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Perfectly Matched Layers for Elastic Waves in Piezoelectric Solids

Koji Hasegawa∗ and Shingo Sato

Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

The material constants of perfectly matched layers (PMLs) for elastic waves in piezoelectric solids in

orthogonal coordinates, such as the cylindrical and spherical coordinates, in the frequency domain were

derived from the differential form. Using the coordinate transformation laws of tensors, the quotient rule, and

complex coordinate stretching, we obtained the material parameters of PMLs in the real coordinate. Our

results on stress and piezoelectric stress constants are different from the parameters determined by the

analytic continuation because we include or exclude the transformation of the contravariant components in

the differential form or the analytic continuation, respectively. The presented results are extensions of our

results for anisotropic solids without piezoelectricity.

1. Introduction

Perfectly matched layers (PMLs) for elastic and electromagnetic waves are widely used in

the finite-difference time-domain (FD-TD) method and the finite element method (FEM). A

PML is an absorbing boundary condition for truncating the computational domain of open

regions without reflection of oblique incident waves. In 1994, Berenger invented a PML for

electromagnetic waves in the FD-TD method by a splitting field method.1) The extension of

PMLs to elastic waves in isotropic solids in the Cartesian coordinate first appeared in 1996.2, 3)

In the cylindrical and spherical coordinates, PMLs were presented by a splitting field method

in isotropic solids in 19994) and by analytic continuation or complex coordinate stretching5, 6)

in anisotropic solids in 2002.7) Recently, the validity and usefulness of PMLs derived from

the analytic continuation in piezoelectric solids was demonstrated.8–10)

We recommend that readers who are unfamiliar with PMLs consult Taflove and Hang-

ness11) about PMLs in electromagnetic waves, Kucukcoban and Kallivokas,12) and Basu and

Chopra13) about the FEM implementation of PMLs in transient and time-harmonic elastody-

namics, respectively.

From the differential form, we have derived PMLs for elastic waves in the Cartesian,14)

cylindrical, and spherical coordinates15) and demonstrated the validity of our PML con-
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stants.14, 16) Our derivation revealed that the contravariant components of stress tensors and

the particle displacement vectors in the analytic continuation are not transformed into real

space.14) Therefore, the discrepancy in the stiffness constants derived from the two methods,

one is based on the differential form14, 16) and the other use analytic continuation,7) exists.

In this paper, we examine the derivation of PMLs of elastic wave propagation in piezo-

electric solids from the differential form. PML material parameters in the orthogonal coor-

dinate systems such as the Cartesian, cylindrical, and spherical coordinates are presented.

A discrepancy in piezoelectric stress constants exists in addition to the stiffness constants

appeared in nonpiezoelectric solids in the Cartesian14) and cylindrical coordinates.15) The dif-

ferent transformation rules for the contravariant components cause this discrepancy.

2. Differential Form of the Quasi-Static Electromagnetic Fields

Using a quasi-static approximation of electromagnetic fields in piezoelectric solids with omis-

sion of rotational electric fields and representing irrotational electric fields as E = −dϕ, we

consider the electric potentials ϕ, the irrotational electric fields E, electrical displacements

D, and the Gauss law in the piezoelectric solids for computing elastic fields that couple with

electromagnetic fields. Here, d is the exterior differential operator.

The electric potentials are scalars, whose tensor type is contravariant and covariant of

rank 0. Two vector fields E and D in the differental forms in a coordinate (x0, x1, x2) are given

as follows:

E = Exαdxα, (1)

D =
1
2

Dxαβdxα ∧ dxβ. (2)

Here, dxi(i = 0, 1, 2) is a covariant basis vector, and ∧ represents the exterior product. Note

that the summation convention is used. Changing the coordinate gives the relations of tensor

components: for E = EXαdXα = Exβdxβ and D = DXα1α2dXα1 ∧ dXα2 = Dxβ1β2dxβ1 ∧ dxβ2 , the

relations of the components are EXα = Exβ∂xβ/∂Xα and DXα1α2 = Dxβ1β2∂x
β1/∂Xα1∂xβ2/∂Xα2 ,

respectively. Using the complex coordinate stretching5–7) given by

Xi =

∫ xi

s̃i(τ)dτ =
∫ xi

s̃iR(τ) + js̃iI(τ)dτ

with the two real functions s̃iR(τ) and s̃iI(τ), we have the relations

EXα =
Exα

s̃α(xα)
, (3)

DXα1α2 =
Dxα1α2

s̃α1(xα1)s̃α2(xα2)
. (4)
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Here, j is the imaginary unit.

