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KOECHER-MAASS SERIES OF THE IKEDA LIFT FOR U(m,m)

HIDENORI KATSURADA
IN MEMORY OF PROFESSOR HIROSHI SAITO

ABSTRACT. Let K = Q(v/—D) be an imaginary quadratic field with discrimi-
nant —D, and x the Dirichlet character corresponding to the extension K/Q.
Let m = 2n or 2n + 1 with n a positive integer. Let f be a primitive form
of weight 2k + 1 and character x for (D), or a primitive form of weight 2k
for SL2(Z) according as m = 2n, or m = 2n + 1. For such an f let I, (f) be
the lift of f to the space of Hermitian modular forms constructed by Ikeda.
We then give an explicit formula of the Koecher-Maass series L(s, I (f)) of
Ln(f). This is a generalization of Mizuno [Mi06].

1. INTRODUCTION

In [Mi06], Mizuno gave explicit formulas of the Koecher-Maass series of the
Hermitian Eisenstein series of degree two and of the Hermitian Maass lift. In this
paper, we give an explicit formula of the Koecher-Maass series of the Hermitian
Ikeda lift. Let K = Q(v/—D) be an imaginary quadratic field with discriminant
—D. Let O be the ring of integers in K, and x the Kronecker character corresponding
to the extension K/Q. For a non-degenerate Hermitian matrix or alternating matrix
T with entries in K, let Uy be the unitary group defined over Q, whose group Ur(R)
of R-valued points is given by

Ur(R) = {9 €GLn(R®K) | thg = T}

for any Q-algebra R, where § denotes the automorphism of M,,(R® K) induced by
the non-trivial automorphism of K over Q. We also define the special unitary group
SUrT over Qp, by SUT =UrN RK/Q(SLm), where Ry q is the Weil restriction. In

particular we write Ur as U™ or U(m,m) if T = (l?n _(1)7”) . For a more precise

description of U™ see Section 2. Put F](;n) = U(m,m)(Q) N GL2,(0). For a
modular form F' of weight 2] and character 1 for F[((m) we define the Koecher-
Maass series L(s, F') of F' by

_ cr(T)
He ) =2 Sy

where T runs over all SL,,(O)-equivalence classes of positive definite semi-integral
Hermitian matrices of degree m, cg(T) denotes the T-th Fourier coefficient of F,
and e*(T) = #(SUr(Q) N SL,,(O0)).

Let k be a non-negative integer. Then for a primitive form f € &ap11(I0(D), x)
Ikeda [Ike08] constructed a lift I, (f) of f to the space of modular forms of weight

2k +2n and a character det ™"~ for I’I((Qn). This is a generalization of the Maass lift
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2 H. KATSURADA

considered by Kojima [Koj82], Gritsenko [Gri90], Krieg [Kri91] and Sugano [Su95].
Similarly for a primitive form f € &3, (SL2(Z)) he constructed a lift Iz,41(f) of
f to the space of modular forms of weight 2k 4+ 2n and a character det™*~" for
FI(?"H). For the rest of this section, let m = 2n or m = 2n + 1. We then call
I, (f) the Tkeda lift of f for U(m,m) or the Hermitian Tkeda lift of degree m. Tkeda
also showed that the automorphic form Lift(™(f) on the adele group U™ (A)
associated with I,,,(f) is a cuspidal Hecke eigenform whose standard L-function
coincides with

[[LGs+k+n—i+1/2, f)L(s+k+n—i+1/2 fx),

i=1
where L(s+k+n—i+1/2, f) is the Hecke L-function of f and L(s+k+n—i+1/2, f, x)
is its ?modified twist” by x. For the precise definition of L(s+k+n—i+1/2, f, x)
see Section 2. We also call Lift(™ (f) the adelic Tkeda lift of f for U(m,m). Then
we express the Kocher-Maass series of I,,(f) in terms of the L-functions related to
f. This result was already obtained in the case m = 2 by Mizuno [Mi06].

The method we use is similar to that in the proof of the main result of [IK04] or
[IK06]. We explain it more precisely. In Section 3, we reduce our computation to a
computation of certain formal power series pmp(d; X, t) in t associated with local
Siegel series similarly to [IKO04] (cf. Theorem 3.4 and Section 5).

Section 4 is devoted to the computation of them. This computation is similar
to that in [IK04], but we should be careful in dealing with the case where p is
ramified in K. After such an elaborate computation, we can get explicit formulas
of P,,,(d; X,t) for all prime numbers p (cf. Theorems 4.3.1, 4.3.2, and 4.3.6).
In Section 5, by using explicit formulas for If’mm(d; X,t), we immediately get an
explicit formula of L(s, I,,(f)).

Using the same argument as in the proof our main result, we can give an explicit
formula of the Koecher-Maass series of the Hermitian Eisenstein series of any degree,
which can be regarded as a zeta function of a certain prehomogeneous vector space.
We also note that the method used in this paper is useful for giving an explicit
formula for the Rankin-Selberg series of the Hermitian Ikeda lift, and as a result
we can prove the period relation of the Hermitian Ikeda lift, which was conjectured
by Ikeda [Tke08]. We will discuss these topics in subsequent papers [Kat13] and
[Kat14].

Acknowledgments. The author thanks Professor T. Watanabe and Professor R.
Schulze-Pillot for giving him many crucial comments on the mass formula for the
unitary group. He also thanks Professor Y. Mizuno, Professor T. Ikeda, and A.
Yukie for useful discussions. The author was partly supported by JSPS KAKENHI
Grant Number 24540005.

Notation. Let R be a commutative ring. We denote by R* and R* the
semigroup of non-zero elements of R and the unit group of R, respectively. For a
subset S of R we denote by M,,,(S) the set of (m,n)-matrices with entries in S.
In particular put M, (S) = M,,(S). Put GL,,(R) = {A € M,,(R) | det A € R*},
where det A denotes the determinant of a square matrix A. Let Ky be a field, and
K a quadratic extension of Ky, or K = Ky @ K. In the latter case, we regard
Ky as a subring of K via the diagonal embedding. We also identify M,,, (K) with
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Mn(Ko) ® My (Ko) in this case. If K is a quadratic extension of Ky, let p be
the non-trivial automorphism of K over Ky, and if K = Ky & Ky, let p be the
automorphism of K defined by p(a,b) = (b,a) for (a,b) € K. We sometimes write
T instead of p(z) for x € K in both cases. Let R be a subring of K. For an (m, n)-
matrix X = (Zij)mxn Write X* = (Tji)nxm, and for an (m, m)-matrix A, we write
A[X] = X*AX. Let Her,(R) denote the set of Hermitian matrices of degree n
with entries in R, that is the subset of M, (R) consisting of matrices X such that
X* = X. Then a Hermitian matrix A of degree n with entries in K is said to be
semi-integral over R if tr(AB) € Ko N R for any B € Her,(R), where tr denotes
the trace of a matrix. We denote by ITIEH(R) the set of semi-integral matrices of
degree n over R.

For a subset S of M, (R) we denote by S* the subset of S consisting of non-
degenerate matrices. If S is a subset of Her,(C) with C the field of complex
numbers, we denote by ST the subset of S consisting of positive definite matrices.
The group GL,(R) acts on the set Her, (R) in the following way:

GL,(R) x Her,(R) 3 (9, A) — ¢g*Ag € Her,, (R).

Let G be a subgroup of GL, (R). For a G-stable subset B of Her, (R) we denote by
B/G the set of equivalence classes of B under the action of G. We sometimes identify
B/G with a complete set of representatives of B/G. We abbreviate B/GL,(R) as
B/ ~ if there is no fear of confusion. Two Hermitian matrices A and A’ with entries
in R are said to be G-equivalent and write A ~g A’ if there is an element X of G

such that A" = A[X]. For square matrices X and Y we write X 1Y = ( )O( }(2 ) .

We put e(z) = exp(2my/—1z) for x € C, and for a prime number p we denote by
e, (*) the continuous additive character of Q,, such that e,(z) = e(z) for z € Z[p~1].

For a prime number p we denote by ord,(x) the additive valuation of Q, nor-
malized so that ord,(p) = 1, and put |z|, = p~°*% ). Moreover we denote by ||
the absolute value of € C. Let K be an imaginary quadratic field, and O the ring
of integers in K. For a prime number p put K, = K ® Q,, and O, = O®Z,. Then
K, is a quadratic extension of Q, or K, = Q, ®Q,. In the former case, for x € K,
we denote by T the conjugate of x over Q,. In the latter case, we identify K, with
Q,®Q,, and for x = (x1, z2) with z; € Q,, we put T = (22, 21). For z € K, we de-
fine the norm N ,q, () by Nk, /q,(z) = 7, and put vk, (v) = ord,(Ng, /q, (%)),
and |7|k, = |Nk,/q, (*)|p- Moreover put |z|x_ = [2T|w for v € C.

