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Abstract—In this paper, we propose a heuristic algorithm to
extract decision rules based on variable precision rough set
models (VPRS models). The VPRS models provides a theoretical
basis of regarding probabilistic / inconsistent information in the
framework of rough set theory. The main idea of our algorithm
is based on construction of suitableβ-lower approximations by
giving up to discern some discernible objects that belong to
different decision classes each other. All decision rules extracted
by our algorithm are guaranteed that the certainty of all
extracted decision rules are equal to or higher than the predefined
threshold of certainty.

I. I NTRODUCTION

Extraction of decision rules is an important application of
rough set theory [4], [5] from a viewpoint of data analysis.
Variable precision rough set models (for short, VPRS models)
proposed by Ziarko [8] provides a theoretical basis of regard-
ing probabilistic / inconsistent information in the framework
of rough set theory.

In this paper, we propose a heuristic algorithm to extract
decision rules based on the VPRS models. The main idea
of our algorithm is based on construction of suitableβ-
lower approximations by giving up to discern some discernible
objects that belong to different decision classes each other. All
decision rules extracted by our algorithm are guaranteed that
the certainty of all extracted decision rules are equal to or
higher than the predefined threshold of certainty.

The rest of this paper is organized as follows. In Section II,
we review Pawlak’s rough set theory and the VPRS models
as the background of this paper. In Section III, we introduce
a heuristic algorithm to extract decision rules based on the
VPRS models, and describe small examples to explain how
the proposed algorithm works. We discuss a few properties of
the proposed algorithm in Section IV and finally conclude this
paper in Section V.

II. ROUGH SETS

In this section, we review the foundations of rough set
theory as background for this paper. The contents of this
section are based on [5], [6], [8].

A. Lower and Upper Approximations in Decision Tables

In rough set data analysis, objects as targets of analysis
are illustrated by combination of multiple attributes and those

values, and represented by the following decision table:

DT = (U,C, d), (1)

where U is the set of objects,C is the set of condition
attributes such that each attributea ∈ C is a function
a : U → Va from U to the value setVa of a, and d is a
function d : U → Vd called the decision attribute.

The indiscernibility relationRB on U with respect to a
subsetB ⊆ C is defined by

xRBy ⇐⇒ a(x) = a(y), ∀a ∈ B. (2)

The equivalent class[x]B of x ∈ U by RB is the set of objects
that are not discernible withx even though using all attributes
in B. Any indiscernibility relation provides a partition ofU .
We denote the partition ofU by RB , i.e., the quotient set by
RB , by U/RB . In particular, the partitionD = {D1, · · · , Dm}
provided by the indiscernibility relationRd with respect to the
decision attributed is called the set of decision classes.

For any decision classDi (1 ≤ i ≤ m)，the lower
approximationB(Di) and theupper approximationB(Di) of
Di with respectto the indiscernibility relationRB are defined
as follows, respectively:

B(Di) = {x ∈ U | [x]B ⊆ Di}, (3)

B(Di) = {x ∈ U | [x]B ∩ Di ̸= ∅}. (4)

Note that a decision table is called consistent if and only if
C(Di) = Di = C(Di) holds forall decision classesDi ∈ D.

Table I is an example of a decision table used in [2] and this
decision table consists of the set of objectsU = {x1, · · · , x6},
the set of condition attributesC = {c1, · · · , c6} and the
decision attributed. For example, an attributec1 is a function
c1 : U → {0, 1}, and the value of an objectx1 ∈ U at c1

is 1, that is, c1(x1) = 1. The decision attributedd provides
the following two decision classes;D1 = {x1, x2, x3}, and
D2 = {x4, x5, x6, x7}. Note that this table is not consistent be-
causeC(D1) = {x1, x3} and C(D1) = {x1, x2, x3, x5, x7},
andC(D1) = D1 = C(D1) does nothold.

B. Decision Rules

We denote a decision rule constructed from a subsetB ⊆ C
of condition attribute, the decision attributed and an object
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TABLE I
AN EXAMPLE OF DECISION TABLE

U c1 c2 c3 c4 c5 c6 d

x1 1 1 1 1 1 1 M
x2 1 0 1 0 1 1 M
x3 0 0 1 1 0 0 M
x4 1 1 1 0 0 1 F
x5 1 0 1 0 1 1 F
x6 0 0 0 1 1 0 F
x7 1 0 1 0 1 1 F

x ∈ U by (B, x) → (d, x). The concepts of certainty and
coverage are well-known criteria for evaluating decision rules,
however, we only use the certainty in this paper. For any
decision rule(B, x) → (d, x), the scoreCer(·) of certainty
of the decision rule is defined by

Cer((B, x) → (d, x)) =
|[x]B ∩ Di|

|[x]B |
, (5)

where|X| is the cardinality of the setX andDi is the decision
class such thatx ∈ Di.