3. Material Constants of PMLs for Elastic Waves in Piezoelectric Solids

In complex coordinate stretching, we consider that the real coordinate (x0, x1, x2) is any or-

thogonal coordinate system: for example, (x0, x1, x2) identifies (x, y, z), (r, θ, z), or (r, θ, ϕ) for

the Cartesian, cylindrical, or the spherical coordinates, respectively.

3.1 Constitutive equations in a complex coordinate

Assuming that the same constitutive equations in the real coordinate (x0, x1, x2) exist in the

complex coordinate (X0, X1, X2), we have

Pc = ρv c, (5)

T c
i j = Ci jklFc

kl − ei jkEc
k, (6)

Dc
i = eiklFc

kl + ϵ
S
ikEc

k. (7)

Here, the superscript c denotes the value in the complex coordinate. P, v, Ti j, and Fkl are

the vector of the density of momentum, a particle velocity vector, the i j-component of a

stress tensor (i, j = X0, X1, X2), and the kl-component (k, l = X0, X1, X2) of a displacement

gradient tensor, respectively. The mass density ρ, the stiffness Ci jkl (i, j, k, l = X0, X1, X2), the

piezoelectric stress constants ei jk, eikl, and the permittivity at the constant strain ϵSik are the

values corresponding to the original material parameters of a PML in the real coordinate.

3.2 Rules of transformation from tensors in the complex coordinate into the tensors in

the real coordinate

Using Eqs. (3) and (4), and replacing the base differentials with the unit vectors, we obtain

Ec
i =

1
si

Ei (no summation), (8)

Dc
i =

si

s0s1s2
Di (no summation). (9)

Here, si = (hc
i /h

r
i)s̃i where hr

i and hc
i are the scale factors of the general orthogonal coordinate

systems (x0, x1, x2) and (X0, X1, X2), respectively. Note that the scale factors hi are given as

follows: h0 = 1, h1 = r, h2 = 1 in the cylindrical coordinate (r, θ, z); h0 = 1, h1 = r, h2 = r sin θ

in the spherical coordinate (r, θ, ϕ); and h0 = h1 = h2 = 1 in the Cartesian coordinate (x, y, z).

In our previous paper,15) the following relations were reported:

T c
i j =

sis j

s0s1s2
Ti j (no summation), (10)
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Fc
i j =

si

s j
Fi j (no summation). (11)

3.3 Derivation of PML constants

The quotient rule and Eqs. (6)- (11) yield PML material constants: the permittivity and piezo-

electric stress constants are

ePML
i jk =

sos1s2

sis jsk
ei jk (no summation), (12)

ePML
ikl =

s0s1s2sk

sisl
eikl (no summation), (13)

ϵPML
ik =

s0s1s2

sisk
ϵik (no summation). (14)

Here, s0 = s̃0, s1 = (R/r)s̃1, s2 = s̃2 in the cylindrical coordinate system (r, θ, z) with its com-

plex coordinate (R,Θ,Z); s0 = s̃0, s1 = (R/r)s̃1, s2 = [(R sinΘ)/(r sin θ)]s̃2 in the spherical

coordinate system (r, θ, ϕ) with its complex coordinate (R,Θ,Φ); and si = s̃i in the Cartesian

coordinate system. In addition, the stiffness is

CPML
i jkl =

s0s1s2sk

sis jsl
Ci jkl (no summation). (15)

Note that this result of the stiffness and mass density ρPML shown below were presented in

our previous paper.15)

ρPML = s0s1s2ρ. (16)

Equations (12)-(16) show that the PML parameters for elastic waves in solids in any

orthogonal coordinate system such as the cylindrical and spherical coordinates must be cal-

culated by the same procedure as that used for the parameters in the Cartesian coordinates.