2. MAIN RESULTS

For a positive integer N let

FO(N):{( fﬁ Z ) € SLy(Z) | ¢ =0 mod N},

and for a Dirichlet character ) mod N, we denote by W;(IH(N), ) the space of
modular forms of weight [ for I'1(N) and nebentype 1), and by &;(I(N), ) its sub-
space consisting of cusp forms. We simply write M;(Io(N), ) (resp. & (IH(N),))
as My (Io(N)) (resp. as &;(IH(N))) if ¢ is the trivial character.

Throughout the paper, we fix an imaginary quadratic extension K of Q with
discriminant — D, and denote by O the ring of integers in K. For such a K let (™) =

U(m,m) be the unitary group defined in Section 1. Put J,, = ( ?m _Olm > )
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where 1,, denotes the unit matrix of degree m. Then
u(m)(Q> = {M € GL2m(K) | Jm[M] = Jm}

Put
rm = =y (Q) N GLym(0).

Let $,, be the Hermitian upper half-space defined by

1
Hm ={Z € M,,(C) | ﬁ(Z — Z*) is positive definite}.
The group U™ (R) acts on 9,, by
9(Z) = (AZ+ B)(CZ+D) ' for g=(AB)c U™ (R),Z € ,,..

We also put j(g,Z) = det(CZ + D) for such Z and g. Let [ be an integer. For a
subgroup I" of (") (Q) commensurable with I""™) and a character 1 of I', we denote
by M, (I, ¢) the space of holomorphic modular forms of weight [ with character ¢
for I'. We denote by &,;(I",%) the subspace of W;(I', 1)) consisting of cusp forms. In
particular, if ¢ is the character of I' defined by () = (det ) ! for v € I', we write
Moy (I,0) as My (I, det "), and so on. Let F(z) be an element of My (™), det ™).
We then define the Koecher-Maass series L(s, F') for F' by

cr(T)
L F = 71 L AN o = /N
(87 ) - Z (det T)SE*(T) 9
TeHerm (0) /SLn(0)

where cp(T') denotes the T-th Fourier coefficient of F, and e*(T') = #(SUT(Q) N
SLn(0)).

Now we consider the adelic modular form. Let A be the adele ring of Q, and A
the non-archimedian factor of A. Let h = hx be a class number of K. Let G™) =
Resg/qQ(GLyp), and G™)(A) be the adelization of G™). Moreover put C(™ =
[I, GLn(Op). Let U™ (A) be the adelization of (™). We define the compact

subgroup IC((Jm) of U™ (A}) by U™ (A) N [, GL2m(Op), where p runs over all
rational primes. Then we have

h
U™ A) = |_| U(m)(Q)%IC(()m)Z/{(m)(R)
1=1

with some subset {71, ..., 75} of U™ (A ;). We can take 7; as

[t 0
Yi = 0 t;«—l )

where {t;}_ | = {(t;,)}l, is a certain subset of G™ (A) such that ¢; = 1, and

h
G(m) (A) — |_| G(m)(Q)tiG(m)(R)c(m).

i=1

Put I = U™ (Q)NyiKoy;, U™ (R). Then for an element (F1, ..., F,) € @, Moy (I, det ™),
we define (Fy, ..., F,)f by

(Fi, s Fu)¥(g) = Fi(w(®))j(w, 1)~ (det )’
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for g = uy;xk withu € U™ (Q), z € U™ (R), k € Ko. We denote by Mo (U™ (Q)\UM™ (A), det ™)
the space of automorphic forms obtained in this way. We also put
S U™ (Q\U™ (A),det ™) = {(F1, ... Fy)* | F; € &a(I;,det ™)}

We can define the Hecke operators which act on the space
Mo (U™ (Q)\U™ (A), det ™). For the precise definition of them, see [Tke08].

Let Her,, (O) be the set of semi-integral Hermitian matrices over O of degree m
as in the Notation. We note that A belongs to Her,,(Q) if and only if its diagonal
components are rational integers and v—DA € Her,,(O). For a non-degenerate
Hermitian matrix B with entries in K, of degree m, put v(B) = (—D)l"™/? det B.

Let P/I&m((’)p) be the set of semi-integral matrices over O, of degree m as in
the Notation. 0 We put &, = 1,—1, or 0 according as K, = Q, © Q,, K, is an
unramified quadratic extension of Q,, or K, is a ramified quadratic extension of
Q,.For T e IL/Ie\rm((’)p)X we define the local Siegel series b,(T, s) by

by(T,s) = > ey (tr(TR))p~ordr b (R)e,
ReHer, (K,)/Her, (Op)

where j1,(R) = [RO;"+0O," : O}]. We remark that there exists a unique polynomial
F,(T,X) in X such that

[(m-1)/2] - /2] .
by(T's) = Fp(T,p™") H (1—p**) H (1—&p* 1%
1=0 i=1

(cf. Shimura [Sh97]). We then define a Laurent polynomial F,(T, X) as
Fp(T,X) = Xm0 E (T, p~m X ).
We remark that we have
Fy(T, XYY = (=D, y(T)), F,(T, X)  if m is even,
ﬁp(T, EXN = E,(T,X) if m is even and p 1 D,
and B B
E(T,X Y =F,(T,X) if misodd
(cf. [Ike08]). Here (a,b), is the Hilbert symbol of a,b € Q,’. Hence we have
Fy(T, X) = (=D, 7(B)); X O By (T, p=" X 72).
Now we put
Herm( )i =A{T € Her,, (K)" | £ Tt;, € ﬁ&m(op) for any p}.

First let k£ be a non-negative integer, and m = 2n a positive even integer. Let

=3 o

N=1
be a primitive form in 62k+1(F0( ), x)- For a prime number p not dividing D let
ap € C such that a, + x(p)a, " = = p~*a(p), and for p | D put oy, = p~*a(p). We
note that a; # 0 even if p|D. Then for the Kronecker character y we define Hecke’s
L-function L(s, f,x") twisted by x* as

L(s, £,x") = [TA( = app™ " x(p)) (1 = 0, '~ Fx(p) ™)}
ptD
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y { [Lip(1—appstF)~t %f z %s even
[Lp(1- oy lpTsTR) =L if s odd.
In particular, if i is even, we sometimes write L(s, f, x%) as L(s, f) as usual. More-
over for ¢ = 1,..., h we define a Fourier series

Im(f)Z(Z) = Z ar,.(f)i (T)e(tr(TZ))v
TeHer,, (0)F
where
ap (1), (T) = (D TT [ det(tip) det(ip) [y (7, T tip, 0).
P
Next let k£ be a positive integer and m = 2n + 1 a positive odd integer. Let

o0

f(z) = a(N)e(Nz)

N=1
be a primitive form in &s;(SL2(Z)). For a prime number p let o, € C such that
ap + a;l = p~#*+1/24(p). Then we define Hecke’s L-function L(s, f, x*) twisted by
x' as .

L(s, f, x")
= J[{0 = ™ 2x(p)) (1 = 0 ' p =T 2x(p))}
P

In particular, if 7 is even we write L(s, f,x*) as L(s, f) as usual. Moreover for
i =1,...,h we define a Fourier series

Lot (f)i(Z2) = Z ary, 1 (1) (T)e(tr(T'Z)),
Teﬁe\rzwd((?)j'
where
k— —\|n T (4% —
Alyni1(f)i (T) = |'Y(T)| 1z H | det(tim) det(ti,p)‘p+1/2Fp(ti,thi7p7 a,, 1)'
P

Remark. In [Ike08], Tkeda defined F,(T, X) as
Fy(T, X) = X 0D F (T, p~m X ~2),

and we define it by replacing X with X! in this paper. This change does not
affect the results.
Then Ikeda [Ike08] showed the following:

Theorem 2.1. Let m = 2n or 2n+1. Let f be a primitive form in Sqp1(Io(D), x)
or in &a1,(SLa(Z)) according as m = 2n or m = 2n+ 1. Moreover let I; be the sub-
group of U™ defined as above. Then I, (f)i(Z) is an element of Sappan (I}, det™F™)
for any i. In particular, I,(f) := L,(f)1 is an element of@%”n(lj(m),det*k*”).

This is a Hermitian analogue of the lifting constructed in [Tke01]. We call I,,,(f)
the Tkeda lift of f for ¢(™).