For example, a decision rule(B, x7) → (d, x7) constructed
from a setB = {c1, c2}, the decision attributed and an object
x7 ∈ U has actually the following form:

(c1 = 1) ∧ (c2 = 0) → (d = F),

and its certainty is23 .

C. Discernibility Matrices

The discernibility matrix [7] is generally used for computing
all relative reducts in the given decision table. LetDT be a
decision table with|U | objects, where|U | is the cardinality
of U . The discernibility matrixDM of DT is a symmetric
|U | × |U | matrix whose element ati-th row andj-th column
is the following set of condition attributes to discern between
two objectsxi and xj . Each elementa ∈ δij represents that
xi andxj are discernible by checking the value ofa:

δij =



{a ∈ C | a(xi) ̸= a(xj)}, if d(xi) ̸= d(xj) and
{xi, xj} ∩ POSC(D) ̸= ∅,

∅, otherwise,
(6)

wherePOSB(D) is the positive region ofD by B ⊆ C and
defined by

POSB(D) =
⋃

Di∈D

B(Di). (7)

Table II is the discernibility matrix of the decision table
presented by Tab. I. Note that we omit upper triangular
components of the discernibility matrix and the columns of
x5, x6, andx7 in Table II.

D. Variable Precision Rough Set Models

VPRS models [8] generalize Pawlak’s rough set models
by generalizing the notion of the standard set inclusion,
and provide a theoretical basis for dealing with inconsistent
information in the framework of rough sets. Suppose that a

TABLE II
THE DISCERNIBILITY MATRIX OF TABLE I

x1 x2 x3 x4 · · ·
x1 ∅
x2 ∅ ∅
x3 ∅ ∅ ∅
x4 {c4, c5} {c2, c5} {c1, c2, c4, c6} ∅
x5 {c2, c4} ∅ {c1, c4, c5, c6} ∅
x6 {c1, c2, c3, c6} {c1, c3, c4, c6} {c3, c5} ∅
x7 {c2, c4} ∅ {c1, c4, c5, c6} ∅

decision table(U,C, d) is given. For any setsX, Y ⊆ U
of objects, the measurec(X, Y ) of the relative degree of
misclassification of the setX with respect to the setY is
defined by

c(X, Y ) =





1 − |X ∩ Y |
|X|

, if |X| > 0,

0, if |X| = 0.
(8)

The relative degreec(X, Y ) represents that if we were to
classify all objects ofX into Y , then the misclassification
error ratio would bec(X, Y ) × 100%. It is easy to confirm
that the following property holds for any setsX,Y ⊆ U :

X ⊆ Y ⇐⇒ c(X, Y ) = 0. (9)

Thus, by setting an admissible classification error ratio, called
a precisionβ (0 ≤ β < 0.5), the set inclusion is generalized
by

X
β

⊆ Y ⇐⇒ c(X, Y ) ≤ β. (10)

Let RB be an indiscernibility relation with respect to
B ⊆ C, and U/RB be the quotient set based onRB . For
each decision classDi, the β-lower approximationBβ(Di)
and the β-upper approximationBβ(Di) with respect toRB

are introduced by

Bβ(Di) =
⋃

{[x]B ∈ U/RB | [x]B
β

⊆ Di} (11)

= {x ∈ U | c([x]B , Di) ≤ β}, (12)

Bβ(Di) = {x ∈ U | c([x]B , Di) < 1 − β}. (13)

It is easy to confirm thatB0(Di) = B(Di) and B0(Di) =
B(Di) hold, i.e., theβ-lower (upper) approximation is iden-
tical to Pawlak’s lower (upper) approximation in the case of
β = 0.

Similar to the case of Pawlak’s rough sets, theβ-positive
region ofDi by B ⊆ C is defined by

POSβ
B(D) =

⋃

Di∈D
Bβ(Di). (14)

I II. A H EURISTIC ALGORITHM FOR GENERATING

DECISION RULES IN VPRS MODELS

In this section, we propose a heuristic algorithm for generat-
ing decision rules in VPRS models and show a small example
to explain how the proposed algorithm works.
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A. Main Idea and Motivation

For generating decision rules with some exceptions in VPRS
models, the main idea of our algorithm that we propose later
is to give up discerning some discernible objects that belong
to different decision classes each other This idea is based on
the following motivations:

• In some cases, by giving up discerning some discernible
objects, we can generate decision rules with shorter
antecedents.

