quality of clas-
Cer';unt =1 B B e sification in the case gf = 0.3. The 0.3-lower approximations
. (3= 1)y/\ (64': 0)A(c6=1) — (d=F) of decision classes in Tab. | by are
Certainty = 0.75. Co3(D1) = {21, 23}, Co3(Da) = {wa, 26},
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TABLE X

THE SCORECkr;; OF EACH ELEMENTS;; IN TAB. IX 3]
| 1 T2 X3
T4 0.6 0 0.5
x5 | 06 0 05 [4]
zg | 0.67 0 0.5
27| 06 0 05 (5]
[6]
and therefore the quality of classification is 7]
2+2 4
0.3
16" (D) = T
(8]

On the other hand, the quality of classification 6ynd is

Cond, 5(D1)| + |Cond, 5(D2)|
0.3 (p) — | 0.3 0.3
IYCond( ) 7

and thereforey;? (D) # 1%*(D).

However, from the viewpoint of the quality of classification,
the setCond used for generating decision rules satisfies
the following good property. The proof is obvious from the
construction method ofond in Algorithm 1.

Proposition 1: For any precisiorg € [0, 0.5), the following
inequality holds:

Pygond(p) Z ’ng(D)

Thus, the quality of classification bgond C C is at least
equal to or higher than the quality of classification®@yThis
property indicates that, by not using some condition attributes
for suitably ignoring some exceptions, we may be able to
construct better classification of objects rather than the case
of using all condition attributes.

(16)

V. CONCLUSION

In this paper, we proposed a heuristic algorithm to extract
decision rules based on the VPRS models. The main idea
of our algorithm is based on construction of suitakie
lower approximations by giving up to discern some discernible
objects that belong to different decision classes each other. All
decision rules extracted by our algorithm are guaranteed that
the certainty of all extracted decision rules are equal to or
higher than the predefined threshold of certainty.

There are many future issues. First, we need to refine the
proposed algorithm and compare other algorithms to gener-
ated decision rules that guarantee the minimum accuracy of
generated rules, for example, the Apriori algorithm proposed
by Agrawal and Srikant [1] by applying our algorithm and
other methods to larger datasets. Moreover, by improving our
algorithm, proposal of a heuristic algorithm to compute
reducts is also an interesting issue.
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