It follows from Theorem 2.1 that we can define an element (L, (f)1, ..., I (f)n)*
of Soppon U™ (Q)\UM™ (A), det™*™™), which we write Lift™ (f).
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Theorem 2.2. Let m = 2n or 2n + 1. Suppose that Lift"™) (f) is not identically
zero. Then Lift™ (f) is a Hecke eigenform in Sojyon (U™ (Q)\U™ (A), det ™)
and its standard L-function L(s, Lift"™)(f),st) coincides with

[[LGs+k+n—i+1/2, f)L(s+k+n—i+1/2 fx)
i=1

up to bad Euler factors.

We call Lift™(f) the adelic Tkeda lift of f for 2™,
Let Qp be the set of prime divisors of D. For each prime ¢ € @Qp, put D, =
q°"4a(P) 'We define a Dirichlet character Xq by

e ={ 3 e

)

where o’ is an integer such that
a’=amod D; and a’ =1mod DD, .

For a subset Q of @p put xq = [[,cq Xq and xg = [I,c0,, .4z Xq- Here we make
the convention that xg =1 and XIQ = x if @ is the empty set. Let

f(z) =) er(N)e(Nz)
N=1
be a primitive form in &gp41(Io(D), x). Then there exists a primitive form

fo(2) =" cro(N)e(Nz)

N=1

such that

¢fo(p) = xQ(p)es(p) for p ¢ Q
and

¢fo(P) = Xg(P)es (p) for p € Q.
Let L(s,x*) = ((s) or L(s,x) according as i is even or odd, where ((s) and L(s, x)
are Rimann’s zeta function, and the Dirichlet L-function for x, respectively. More-
over we define A(s, x*) by

A(s, x*) = 2(2m) ~T(s)L(s, X")

with I'(s) the Gamma function.
Then our main results in this paper are as follows:

Theorem 2.3. Let k be a nonnegative integer and n a positive integer. Let f be a
primitive form in Sap11(Lo(D), x). Then, we have
L(5, Ton(f)) = DPstn*-n/2-1/29 2011

2n

XHK(i,xi) > xo((=D)") [ (s = 2n+ 4, fo. ) 7).

QCQp J=1
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Theorem 2.4. Let k be a positive integer and n a non-negative integer. Let f be
a primitive form in &z, (SLa(Z)). Then, we have

2n+1 2n+1
2 ~ ) .
L(SaIQTH‘l(f)) = Dns+n +3n/2272n H A(val) H L(S—27’I,— 1+]7 f:inl)'
i=2 =1

Remark. We note that L(s, Isp+1(f)) has an Euler product.

3. REDUCTION TO LOCAL COMPUTATIONS

To prove our main result, we reduce the problem to local computations. Let
K,=K®Q, and O, = O ®Z, as in Notation. Then K, is a quadratic extension
of Q, or K, = Q, ® Q,. In the former case let f, the exponent of the conductor of
K,/Q,. If K, is ramified over Q,, put e, = fp—02 ,, where 2 ;, is Kronecker’s delta.
If K, is unramified over Q,, put e, = f, = 0. In the latter case, put e, = f, = 0.
Let K, be a quadratic extension of Q,, and w = w, and m = 7, be prime elements
of K, and Q,, respectively. If K,, is unramified over Q,,, we take w =m =p. If K,
is ramified over Q,,, we take 7 so that @ = Nk, /q,(@). Let K, = Q, ® Qp. Then
put @ = m = p. Let xk, be the quadratic character of Q; corresponding to the
quadratic extension K,/Q,. We note that we have xr,(a) = (=Do, a), for a € Q)
if K, = Qu(v/=Dy) with Dy € Z,. Morcover put Her,(0,) = p° Herp,(O,).
We note that }/I\e/rm((’)p) = Her,,(0,) if K, is not ramified over Q,. Let K be
an imaginary quadratic extension of Q with discriminant —D. We then put D=
[, p P, and Iflg}m(O) = DHer,,,(O). An element X € M (O,) with m > [ is
said to be primitive if there is an element Y of My, ,,—1(Op) such that (X Y) €
GLn(0p). If K, is a field, this is equivalent to saying that rankep /w0, X = [.
If K, = Qp®Qp, and X = (X1,X2) € Myu(Zp) ® Mpu(Z,), this is equivalent
to saying that rankz ,,z X1 = rankz ,,z X2 = [. Now let m and [ be positive
integers such that m > . Then for an integer a and A € Her,, (0p), Be }Te/rl(o,,)
put

Aa(A, B) = {X € Myu(Op) /9" Mumi(Op) | A[X] — B € p*Her)(0,)},

and
B.(A,B) = {X € A,(A, B) | X is primitive}.

Suppose that A and B are non-degenerate. Then the number p“(_27’Ll+52)#Aa(A, B)
is independent of a if a is sufficiently large. Hence we define the local density
ap(A, B) representing B by A as

ap(A, B) = lim p*~2mH) 44 (A, B).
Similarly we can define the primitive local density 3,(A, B) as
By(A,B) = lim p* 24 4B, (A, B)
a— 00

if A is non-degenerate. We remark that the primitive local density 8,(A, B) can be
defined even if B is not non-degenerate. In particular we write a,(A) = a, (4, A).
We also define v, (A) for A € Her,,(0,)* as

vp(A) = lim p~*" H#(To(4)),
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where
TCL(A) = {X € Mm(op)/paMm(Ol)) ‘ A[X] —A € paHerm(Op)}'

The relation between «a,(A) and v,(A) is as follows:

Lemma 3.1. Let T € ITI\é}m(Op)X. Suppose that K, is ramified over Q,. Then we
have
op(T) = p~ D p/2Em 2220, (T).
Otherwise, a,(T) = v,(T).
Proof. The proof is similar to that in [Kitaoka [Kit93], Lemma 5.6.5], and we here
give an outline of the proof. The last assertion is trivial. Suppose that K, is ramified
over Q,. Let {T}}!_, be a complete set of representatives of Her,,(0,)/p"*»Her,,(O,)
such that T; = T mod p"Her,,,(Op). Then it is easily seen that
I = [p"Her, (0,) : p" T Her,,, (0,)] = p™(m=1DFn/2,
Define a mapping
l
¢ || Trse, (T}) — A(T,T)
i=1
by ¢(X) =X mod p". For X € A,.(T,T) and Y € M,,(O,) we have
T[X 4 p"Y] = T[X] mod p’Her,,,(O,).
Namely, X + p"Y belongs to Y, ., (T;) for some i and therefore ¢ is surjective.

Moreover for X € A,(T,T) we have #(¢~(X)) = p2™¢r. For a sufficiently large
integer r we have #7Y, ¢, (T;) = #Yr4e,(T) for any i. Hence

1
pm(mfl)fp/Q#’rr_‘_ep (T) = Z # Y rie, (T7)
=1

2 2
= p"" O #A(T,T) = p™ " # Arge, (T, T).
Recall that e, = f, — d2,. Hence
#TrJrep (T) _ pm(m+1)fp/2—m262p #Ar+ep (T7 T)

This proves the assertion. O

For T € Her,,(K)™", let G(T) denote the set of SL,,(O)-equivalence classes of
positive definite Hermitian matrices 77 such that 7" is SL,,(O,)-equivalent to T’
for any prime number p. Moreover put

. 1
V= 2w
T'eG(T)

for a positive definite Hermitian matrix 7" of degree m with entries in O.
Let U; be the unitary group defined in Section 1. Namely let

U, = {u € RK/Q(GLl) | uu = 1}
For an element T € Her,,(0)), let
Upr = {det X | X € Up(K,) N GL,(0,)},




10 H. KATSURADA

and put Uy , = Ui (K,) N O Then (jva is a subgroup of Uy , of finite index. We
then put [, 7 = [U1, : UAp/T] We also put
(1+pH=t if K,/Q, is unramified

up=9 1-p V" ifK,=Q,2Q,
21 if K,/Q, is ramified.

To state the Mass formula for SUr, put I'c(s) = 2(27) ~*T'(s).