• Even though the given decision table is consistent, giving
up discerning some discernible objects may enable us to
present concise decision rules that ignore small differ-
ences between objects as exceptions.

Thus, in the algorithm we propose later, we intend to generate
decision rules that satisfy the following constraints:

1) The certainty of all generated decision rules is at least
equal to or higher than the given precisionβ ∈ [0, 0.5)
in the VPRS model.

2) The length of antecedents of generated decision rules
are as short as possible.

B. Algorithm for Generating Decision Rules

Based on the idea and motivations described in the previous
subsection, we introduce a heuristic algorithm for generat-
ing decision rules in VPRS models. For any decision table
DT = (U,C, d) and any precisionβ ∈ [0, 0.5), our algorithm
guarantees that the certainty of each generated rule is at least
equal to or higher than1 − β.

Algorithm 1 consists of mainly the following three compo-
nents:

1) Calculation of certainty for selecting objects to stop
discerning (Steps. 4–15).

2) Elimination of condition attributes that are not using for
generating decision rules (Steps. 18–22).

3) Construction of decision rules (Steps. 24–30).

To guarantee the minimum certainty of generated decision
rules, we need to carefully select objects to stop discerning.
Thus, for each pair of discernible objects in different decision
classes, we need to check the influence of stopping these two
objects. In Steps. 4–15, the scoreCerij of each elementδij

that corresponds to the pair of objectsxi andxj means that,
if we would stop discerningxi andxj , the minimum certainty
of generated decision rules would beCerij . Consequently, we
have to select a pairxi and xj that satisfies the condition
Cerij ≥ 1 − β in Steps. 18–22, and we have to stop this
selection if all scores of certainty are less than1− β because
further selection causes decrease of the minimum certainty of
decision rules below to the threshold1 − β.

Moreover, to generate decision rules with as short an-
tecedents as possible, we also need to decrease the number
of condition attributes using for generating decision rules in
Steps. 18–22. Thus, for eliminating as many condition attribute
as possible without decreasing the certainty of decision rules
below to the threshold1 − β, we should select the longest
element, i.e., the number of contained condition attributes is

Algorithm 1 Decision rules generation algorithm

Input: decisiontableDT = (U,C, d), precisionβ ∈ [0, 0.5)
Output: set of decision rulesRules

1: Rules = ∅, Cond = C
2: Compute the discernibility matrixDM of DT
3: Compute the complement ofβ-positive region ofD by C,

i.e., U − POSβ
C(D)

4: for all δij ∈ DM such thati > j do
5: if δij ̸= Cond and δij ̸= ∅ then
6: Ignij = {xk ∈ U |δkl ∈ DM, δkl ⊆ δij} ∪ (U −

POSβ
C(D))

7: Eij = {[xk]Cond−δij | xk ∈ Ignij}
8: for all [xk] ∈ Eij do

9: Cerk
ij = max

Dm∈D

|[xk] ∩ Dm|
|[xk]|

10: end for
11: Cerij = mink Cerk

ij

12: else
13: Cerij = 0
14: end if
15: end for
16: Cer∗ = maxCerij

17: if Cer∗ ≥ 1 − β then
18: F = {δij ∈ DM | Cer∗ = Cerij}
19: Select oneδ∗ ∈ F such that|δ∗| ≥ |δ|,∀δ ∈ F
20: Cond := Cond − δ∗

21: Remove all attributes inδ∗ from DM
22: Go back to Step. 4
23: else
24: Construct a quotient setU/RCond

25: for all Dm ∈ D do
26: Construct theβ-lower approximationCondβ(Dm)
27: for all [x] ∈ U/RCond such that[x]∩Condβ(Dm)∩

Dm ̸= ∅ do
28: Rules := Rules ∪ {(Cond, x) → (d, x)}
29: end for
30: end for
31: end if
32: return Rules

the biggest, among the elements of the discernibility matrix
with the highest certainty score.