4. Derivation of Piezoelectric PML Constants in the Cylindrical and Spherical

Coordinates from the Analytic Continuation

We present procedures of deriving material constants in the Cartesian, cylindrical, and spher-

ical coordinates from the analytic continuation.

4.1 Transformation rules derived from the analytic continuation

The transformation rules of the stress tensors, the displacement gradient, and the mass density

in the Cartesian, cylindrical, and spherical coordinates have been derived by the analytic

continuation and reported7, 15) as follows:

T c
i j =

s j

s0s1s2
T PMLA

i j (no summation), (17)
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Fc
kl =

1
sl

FPMLA
kl (no summation), (18)

ρPMLA = s0s1s2ρ. (19)

Here, the superscript PMLA denotes the value translated by the rules with the analytic con-

tinuation into the real coordinate. Note that the transformation rules derived from the analytic

continuation for the generalized orthogonal coordinate system were not reported.

In this subsection, we present a derivation of the transformation rules of the electric field

and electrical displacement from Ec = −∇ϕc and ∇ · Dc = 0 in the complex coordinate.

The irrotational electric fields in the complex coordinate are represented as Ec = −∇ϕc:

Ec = −
(
X̂0 1

hc
0

∂

∂X0 + X̂1 1
hc

1

∂

∂X1 + X̂2 1
hc

2

∂

∂X2

)
ϕc. (20)

Using ∂/∂Xi = (1/s̃i)(∂/∂xi) and hr
i si = hc

i s̃i, we obtain

Ec = −
(
X̂0 1

hr
0s0

∂

∂x0 + X̂1 1
hr

1s1

∂

∂x1 + X̂2 1
hr

2s2

∂

∂x2

)
ϕc. (21)

Note that this equation is in the real coordinate.

On the other hand, in the real coordinate, the same equation EPLMA = −∇ϕPMLA is given

by

EPMLA = −
(
x̂0 1

hr
0

∂

∂x0 + x̂1 1
hr

1

∂

∂x1 + x̂2 1
hr

2

∂

∂x2

)
ϕPMLA. (22)

Using the assumptions of identifying of the unit vectors, X̂i = x̂i in the analytic continua-

tion, and recalling that ϕc = ϕPMLA because of the transformation rule of scalar functions, we

determine the relation of the electric fields as

Ec
i =

EPMLA
i

si
(no summation). (23)

The Gauss law in the complex coordinate (X0, X1, X2) is given by ∇ · Dc = 0:
1

hc
0hc

1hc
2

( ∂
∂X0 (Dc

0hc
1hc

2) +
∂

∂X1 (Dc
1hc

2hc
0) +

∂

∂X2 (Dc
2hc

0hc
1)
)
= 0. (24)

Multiplying Eq. (24) by s0s1s2, and using ∂
∂Xi =

1
s̃i

∂
∂xi , we obtain

1
hr

0hr
1hr

2

(
s̃1 s̃2

∂

∂x0 (Dc
0hc

1hc
2) + s̃2 s̃0

∂

∂x1 (Dc
1hc

2hc
0) + s̃0 s̃1

∂

∂x2 (Dc
2hc

0hc
1)
)
= 0. (25)

Recalling that hr
i si = hc

i s̃i and s̃i is interchangeable with the partial derivative ∂/∂x j for i , j,

we obtain
1

hr
0hr

1hr
2

( ∂
∂x0 (Dc

0s1s2hr
1hr

2) +
∂

∂x1 (Dc
1s2s0hr

2hr
0) +

∂

∂x2 (Dc
2s0s1hr

0hr
1)
)
= 0. (26)

For identifying Eq. (26) as the Gauss law in the real coordinate, ∇ ·DPMLA = 0, we determine
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the electrical displacement in the real coordinate as

DPMLA
i =

s0s1s2

si
Dc

i (no summation). (27)

Note that the relations of the electric fields [Eq. (23)] and the electrical displacements

[Eq. (27)] between the real coordinate and the complex coordinate are the same as those of

Eqs. (8) and (9), although the relations of stress tensors and displacement gradients [Eqs. (17)

and (18), respectively] are different from those of Eqs. (10) and (11).