Proposition 3.2. Let T' € Her,,(O)*. Then
(det 7)™ [, D/2T'c (i)
2m-1 Hp Ly rupvp(T)
Proof. The assertion is more or less well known (cf. [Re71].) But for the sake of

completeness we here give an outline of the proof. Let SUr(A) be the adelization
of SUr and let {x;}1, be a subset of SUr(A) such that

M*(T) =

H
Sur(A) =| | QuiSuUr(Q),
i=1
where Q@ = SUT(R) ][], . (SUT(K,) N SLy(Op)). We note that the strong ap-
proximation theorem holds for SL,,. Hence, by using the standard method we can

prove that
H

. B 1
M =Y T @)

We recall that the Tamagawa number of SUp is 1 (cf. Weil [We82]). Hence, by
[[Re71], (1.1) and (4.5)], we have

(det T)™ [T~y D/?T' (i) v,(1)
2m-1 Hp lp,r vp(T)

We can easily show that v, (1) = u,, L. This completes the assertion. O

M*(T) =

Corollary. Let T € Her,,(O)". Then

e XTI Tl
2m71Dm(m+1)/4+1/2 Hp uplp,TaP(T) ’

where cp =1 or 0 according as 2 divides D or not.
For a subset 7 of O, put
Her,,(7T) = Her,,,(O,) N My (T),
and for a subset S of O, put
Her,,(S,7) = {A € Her,,,(T) | det A € S},

and ITI\e_I"m(S,’T) = Her,,,(§,7) N ITI\eer(Op). In particular if S consists of a single
element d we write Her,,(S,7) as Her,,(d,T), and so on. For d € Z~( we also
define the set Her,,(d, O)" in a similar way. For each T € Her,,(O,)* put

FT,X) = Fy(p~*T, X)
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and
FNT, X) = F,(p~*T, X).
We remark that
(0 _ —ord,(det T’ epm—fp[m/2 0 —m v2
FEO(T, X) = X—ordpldetT) x /2L pO/(T, p=m X ?).
For d € Z,; put

E9(A, X)

M (dX) = T Lr 1 (AX)
»( ) - Uplp, Ay (A)
A€Herm (d,0p)/SLm(0p)

An explicit formula for ., ,(p'do, X) will be given in the next section for dy € Zy
and 7 > 0. -
Now let Her,, = [],(Her;,,(Op)/SLn(Op)). Then the diagonal embedding in-
duces a mapping
¢ : Hery, (0) "/ [ [ SLm(Op) — Herp,.
P

Proposition 3.3. In addition to the above notation and the assumption, for a
positive integer d let

Her,n(d) = [ [ (Herp(d, 0,)/SLin(O)).

p

Then the mapping ¢ induces a bijection from Herp, (d, O)+/ [, SLin(Op) to Her,, (d),
which will be denoted also by ¢.

Proof. The proof is similar to that of [[IS95], Proposition 2.1], but it is a little bit
more complex because the class number of K is not necessarily one. It is easily
seen that ¢ is injective. Let (z,) € ﬁ\e/rm(d). Then by Theorem 6.9 of [Sch85],
there exists an element y in Her,,(K)" such that dety € dNg/q(K*). Then we
have dety € det z, Nk, /q, (K,) for any p. Thus by [[Jac62], Theorem 3.1] we have
Tp = gpygp with some g, € GL,(K,) for any prime number p. For p not dividing Dd
we may suppose g, € G Ly, (O,). Hence (g,) defines an element of Ry /q(G Ly, )(Ay).
Since we have d~!dety € Q* N [, Nk, /q,(Kp), we see that d~'dety = Ng/q(u)
with some u € K*. Thus, by replacing y with (1"’51 691 ) Y (1’"’0_1 ug) , We may
suppose that dety = d. Then we have N ,q,(detg,) = 1. It is easily seen that

there exists an element &, € GL,(K,) such that det 6, = det g, and 65,6, = .
Thus we have g,d, € SL,,(K,) and

Zp = (9p0p) " Ygp0p-
By the strong approximation theorem for SL,, there exists an element v € SL,,(K), Vo0 €
SLm(C), and (7p) € [[, SLin(Op) such that

(9p0p) = VYoo (7p)-

Put x = v*yy. Then z belongs to P’I;;m(d, O)", and ¢(x) = (xp). This proves the
surjectivity of ¢. O
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Theorem 3.4. Let [ be a primitive form in Sori1(Lo(D),x) or in Sap(SLa(Z))
according as m = 2n or 2n + 1. For such an f and a positz’ve integer do put

m(f3do) HAmpdo, a ),

where o, is the Satake p-parameter of f. Moreover put

LoD = Dm(s—k+l0/2)+(k—l0/2)[m/2]—m(m+1)/4—1/2

X2—0Dm(s—k—2n—lo/2)—m+1 H Fc(i),
i=2
where lg = 0 or 1 according as m is even or odd. Then for Re(s) >> 0, we have

L(s, In(f)) = ptm k.0 Z b (f; do)dy * T2/,

Proof. We note that L(s, I,,(f)) can be rewritten as

L(s, In(f)) = D™ ) W'

T€Her, (O)+/SLm(O)

For T € Her,,(O)" the Fourier coefficient alm(f)(f)_lT) of I,,(f) is uniquely de-
termined by the genus to which 7" belongs, and can be expressed as

oty (BT) = (DD det 702 ] O (T, )
p

Thus the assertion follows from Corollary to Proposition 3.2 and Proposition 3.3
similarly to [IS95]. O

4. FORMAL POWER SERIES ASSOCIATED WITH LOCAL SIEGEL SERIES

For dy € Z;; put

m,p do,X t Z )‘ p dOa )
where for d € Z)¢ we define A}, (d, X) as

F4, x)
Ar o (d, X) = L ke R A
maldX)= ) a(A)
AeHer,n (dNk, jq, (05),05)/GLn(0y)
We note that
7(0) -1
T Fp (A, X7)
. ap(A)
A€Her,, (ANK, /q, (05),0,)/GLum (Op)
is xxk, (=1)™/2d)A\y, ,(d, X) or A}, (d, X) according as m is even and K, is a field,
or not. In Proposition 4.3.7 we will show that we have

)‘:in,p(dv X) = up)‘mvp(dv X)
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for d € Z; and therefore

o0

Prp(do, X, 1) =ty Y A p(p'do, X)2'.
=0

We also define P, ,(do, X, t) as

oo
Prp(do, X, 1) =Y X5, (whdo, Xt
=0
We note that Py, ,(do, X,t) = P p(do, X,t) if K, is unramified over Q, or K, =
Q, ® Q,, but it is not necessarily the case if K, is ramified over Q,. In this section,
we give explicit formulas of P, ,(do, X,t) for all prime numbers p (cf. Theorems
4.3.1 and 4.3.2), and therefore explicit formulas for P, ,(do, X,t) (cf. Theorem
43.6.)
From now on we fix a prime number p. Throughout this section we simply write
ord, as ord and so on if the prime number p is clear from the context. We also

write vk, as v. We also simply write ITI\e_}myp instead of ITI\éI"m(Op), and so on.

4.1. Preliminaries.

Let m be a positive integer. For a non-negative integer ¢ < m let

1oy O
Dm,i = GLm(Op) < 0 wli > GLm(Op)v

and for W € D, ;, put IL,(W) = (—1)ip*i=1ae/2 where a = 2 or 1 according as
K, is unramified over Q, or not. Let K, = Q, & Q. Then for a pair ¢ = (i1, i2) of
non-negative integers such that i1,i2 < m, let

lm—il 0 1m—i2 0
D’H’L,i = GLm(Op) (( 0 plZl ) ) < 0 p17,2 )) GLm(Op)a

and for W € D,,,; put II,(W) = (—1)Fizpu(i=1)/24i2(2=1)/2 In either case
K, is a quadratic extension of Q,, or K, = Q, & Q,, we put II,(W) = 0 for
W e MH(O;) \U:io Dm,i~

First we remark the following lemma, which can easily be proved by the usual
Newton approximation method in O,:

Lemma 4.1.1. Let A,B € Iflg;m(op)x. Let e be an integer such that p°A~1 €

ITc;m(Op). Suppose that A = B mod pe*‘lIL/I\e/rm((’)p). Then there exists a matrix
U € GL,,(0,) such that B = A[U].