Finally, in Steps. 24–30, we need to use objects that are not
regarded as exceptions to generate decision rules that satisfy
the conditionCer(·) ≥ 1 − β. As such the suitable objects,
we select objects that belong to both a decision classDm and
its β-lower approximationCondβ(Dm) by the set of selected
condition attributesCond. It is easily confirmed that all the
generated decision rules by our algorithm satisfy the condition
Cer(·) ≥ 1 − β.

C. Small Examples

In this subsection, we show two small examples to explain
how the proposed algorithm works for consistent decision table
and inconsistent decision table.
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TABLE III
THE SCORECerij OF EACH ELEMENTδij IN TAB . II

x1 x2 x3

x4 0.5 0.75 0.5
x5 0.5 0 0.5
x6 0.67 0.75 0.67
x7 0.5 0 0.5

1) Case of Inconsistent Decision Tables:Let DT be the
decision table presented by Tab. I,DM be the discernibility
matrix of DT presented by Tab. II, andβ = 0.3. First,
we construct theβ-unpredictable region by the set of all
condition attributesC. For both D1 = {x1, x2, x3} and
D2 = {x4, x5, x6, x7}, only an equivalence class[x2]C =
{x2, x5, x7} ∈ U/RC does not satisfy the condition ofβ-
lower approximation (11). Then, the complement of theβ-
positive region ofD by C is

U − POSβ
C(D) = {x2, x5, x7}.

Table III presents the scoreCerij of each non-empty
elementδij in Tab. II. Note that all the omitted scores in
Tab III are 0. For example, the value 0.5 that corresponds
to objectsx7 and x3 means thatCer73, i.e., the score of
δ73 = {c1, c4, c5, c6}, is 0.5 and is calculated as follows; First,
we construct the setIgn73 = {x2, x4, x5, x7} becauseδ41, δ53,
and δ73 itself are included inδ73 and x2 ∈ U − POSβ

C(D)
holds.

Then, using the setCond − δ73 = {c2, c3}, we have a set
E73 of equivalence classes that consists of

[x2] = {x2, x3, x5, x7}, [x4] = {x1, x4}.

This meant that we could not discern any objects in[x2]
(similarly, any objects in[x4]) if we stopped discerning the
two objectsx7 andx3 by rejecting all condition attributes in
δ73. Finally, we calculate the following certainty scores of[x2]
and [x4]:

Cer2
73 =

|[x2] ∩ D2|
|[x2]|

=
1
2
,

Cer4
73 =

|[x4] ∩ D1|
|[x4]|

=
1
2
,

andconsequently we have the scoreCer73 = 0.5 of δ73. This
score indicates that the minimum certainty of decision rules
would be 0.5 if we construct decision rules by the setCond−
δ73 = {c2, c3}.

Here, the highest score in Tab. III is 0.75 ofδ42 = {c2, c5}
and δ62 = {c1, c3, c4, c6} and we selectδ62 because|δ62| =
4 > 2 = |δ42| holds. This selection corresponds to give up
discerning the objectsx6 andx2. Then, we revise the setCond
as follows:

Cond := C − δ62 = {c2, c5}.

We also remove all condition attributes inδ62 from Tab. II.
Table IV and Tab. V present the revised discernibility matrix

and the scores of non-empty elements in Tab IV, respectively.
From the scores in Tab. V, further selection of objects to stop

TABLE IV
THE REVISED DISCERNIBILITY MATRIX

x1 x2 x3 x4 · · ·
x1 ∅
x2 ∅ ∅
x3 ∅ ∅ ∅
x4 {c5} {c2, c5} {c2} ∅
x5 {c2} ∅ {c5} ∅
x6 {c2} ∅ {c5} ∅
x7 {c2} ∅ {c5} ∅

TABLE V
THE SCORECerij OF EACH ELEMENTδij IN TAB . IV

x1 x2 x3

x4 0.5 0 0.5
x5 0.5 0 0.5
x6 0.5 0 0.5
x7 0.5 0 0.5

discerning can not provide decision rules withCer(·) ≥ 1−β,
and therefore we finish the selection of condition attributes and
fix the setCond = {c2, c5}.

Finally, for generating decision rules fromCond = {c2, c5},
we construct the quotient setU/RCond and the β-lower
approximation of each decision class. Equivalence classes in
U/RCond are

[x1]Cond = {x1}, [x2]Cond = {x2, x5, x6, x7},
[x3]Cond = {x3}, [x4]Cond = {x4}.

The β-lower approximations of decision classes are

Condβ(D1) = {x1, x3},
Condβ(D2) = {x2, x4, x5, x6, x7}.