4.2 PML constants derived by the analytic continuation

Using Eqs. (17), (18), (23), and (27), the quotient rule, and the constitutive equations [Eqs.

(6) and (7)], we obtain the material constants of the PML in the real coordinate:

CPMLA
i jkl =

s0s1s2

s jsl
Ci jkl (no summation), (28)

ePML
i jk =

sos1s2

s jsk
ei jk (no summation), (29)

ePML
ikl =

s0s1s2

sisl
eikl (no summation), (30)

ϵPML
ik =

s0s1s2

sisk
ϵik (no summation). (31)

Note that Eq. (28) is reported in Refs. 7 and 12.

5. Comparison with PML Material Constants Derived From Differential Forms and

the Analytic Continuation

The mass density and the permittivity constants obtained using the analytic continuation

[Eqs.(19) and (31), respectively] are identical to those obtained using the differential forms

[Eqs. (16) and (14)]. However, the stiffness and the piezoelectric stress constants [Eqs. (28),

(29), and (30)] are different from our results [Eqs. (15), (12), and (13)] because in the analytic

continuation, the manipulation of the coordinate transformation corresponding to the part of

the stress tensor and the particle displacement vector, the tensor type of the omitted parts is

contravariant of rank 1, is excluded.14, 15)

Note that the transpose symmetry relations of piezoelectric stress constants hold for the

constants derived from the analytic continuation [Eqs. (29) and (30)], but for those derived

using the differential forms [Eqs. (12) and (13)], the relation does not hold. In addition, the

symmetry of the stress tensor in the real coordinate holds for the constants derived from

differential forms [Eqs. (12) and (15)], but does not hold for those derived from the analytic

continuation [Eqs. (28) and (29)], although the symmetry of the stress tensor in the complex
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coordinate is assumed.

6. Conclusions

PMLs in the orthogonal coordinates for elastic waves in piezoelectric solids were derived

from differential forms. To the best of our knowledge, PML parameters for piezoelectric

solids in the non-Cartesian coordinate systems such as the cylindrical and spherical coor-

dinates are presented here for the first time. Our results show that the PML parameters for

elastic waves in piezoelectric solids are determined by the same procedure as that used for the

parameteres in the Cartesian coordinates. This rule is an extension of our previous results15)

for anisotropic solids without piezoelectricity.

In this paper, we focused on the procedure of deriving PML constants in the generalized

orthogonal coordinate systems. Demonstration of the validity and usefulness of the PML

constants in FEM and FD-TD analyses of elastic waves in solids in the frequency range is

one of our future topics.
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2007, p. 702.

10) Y. Li, O. B. Matar, V. Preobrazhensky, and P. Pernod: Proc. IEEE Ultrasonics Symp.,

2008, p. 1568.

11) A. Taflove and S. C. Hagness: Computational Electrodynamics (Artech House, Boston,

MA, 2005) 3rd ed., Chap. 7, p. 273.

12) S. Kucukcoban and L. F. Kallivokas: Wave Motion 50 (2013) 57.

13) U. Basu and A. K. Chopra: Comput. Methods Appl. Mech. Eng. 192 (2003) 1337.

14) T. Shimada and K. Hasegawa: Denshi Joho Tsushin Gakkai Ronbunshi C J93-C (2010)

215 [in Japanese].

15) T. Shimada and K. Hasegawa: Jpn. J. App. Phys. 49 (2010) 07HB08.

16) T. Shimada, K. Hasegawa, and S. Sato: Jpn. J. App. Phys. 50 (2011) 07HC13.

8/8