Lemma 4.1.2. Let S € Ijlgrm((’)p)>< and T € Ijlarn(Op)X with m > n. Then

ap(S7 T) = Z p(n—m)ll(det W)BP(S7T[W_1])'
W EGLL(0p)\ M, (0))*
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Proof. The assertion can be proved by using the same argument as in the proof
of [[Kit93], Theorem 5.6.1]. We here give an outline of the proof. For each W €
M,(0,), put
B.(S,T;W) ={X € A.(S,T) | XW~1 is primitive}.
Then we have
Ac(S,T) = | ] Be(S,T; W).
WEGLn(Op)\Mn(Op)X

Take a sufficiently large integer e, and for an element W of M,,(0,), let {R;}i_; be

a complete set of representatives of p@ﬁgrm((’)p)[W_l] / peﬁgrm((’)p). Then we have
r= pu(dct W)n Put

Bo(S,T; W) = {X € Myn(Op)/p° My (Op)W | S[X] = T mod p°Her,, (0,)
and XW ™1 is primitive}.
Then
#(Be (S, T; W) = p 1 VI (B, (S, T; W)).
It is easily seen that
S[XW™ =T[W™'] + R; mod peﬁ\e/rm((’)p)
for some i. Hence the mapping X — XW ™! induces a bijection from B, (S, T; W)
T
to |_| B.(S, T[W™'] + R;). Recall that v(W) < ord(det T'). Hence

=1

R; = O mod pl*/? Her,,,(0,),
and therefore by Lemma 4.1.1,

TW='] + R; = T[W 1G]
for some G € GL,(O,). Hence

#(B(S,T; W) = p" et Wnge(B. (S, T[W1))).
Hence
ap(8,T) = p~2mmetn’e g (A, (S,T))

—2mne+n?e vide —mon B
= p2mnet > pr W mEn (B, (S, TW 1)),
WEGLy,(Op)\ M, (Op)*

This proves the assertion.
d

Now by using the same argument as in the proof of [[Kit83], Theorem 1], we
obtain

Corollary. Under the same notation as above, we have

B,(8,T) = > P W) I (W), (S, TIW ).
WEGLy, (Op)\ M, (0p)
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For two elements A, A" € Her,,(0)) we simply write A ~gr, (0,) A" as A ~ A’
if there is no fear of confusion. For a variables U and ¢ put
m
(U7 Q)m = H(l - qi_lU)y ¢m(q) = (q7 q)m
i—1

We note that ¢.,(q) = [[i~, (1 — ¢*). Moreover for a prime number p put
%) if K,/Q, is unramified
2

m(
Pmp(@) =1 om(q)® i K,=Q,®Q,
ém(q) if K,/Q, is ramified

Lemma 4.1.3. (1) Let Q(S,T) = {w € M,,(Op) | S[w] ~ T}. Then we have

Qg(f}‘?) _ #(Q(S, T)/GLm(Op))pfm(ord(det T)—ord(det S))
(2) Let S, T) = {w € My, (Z) | S ~ Tlw1]}. Then we have
©EL) 4 (GL (O NS T)).
ap(5) ? 7

Proof. (1) The proof is similar to that of Lemma 2.2 of [BS87]. First we prove
1, 0p(S,T)

‘dx| = ¢m7 (p 1) - ’

/Q(S,T) g ap(T)

where |dz| is the Haar measure on M,,(K,) normalized so that

/ \da] = 1.
M (Op)

To prove this, for a positive integer e let 71, ..., T; be a complete set of representatives
of {T'[y] mod p° | v € GL,,(Op)}. Then it is easy to see that

l
dz| = p~2m*e Ao(S,T;
/Q(S7T)| =y A T)

and, by Lemma 4.1.1, T; is GL,,(Op)-equivalent to T if e is sufficiently large. Hence
we have

#(Ae(S,T0)) = #(Ae(5,T))
for any i. Moreover we have
L= #(GLn(Op /9 Op)) [#(A(T, T)) = p™ G p () /0y (T).

Hence

—2m? N (Sv T)
|da| = Ip~ 2™ “H#(Ac(S,T)) = bmp(p™ ") 27,
/Q(S,T) P o(T)
which proves the above equality. Now we have
/ \da] = 3 |det W = 3 | det Wet 7|
Qs.T) WeQ(S,T)/GLm(O) WeQ(S,T)/GLm(O)

Remark that for any W € Q(S,T)/GL,,(O,) we have | det Wdet W |, = p~(erd(det T)—ord(det 5))
Thus the assertion has been proved.
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(2) By Lemma 4.1.2 we have

(S, T) = Z 5P(S»T[W_1D~

W EG L (Op)\ M, (O,)

Then we have 3,(S, T[W~]) = a,(S) or 0 according as S ~ T[W =] or not. Thus
the assertion (2) holds. O

For a subset 7 of O, we put
Herm(T)k = {A = (aij) S Herm(T) | a;; € wkZp}.
From now on put

Her,, (Op)1 if p=2and f, =3,
Her,, «(Op) = ¢ Herp,(wOp)1 if p=2and f, =2
Her,,(Op) otherwise,

where @ is a prime element of K. Moreover put 7, = 0, or 1 according as p = 2
and f, = 2, or not. Suppose that K,/Q, is unramified or K, = Q, & Q,. Then
an element B of IL/I\e/rm(Op) can be expressed as B ~gr,,(0,) 1lrLlpB2 with some
integer r and By € Hery,—r «(O,). Suppose that K,/Q, is ramified. For an even
positive integer r define ©, by

r/2

0 w'r 0 o'
o (o )i ( o)

where 7 is the conjugate of w over Q,. Then an element B of Her,, (O,) is expressed
as B ~gr,,(0,) O, L7 By with some even integer r and By € Hery,_,.(O,). For
these results, see Jacobowitz [Jac62].

A non-degenerate square matrix W = (d;;)mxm with entries in O, is called
reduced if W satisfies the following conditions:

d;; = p® with e; a non-negative integer, d;; is a non-negative integer < p% — 1
for i < j and di; = 0 for ¢ > j. It is well known that we can take the set of all
reduced matrices as a complete set of representatives of GL,, (O,)\M,,(Op)*. Let

m be an integer. For B € ﬁe/rm(Op) put

Q(B) = {W € GL(K,) N M,,(0,) | BIWW™'] € Her,,(0,)}.

Let r < m, and %, ,, be the mapping from GL,(K,) into GL,,(K,) defined by
Y (W) = 1y LW.

Lemma 4.1.4. (1) Assume that K, is unramified over Q, or K, = Q, & Q,. Let
By € Herpy—ny (Op). Then tm_ny m induces a bijection from GLm,no((’)p)\ﬁ(Bl)

to GLm(Op)\fZ(anJ_Bl), which will be also denoted by Ym—ng m.-

(2) Assume that K, is ramified over Q, and that ng is even. Let By € ITe/lrm,n0 (Op).
Then m —ng.m induces a bijection from G Ly, _p, (Op)\Q(B1) to GLyy, (O,)\(O,,, LBy),
which will be also denoted by VY —n,,m. Here iy, is the integer defined above.
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Proof. (1) Clearly ¥,—n,,m is injective. To prove the surjectivity, take a represen-
tative W of an element of GL,, (O,)\(1,,LB1). Without loss of generality we may
assume that W is a reduced matrix. Since we have (1,,L1B;)[W '] € Her,,(0,),

we have W = 18" Vg' ) with W, € Q(B;). This proves the assertion.
1
(2) The assertion can be proved in the same manner as (1). O

Lemma 4.1.5. Let B € ITIE}m(Op)X. Then we have
2
ay(7"dB) = ™ o (B)
for any non-negative integer r and d € Z;.

Proof. The assertion can be proved by using the same argument as in the proof of
(a) of Theorem 5.6.4 of Kitaoka [Ki2]. O

Now we prove induction formulas for local densities different from Lemma 4.1.2
(cf. Lemmas 4.1.6, 4.1.7, and 4.1.8.) For technical reason, we formulate and prove
them in terms of Hermitian modules. Let M be O, free module, and let b be a
mapping from M x M to K, such that

b()\lu + /\2%2, 7]) = Alb(ul, ’U) + /\Qb(UQ, ’U)
for u,v € M and Ay, A € O,, and
b(u,v) = b(v,u) for u,v € M.
We call such an M a Hermitian module with a Hermitian inner product b. We
set g(u) = b(u,u) for v € M. Take an Op-basis {u;}72, of M, and put Ty =
(b(us, uj))1<ij<m. Then Ths is a Hermitian matrix, and its determinant is uniquely
determined, up to Nk, /q,(O,), by M. We say M is non-degenerate if det Ths # 0.
Conversely for a Hermitian matrix T" of degree m, we can define a Hermitian module
M so that
MT == (’)pul + OPUQ R Opum

with (b(us, uj))1<i,j<m = T. Let My and M, be submodules of M. We then write
M = My 1M, if M = My + Ms, and b(u,v) = 0 for any u € My,v € Ms. Let M
and N be Hermitian modules. Then a homomorphism o : N — M is said to be an
isometry if o is injective and b(o(u),o(v)) = b(u,v) for any u,v € N. In particular
M is said to be isometric to N if o is an isomorphism. We denote by U}, the group

of isometries of M to M itself. From now on we assume that Ty € ﬁé}m((?p) for a
Hermitian module M of rank m. For Hermitian modules M and N over O, of rank
m and n respectively, put

A (N,M)={o: N — M/p"M | q(c(u)) = g(u) mod p»*},

and
B,(N,M):={c € Al (N,M) | o is primitive}.
Here a homomorphism ¢ : N — M is said to be primitive if ¢ induces an injective

mapping from N/wN to M/wM. Then we can define the local density o, (N, M)
as

al (N, M) = lim p~Cm=m" (A (N, M))

a— 00
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if M and N are non-degenerate, and the primitive local density 3, (N, M) as
BL(N, M) = lim p~oCm™m=m)y(B! (N, M))

if M is non-degenerate as in the matrix case. It is easily seen that

aP(SV T) = alp(MTv MS)v
and

ﬂp(sv T) = ﬂ;(MTv MS)
Let Ny be a submodule of N. For each ¢1 € B/, (N1, M), put

By(N,M;¢1) ={¢ € B,(N,M) | d|n, = ¢1}.
We note that we have
B.(N M) = || BL(NAM;¢n).
¢1E€B, (N1, M)

Suppose that K, is unramified over Q,. Then put =,, = 1,,. Suppose that K,
is ramified over Q,, and that m is even. Then put Z,, = Oy,.