Consequently, we get the set of decision rulesRules that
consists of the following four decision rules such thatCer(·) ≥
1 − β = 0.7:

• (c2 = 1) ∧ (c5 = 1) → (d = M), Certainty = 1.
• (c2 = 0) ∧ (c5 = 0) → (d = M), Certainty = 1.
• (c2 = 0) ∧ (c5 = 1) → (d = F), Certainty = 0.75.
• (c2 = 1) ∧ (c5 = 0) → (d = F), Certainty = 1.

Note that these rules are based on giving up discerning two
discernible elementsx6 and x2 and x2 ∈ D1 is regarded as
an exception ofCondβ(D2).

2) Case of Consistent Decision Tables:Let DT2 be a
consistent decision table presented by Tab. VI. There is just
one difference between Tab. I and Tab. VI, i. e., the value of the
objectx2 at the attributec1 and this difference enable us to dis-
cern objects inD1 = {x1, x2, x3} andD2 = {x4, x5, x6, x7}
completely. Tab. VII presents the discernibility matrix, denoted
by DM2, of DT2. Differences between Tab. II and Tab. VII
appear in elementsδ42, δ52, δ62, andδ72. Similar to the case
of inconsistent decision table, let the precision beβ = 0.3.

Because Tab. VI is consistent, it is clear that all equivalence
classes inU/RC satisfy the condition ofβ-lower approxima-
tion (11) and the complement of theβ-positive region ofD
by C is empty, i.e.,U − POSβ

C(D) = ∅.
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TABLE VI
AN EXAMPLE OF CONSISTENT DECISION TABLE

U c1 c2 c3 c4 c5 c6 d

x1 1 1 1 1 1 1 M
x2 0 0 1 0 1 1 M
x3 0 0 1 1 0 0 M
x4 1 1 1 0 0 1 F
x5 1 0 1 0 1 1 F
x6 0 0 0 1 1 0 F
x7 1 0 1 0 1 1 F

TABLE VII
THE DISCERNIBILITY MATRIX OF TABLE VI

x1 x2 x3 x4 · · ·
x1 ∅
x2 ∅ ∅
x3 ∅ ∅ ∅
x4 {c4, c5} {c1, c2, c5} {c1, c2, c4, c6} ∅
x5 {c2, c4} {c1} {c1, c4, c5, c6} ∅
x6 {c1, c2, c3, c6} {c3, c4, c6} {c3, c5} ∅
x7 {c2, c4} {c1} {c1, c4, c5, c6} ∅

Table VIII presents the scoreCerij of each non-empty
elementδij in Tab. VII by computing the scoreCerij of each
elementδij in DM2 with the same procedure of the case in
Tab. III. Note that all the omitted scores in Tab VIII are 0.

Here, the highest score in Tab. VIII is 0.75 ofδ42 = {c2, c5}
and we selectδ42, which corresponds to give up discerning the
objectsx4 andx2. Then, we revise the setCond as follows:

Cond := C − δ42 = {c3, c4, c6}.

We also remove all condition attributes inδ42 from Tab. VII.
Table IX and Tab. X present the revised discernibility matrix

and the scores of non-empty elements in Tab IX, respectively.
After this revision, however, further selection of objects to stop
discerning can not provide decision rules withCer(·) ≥ 1−β,
and therefore we finish the selection of condition attributes and
fix the setCond = {c3, c4, c6}.

Finally, for generating decision rules fromCond = {c4},
we construct the quotient setU/RCond and the β-lower
approximation of each decision class. Equivalence classes in
U/RCond are

[x1]Cond = {x1}, [x2]Cond = {x2, x4, x5, x7},
[x3]Cond = {x3}, [x6]Cond = {x6}.

The β-lower approximations of decision classes are

Condβ(D1) = {x1, x3},
Condβ(D2) = {x2, x4, x5, x6, x7}.

Consequently, we get the set of decision rulesRules that
consists of the following four decision rules such thatCer(·) ≥
1 − β = 0.7:

• (c3 = 1) ∧ (c4 = 1) ∧ (c6 = 1) → (d = M),
Certainty = 1.

• (c3 = 1) ∧ (c4 = 1) ∧ (c6 = 0) → (d = M),
Certainty = 1.

• (c3 = 1) ∧ (c4 = 0) ∧ (c6 = 1) → (d = F),
Certainty = 0.75.