Lemma 4.1.6. Let mq1,mo,n1, and ny be non-negative integers such that my > nq
and my+mso > ny +ng. Moreover suppose that m; and ny are even if K, is ramified

over Q. Let Az € ITIE;m2(Op) and By € ITI\éIrn2 (Op). Then we have
Bp(Zmy LAs, Eny LB2) = By (Emy LAz, Z0, ) By (Zmy —ny LAz, Ba),
and in particular we have
Bp(Eny LAs, 2y, LBy) = Bp(En, LAs, 2y, ) Bp(A2, B2),
Proof. Let M = M=, 14,,N1 = Mz, ,Ny = Mp,, and N = N1 LNs. Let a be a

Em Engo
sufficiently large positilve integer. Let N1 = Opv1®-- - ®Opvy,, and No = Opvp, 41D
-+ @ OpUp, +n,. For each ¢ € B (N1, M), put u; = ¢1(v;) for i =1,--- ,nq. Then
we can take elements w,, 11, , Um,+m, € M such that

(uzvuj) =0 (Z: 17 , M1, J:n1+17 7m1+m2)7
and

((uivuj))n1+1§i»]'§m1+m2 = Eml*nl LAs.

Put N = Opu1 @ - -+ @ Opuyp, . Then we have Ni = Mz, . For ¢ € B (N1, M;¢1)
and i =1,--- ,ny we have

mi+ma

G(n, i) = D nygijll
j=1
with Ay +ij € Op. Put =, = (bij)lgi,jgny Then we have
ny
(6(v;), $(Wny i) = > nyginbjy =0
~y=1

fori=1,--- ,npand j =1,--- ,ny. Hence we have ay, ;v =0fori =1,--- ,ng and
v =1, ,n;. This implies that ¢|n, € B, (N2, Ma, 1=, _, ). Then the mapping

B (N1, M; 1) 3 ¢ — @|n, € By, (N2, Ma,i=,, )
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is bijective. Thus we have
#B, (N, M) = #B, (N1, M)#B, (N2, M=, _, 1a,).
This implies that
Bp(Em, LAz, 2, LBo) = Bp(Em, L A2, Z0,) Bp(Emy —ny LA, Ba).

Lemma 4.1.7. In addition to the notation and the assumption in Lemma 4.1.6,
suppose that Ay and Ay are non-degenerate. Then

ap (Eml J—A27 En1 ) = ﬂp(Enn J—AQa E’I’L1 )7
and we have
Cvp(Eml J_AQ, Enl J_BQ) = Ozp(Eml J_AQ, Enl )ap(Eml,m J_AQ, Bg),
and in particular we have
aP(E'nl J-A27 Enl J-BQ) = ap(Enl J-"427 Enl )ap(A27 BQ)a
Proof. The first assertion can easily be proved. By Lemmas 4.1.2 and 4.1.4, we
have
ap(Eml LAQ, Enl LBQ)
= Z plmtnz=(mitma)v(@etWyg (= | A, (2, LBy)[W™1))
WEGLy, 4ny(Op)\Q(En, LB2)
= Z plre—tmi—mitma)v(det X) g (= | Ay 2, 1 Bo[X™Y)).
XEGLny (0p)\UB2)
By Lemma 4.1.6 and the first assertion, we have
ﬂp(Eml J—AQa Enl J—BQ [Xil]) = ap(E'rnl J—A27 Enl )ﬂp(Eml —n1 J—A27 B2 [Xil])-

Hence again by Lemma 4.1.2, we prove the second assertion. (I

Lemma 4.1.8. (1) Suppose that K, is unramified over Q. Let A € Her;(O,), By €
Her,, (O,) and By € Her,,,(O,) with m > 2n,.
Then we have

By(Im LA, By LBs) = Bp(Lm LA, B1)By((—B1) Llm—n, LA, By)
(2) Suppose that K, is ramified over Q,. Let A € }/I\e/rl((’)p)7B1 € I/{\e/rnl(Op), and
B, € Her,,, (0,) with m > ny. Then we have
Bp(O2m LA, BiLB3) = 3,(O2m LA, B1)B,((—B1)LO2m—2n, LA, By).
Proof. First suppose that K, is ramified over Q,. Let M = Mg, 1 4, N1 = Mp,, Ny =
Mp,, and N = N1 LNs. Let a be a sufficiently large positive integer. Let N; =
Opv1 @ -+ ®Opvy, and Na = Opvy, 41 B -+ - @ OpVp, 4n,. For each ¢1 € B, (N1, M),

put u; = ¢1(v;) fori = 1,--- ,ng. Then we can take elements up, 41, - , Uamt1 € M
such that

(uivunlJrj) = 5ijwip7 (un1+ivun1+j) =0 (Z’] =1,-- 7“1)7

(uiu;) =00 =1,---,2n1,5 =2n1 +1,--- ,2m+1),
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and
((wiy u5))2ns +1<i,j<2m+l = O2m—2n, LA,
where ¢;; is Kronecker’s delta. Let By = (bi;)1<i,j<n,, and put

n
[ — _77“17 I .
u; =uj —w g by jUn, 4~

for j=1,---,ny, and M’ = Opu @ --- ® Opuy,, . Then we have (uj,u’;) = —b;; and

i) ]

hence we have M’ = M_p,). For ¢ € B, (N1, M;¢1) and i = 1,--- ,ny we have
2m-+1
Un1+2 Z Any +i,5Uj

with ap, 44, € Op. Then we have

ni

(B(v5), (Vny+i)) = Z Uny+iqOjy + an1+i,n1+jwip =0

y=1
fori=1,--- ,ngand j =1,--- ,n;. Hence we have
2m—+1
B (vn,y 1) ZanlJruu + Z Ay 4i,5Uj -
Jj=2n1+1

This implies that ¢|x, € Ba(Nz, M_p,)LMaie,, »,,,)- Then the mapping
B (N1, M; 1) 3 ¢ — G|, € By(Na, M(_p,)LMaje,, ., )
is bijective. Thus we have
#B, (N, M) = #B,, (N1, M)#B,(Na, M(_p,y L Me,,, _,, 14).
This implies that
Bp(O2m LA, B11LBy) = 3,(O2m LA, B1)Bp((—B1)LO2m—2n, LA, Bs).

This proves (2). Next suppose that K, is unramified over Q,,. For an even positive
integer r define ©, by

r/2

0 1 0 1
o= (0 5) e (0 1)

Then we have ©,. ~ 1,.. By using the same argument as above we can prove that

ﬁp(@nLJ—Ay Bl J—BQ) = ﬂp(emJ—A7 Bl)ﬂp((_Bl)J—@m—2n1J—A7 BQ)

or
Bp(Om—1L11A B11By) = p(Om-1L1LA, B1)Bp((—B1)L1Os—2,, L1LA, By)

according as m is even or not. Thus we prove the assertion (1).
O

Lemma 4.1.9. Let k be a positive integer.
(1) Suppose that K, is unramified over Q.
(1.1) Let b € Z,,. Then we have

Bp(log, pb) = (1 — p~2F)(1 + p~2F*1).
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(1.2) Let b € Zy. Then we have

ap(1ak,0) = Bp(lag,b) = 1 — p~ 2k,
and
ap(log—1,b) = Bp(lap—1,b) = 1+ p~ 21,
(2) Suppose that K, is ramified over Q.
(2.1) Let B € Herp, +(Op) with m < 2. Then we have

m—1
ﬁp(®2k77TipB) _ H (1 _ p—2k+2i).
i=0
(2.2) Let B= (2% ). Then we have
ap(Ogk, B) = Bp(Oax, B) =1 —p~2*.

Proof. (1) Put B = (b). Let p # 2. Then we have K, = Q,(/2) with € € Zj such
that (¢,p), = —1. Then we have

#Ba(lak, B) = #{(2:) € Mur1(Zp) /p* Mar,1(Zp) | (2:) # 0 mod p,
2k
Z(xgifl - Ew%z) = pb mod p*}.
i=1
Let p = 2. Then we have Ky = Q2(1/—3) and

#Ba(lak, B) = #{(2:) € Mu1(Z2)/2*May1(Z2) | (zi) # 0 mod 2,

2k

Z(x%i_l + To;_1%2; + x%z) = 2b mod 20,}.

i=1
In any case, by Lemma 9 of [Kit84], we have

#B,(1ak, B) = pUF 01— p7 ) (14 p7 1),
This proves the assertion (1.1). Similarly the assertion (1.2) holds.
(2) First let m = 1, and put B = (b) with b € 2Z,. Then 27'b € Z,. Let

p # 2, orp=2and fo = 3. Then we have K, = Q,(w) with @ a prime ele-
ment of K, such that @ = —w. Then an element x = (2,1 + Wx2;)1<i<2k Of
Mok.1(Op) /p* M2k, 1(O)) is primitive if and only if (z2;,-1)1<i<2x Z 0 mod p. More-
over we have

On[x] =2 Y (w2i@2iq1 — Toio1T2i12)T

1<i<2k

Hence we have

#Ba(lax, B) = #{(wi) € Mar1(Zyp)/p" Mak1(Zp) | (72i-1)1<i<2r Z 0 mod p
2k
Z(lﬁz‘w%-&-l — Z9i_1%2i42) = 27 'b mod p°}.
i=1
Let p = 2 and fo = 2. Then we have Ky = Qa(w) with w a prime element of Ko
such that 7 := 27 (w + @) € Z3. Then we have

#Bo(lak, B) = #{(x;) € M4k71(Z2>/2aM4k,1<Z2) | ($2i71)1§i§2k # 0 mod 2,
2k

D A{n(@aimaiss + w2i 1%2i12) + Tai 12i41 + 222} = 27 'b mod 2%},
i=1



22 H. KATSURADA

Thus, in any case, by a simple computation we have
#Ba(12k’ B) — p(2k71)a(p2ka _ ka(afl)).

Thus the assertion (2.1) has been proved for m = 1. Next let 7» B = (b;;)1<i,j<2 €
Hery .(Op). Let M = Me,,,Ny = M_i,;, , and N = Mp. Let a be a sufficiently
large positive integer. For each ¢, € Bl (Ny, M), put

B:z(NvM;(bl) = {¢€ B;(N7M) | ¢|N1 = ¢1}

Let N = Opv180,v2, and put u1 = ¢1(v1). Then we can take elements ug, - - -, ugk €
M such that
M = Opui & Opus & - - & Opugy,
and
(u1,u2) = @, (ug,u2) = 0, (u;,u;) =0fori =1,2,j=3,--- 2k, and (u;, uj)3<i j<or = O2k—2.

Then by the same argument as in the proof of Lemma 4.1.8, we can prove that
B (N, M; ¢1) = {(zi)1<i<on—1 € M2k-1,1(0p)/p" Mar-1,1(0p) | (xi)2<i<2k—2 # Omod @,
—21Z1b11 — 1bi2 — T1b12 + Oo—2[(%i)2<i<2k—2] = b2 mod p*}.
Hence by the assertion for m = 1, we have
Bp(O2r, B) = Bp(Oak, bi1)p™ Z Bp(O2k—2,b2 + b1121T1 + x1b12 + T1b12)
21€0, /w20y
=1 —p )1 —p *2).
Thus the assertion (2.1) has been proved for m = 2. The assertion (2.2) can be

proved by using the same argument as above.
O

Lemma 4.1.10. Let k and m be integers with k > m.
(1) Suppose that K, is unramified over Qp. Let A € Her;(O,) and B € Her,,(O,).
Then we have

2m—1
Bp(pALlak,pB) = Bp(lar, pB) = [[ (1= (=1)'p ")
i=0
(2) Let K, = Q, & Qp. Let 1 be an integer. Let B € Her,,,(O,). Then we have
2m—1 )
Bp(lak,pB) = [[ (1=p>**7)
=0

(3) Suppose that K, is ramified over Q. Let A € Her; .(O,) and B € Her, .(O,).
Then we have

m—1

Bp(n'? ALOgy, v B) = B,(Ogr, w7 B) = [[ (1 — p~ ).

i=0
Proof. (1) Suppose that K, is unramified over Q,. We prove the assertion by in-
duction on m. Let deg B = 1, and a be a sufficiently large integer. Then, by Lemma
4.1.9, we have

Bp(pALlsy, pB) = p~* > Bp(lak, pB — pA[X])
x€M;1(Op)/p* M11(Op)
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=1 —p ) (L +p ).
This proves the assertion for m = 1. Let m > 1 and suppose that the assertion holds
for m — 1. Then B can be expressed as B ~qr,,(0,) Bi1 LBz with By € Her;(0,)
and By € Her,,—1(0,). Then by Lemma 4.1.8, we have

Bp(PALloy, pBi LpBs) = B, (pALlok, pB1)Bp(pAL(—pB1)Llak_2, pBo).

Thus the assertion holds by the induction assumption.
(2) Suppose that K, = Q, ® Qp. Then we easily see that we have

By(1ag, pB) = p M+ LB, (15, O,).
‘We have
81(12k) Om)

={(X,Y) € May(Zy)/pMay(Zy) ® Mok, (Zp) /pMok,i(Zy) |
'YX = 0,, mod pMy(Zy) and rankg ,,z X =rankg ,,z Y =m}.
For each X € Moy 1(Z,)/pMoay 1 (Z,) such that rankg /,z X =m, put
#B1(1ak, Om; X)
={Y € Moy 1(Z,)/pMay 1(Z,) | 'Y X = Oy, mod pM,,,(Z,,) and ranky 7z Y =m}.

By a simple computation we have

m—1
H#{X € Mayi(Zy)/pMoy1(Zp) | rankg, jpz, X =m} = [[ 0** —p"),
1=0
and
m—1 )
#B1(1ak, On; X) = [[ 0 = p").
1=0

This proves the assertion.

(3) Suppose that K, is ramified over Q,. We prove the assertion by induction
on m. Let deg B = 1, and a be a sufficiently large integer. Then, by Lemma 4.1.9,
we have

Bp(m'? ALOgy, '» B) = p~ > Bp(O2k, w7 B—m'r Alx]) = 1-p~2".
xEM1(Op)/p*Mi1(Op)

Let deg B = 2. Then by Lemma 4.1.9, we have

By (7'» ALOgy, w7 B) = p~2le > By (Oar, 7'* B — mir A[x])
XGMLZ(O;D)/paMw(O;n)

=1 —p )1 —p ).

Let m > 3. Then B can be expressed as B ~GLm(0,) Bi 1 By with deg B; < 2. Then

the assertion for m holds by Lemma 4.1.8, the induction hypothesis, and Lemma

4.1.9.
]

Lemma 4.1.11. (1) Suppose that K, is unramified over Q. Let I and m be an
integers with | > m. Then we have

Ju

m

oy (1 1) = By 1) = [ (1~ (—p)~+)

=0
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(2) Let K, = Qp, ® Qp. Let | and m be integers with I > m. Then we have

m—1

(11, 1) = Byl 1) = [T (1 =07

=0

(3) Suppose that K, is ramified over Q. Let k and m be even integers with k > m.
Then we have
m—1

Olp(®2ka ®2m) = ﬂp(GQk, egm) = H (1 _ p72k+2i).

=0

Proof. In any case, we easily see that the local density coincides with the primitive
local density. Suppose that K, is unramified over Q,. Then, by Lemma 4.1.7, we
have

Oép(ll, 1m) = ap(lh 1)ap<1l717 1m71)'

We easily see that we have
ap(1;,1) =1 = (=1)'p~".

This proves the assertion (1). Suppose that K, is ramified over Q,. Then by Lemma
4.1.7, we have

ap(O2k, Om) = ap(O2k, O2)ap(O2k—2, O2m—2).
Moreover by Lemma 4.1.9, we have
ap(Ogp, O2) = 1 —p2*.

This proves the assertion (3). Suppose that K, = Q, $ Q,. Then the assertion can
be proved similarly to (2) of Lemma 4.1.10.
O

4.2. Primitive densities.

For an element T' € I/-I\e/rm((’)p), we define a polynomial G,(T, X) in X by

G(T.X)=> > (Xp") e, w)E(TWw ] X).
i=0 WEG L (Op)\Dm,i

Lemma 4.2.1. (1) Suppose that K, is unramified over Q. Let By € Hery,—p, (Op).