TABLE VIII
THE SCORECerij OF EACH ELEMENTδij IN TAB . VII

x1 x2 x3

x4 0.5 0.75 0.5
x5 0.67 0.67 0.5
x6 0.67 0.5 0.5
x7 0.67 0.67 0.5

TABLE IX
THE DISCERNIBILITY MATRIX OF TABLE VI

x1 x2 x3 x4 · · ·
x1 ∅
x2 ∅ ∅
x3 ∅ ∅ ∅
x4 {c4} ∅ {c4, c6} ∅
x5 {c4} ∅ {c4, c6} ∅
x6 {c3, c6} {c3, c4, c6} {c3} ∅
x7 {c4} ∅ {c4, c6} ∅

• (c3 = 0) ∧ (c4 = 1) ∧ (c6 = 0) → (d = F),
Certainty = 1.

Note that these rules are based on giving up discerning two
discernible elementsx4 and x2 and x2 ∈ D1 is regarded as
an exception ofCondβ(D2).

IV. D ISCUSSION

As we described in Sec. III-A, the main idea of this paper is
to give up discerning some discernible objects that belong to
different decision classes each other. The examples presented
in the previous section indicate that this idea may enable us
to generated decision rules such that the certainty of each
generated rule is at least equal to or higher than1 − β. In
particular, the example of the case of consistent decision table
indicate the possibility of generating decision rules with some
exceptions from consistent decision tables. Thus, combining
the proposed algorithm to a heuristic attribute reduction al-
gorithm based on generating reduced decision tables [3], it
is possible to generated decision rules with some exceptions
from decision tables with numerous condition attributes.

Here, we consider the relationship between the setCond
used for constructing decision rules at Steps. 24–30 in Algo-
rithm 1 andβ-reducts proposed by Beynon [2].β-reducts are
based on the quality of classification defined by

γβ
B(D) =

∑
Di∈D |Bβ(Di)|

|U |
. (15)

Formally, a β-reduct is a set of condition attributesA ⊆ C
that satisfies the following two conditions:

1) γβ
A(D) = γβ

C(D).
2) γβ

B(D) ̸= γβ
C(D) for any proper subsetB ⊂ A.

Thus, theβ-reductA is a minimal set of condition attributes
that preserves the quality of classification by the set of all
condition attributesC.

The setCond = {c2, c5} used in Section III-C1 is, however,
not aβ-reduct because it does not preserve the quality of clas-
sification in the case ofβ = 0.3. The 0.3-lower approximations
of decision classes in Tab. I byC are

C0.3(D1) = {x1, x3}, C0.3(D2) = {x4, x6},
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TABLE X
THE SCORECerij OF EACH ELEMENTδij IN TAB . IX

x1 x2 x3

x4 0.6 0 0.5
x5 0.6 0 0.5
x6 0.67 0 0.5
x7 0.6 0 0.5

and therefore the quality of classification is

γ0.3
C (D) =

2 + 2
7

=
4
7
.

On the other hand, the quality of classification byCond is

γ0.3
Cond(D) =

|Cond0.3(D1)| + |Cond0.3(D2)|
7

=
2 + 5

7
= 1,

and thereforeγ0.3
Cond(D) ≠ γ0.3

C (D).
However, from the viewpoint of the quality of classification,

the set Cond used for generating decision rules satisfies
the following good property. The proof is obvious from the
construction method ofCond in Algorithm 1.

Proposition 1: For any precisionβ ∈ [0, 0.5), the following
inequality holds:

γβ
Cond(D) ≥ γβ

C(D). (16)

Thus, the quality of classification byCond ⊆ C is at least
equal to or higher than the quality of classification byC. This
property indicates that, by not using some condition attributes
for suitably ignoring some exceptions, we may be able to
construct better classification of objects rather than the case
of using all condition attributes.

V. CONCLUSION

In this paper, we proposed a heuristic algorithm to extract
decision rules based on the VPRS models. The main idea
of our algorithm is based on construction of suitableβ-
lower approximations by giving up to discern some discernible
objects that belong to different decision classes each other. All
decision rules extracted by our algorithm are guaranteed that
the certainty of all extracted decision rules are equal to or
higher than the predefined threshold of certainty.

There are many future issues. First, we need to refine the
proposed algorithm and compare other algorithms to gener-
ated decision rules that guarantee the minimum accuracy of
generated rules, for example, the Apriori algorithm proposed
by Agrawal and Srikant [1] by applying our algorithm and
other methods to larger datasets. Moreover, by improving our
algorithm, proposal of a heuristic algorithm to computeβ-
reducts is also an interesting issue.
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