Then we have
no

ap(Ln, LpB1) = H(l - (—p)_i)ap(pBl)

i=1
(2) Let K, = Q, ® Q. Let By € Hery,— 1y (O,). Then we have

no

ap(lngLpB1) = [[(1 = p7")ay(pB1)

i=1
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(3) Suppose that K, is ramified over Q,. Let ng be even. Let By € Heryy—py 1 (Op).

Then we have
n0/2

ap(On, Lr'*By) = [[ (1 = p™*)ap(x'» By).
i=1
Proof. Suppose that K, is unramified over Q,. By Lemma 4.1.7, we have
ap(ly, LpB1) = ap(1y, LpB1, 1y, ) oy (pB1).

By using the same argument as in the proof of Lemma 4.1.10, we can prove that
we have

ap(lnoJ-th 1”0) = ap(lno)v
and hence by Lemma 4.1.11, we have

no

ap(lnoLpBl) = H(l - (_p)_i)ap(pBl)'

i=1

This proves the assertion (1). Similarly the assertions (2) and (3) can be proved. O

Lemma 4.2.2. Let m be a positive integer and r a non-negative integer such that
r <m.
(1) Suppose that K, is unramified over Q. Let T = 1,,,_, LpBy with By € Her,.(O,).

Then
m—+r—1

Bp(l2x, T') = H (1—p 2 (=1)").
i=0
(2) Suppose that K, = Qp ® Qp. Let T =1, LpB; with By € Her,.(O,). Then
m—+r—1

Byl T) = [[ (1—p"*).

i=0
(3) Suppose that K,, is ramified over Q, and that m—r is even. LetT = ©,,_, Ln'» By
with By € Her, .(O,). Then

(m+r—2)/2

Bp(Oa, T) =[]  (1—p 2.

i=0

Proof. Suppose that K, is unramified over Q,. By Lemma 4.1.8, we have
ﬂp(12k7 T) = 61)(12/«’pBl)ﬂp((_pBl)J—IQk—m"a 1m—7")~

By using the same argument as in the proof of Lemma 4.1.11, we can prove that
we have 3,((—pB1)Llak—2r, Lin—r) = Bp(lak—2r, Lim—r). Hence the assertion follows
from Lemmas 4.1.10 and 4.1.11. Similarly the assertions (2) and (3) can be proved.

O

Corollary. (1) Suppose that K, is unramified over Q, or K, = Q, & Q,. Let
T = 1,—,1pBy with By € Her,(Op). Then we have

r—1

Gp(T,Y) = H(l - (fpp)mHY)-

=0
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(2) Suppose that K, is ramified over Q, and that m —r is even. Let T =
O,—p L7 By with By € Her,..(0,). Then

[(r=2)/2] ‘
Gp(T,Y)= [ (—p2mtily),
=0

Proof. Let k be a positive integer such that k > m. Put Zox = Og or 195 according
as K, is ramified over Q, or not. Then it follows from Lemma 14.8 of [Sh97] that

for B € Her,,,(O,)* we have
bp(p~" B, 2k) = ap(Eak, B).
Hence, by the definition of G,,(7T, X) and Corollary to Lemma 4.1.2, we have

[(m—-1)/2] ) ‘
Bp(Zak, T) = Gp(Tp~*) [T (1= [T (1 =™ 172
=0 i=1

Suppose that K, is unramified over Q, or K, = Q, ® Q,. Then by Lemma 4.2.2,

we have
r—1

Gp(T7p_2k) — H(l _ (fpp)7”+ip_2k).
i=0
This equality holds for infinitely many positive integer k, and the both hand sides
of it are polynomials in p~2%. Thus the assertion (1) holds. Similarly the assertion
(2) holds. O

Lemma 4.2.3. Let B € }fl\e/rm((’)p). Then we have
F;EO)(B’ X)= Z Gp(B[Wfl], X)(me)V(det W)
WEGL, (0p)\Q(B)
Proof. Let k be a positive integer such that & > m. By Lemma 4.1.2, we have
ap(Eax, B) = Y. Bp(Ba, BW T plmvidet ),
WEGL,, (0,)\Q(B)

Then the assertion can be proved by using the same argument as in the proof of
Corollary to Lemma 4.2.2. ]

Corollary. Let B € ITIE;m(Op). Then we have

_ / B',B)
F(O) B. X :Xepmffp[m/2] Xford(detB)aP( )
o > s (B
B’€Hern, (0p)/GLm (Op)
XGP(B/,p_mXQ)Xord(det B)—ord(det B/).
Proof. We have
ﬁ(O) (B, X) _ Xepmffp[m/Q]Xford(det B)F(O) (vame2)
_ Xepmffp [m/2] Z Xford(det B)Gp(B[Wfl}7p7mX2)(X2)u(det W)
WEG Ly (0p)\Q(B)
_ xesm—tylm/2]



KOECHER-MAASS SERIES OF THE IKEDA LIFT FOR U(m,m) 27

> Z Z Xford(dct B)GP(B/’pmeQ)(XZ)u(dct W)
B’€Her (0p)/GLm (0p) WEG L.y (Op)\Q(B’,B)
_ Xepmffp[m/2] Z Xford(det B,)#(GLm(Op)\ﬁ(B/, B))

B'€Her, (0p)/GLm (Op)

pr(Bl’pmeQ)Xord(dct B)—ord(det B’).

Thus the assertion follows from (2) of Lemma 4.1.3. O
Let
Fnp(do) = | (Her, (r'do Nk, 1, (0F), Op),
i=0
and

fm,p,*(dO) = fm,p(dO) N Herm,*(op)~

First suppose that K, is unramified over Q, or K, = Q, ® Q,,. Let H,, be a
function on Her,,(0))* satisfying the following condition:

H,,(1,—rL1pB) = H,(pB) for any B € Her,(0,).
Let dy € Z;,. Then we put

Hu(Lm—rLPB) ,ora
do, H,,, 1, t) = Zmi\Tmor—F7 ) yord(det(pB))
Q( 0 T ) ~ Z Olp(lm—rJ—pB)
Bep—1F, ,(do)NHer, (O,)
Next suppose that K, is ramified over Q,. Let H,, be a function on Her,,(O,)*
satisfying the following condition:
Hn(Om—rL7i» B) = H,.(n"» B) for any B € Her,.(0,) if m — r is even.

Let dy € Z;, and m — r be even. Then we put

Hyn(Om—r L7 B) gradet (s
do, Hy,r,t) = i Omor T2 jord(det(r' )
Q( 05 A ) o Z Oép(@m—rJ—ﬂ'zpB)
Bern " F, p(do)NHer, +(Op)

Then by Lemma 4.2.1 we easily obtain the following.

Proposition 4.2.4. (1) Suppose that K, is unramified over Q, or K, = Q, ®Q,.
Then for any dy € Z;, and a non-negative integer r we have

Q(dOa HT; T, t)
¢mfr(€pp71) )

(2) Suppose that K, is ramified over Q,. Then for any dy € Z;, and a non-negative
integer r such that m — r is even, we have

Q(d07Hm7Ta t) =

Q(dOa HT‘; T, t)

d Hma yU) = .
Q( o " t) ¢(mfr)/2(p_2)
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4.3. Explicit formulas of formal power series of Koecher-Maass type.

In this section we give an explicit formula for Py, (do, X, ).
Theorem 4.3.1. Let m be even, and dy € Zy,.
(1) Suppose that K, is unramified over Q,. Then
1
Gm(—p ) T2 (L= t(=p) 7 X)L+ t(=p) ' X))
(2) Suppose that K, = Q, ® Qp. Then

P, (do, X, t) =

1
Gm(p~ ) T2 (1 —tp~iX)(1 — tp~i X 1)’
(3) Suppose that K, is ramified over Q,. Then

tmip/Q

P (do, X, t) =

Pp(do, X, t) = 2ma (-2

x{ 1 Xk, ((=1)™/2do) }
T2 (= tp= 21X 1) (1 = tp2X) [~ tp= X 1)1 - tp=2+1X) |
Theorem 4.3.2. Let m be odd, and dy € Z,.
(1) Suppose that K, is unramified over Q,. Then

1
G (—p ) [T, (1 + t(=p) 7 X) (L + t(—p) 7' X 1)
(2) Suppose that K, = Qp ® Qp. Then

P, (do, X, t) =

1
om(p~ DI (1 —tp~ X)(1 —tp~?X 1)’
(3) Suppose that K, is ramified over Q. Then
H(m+1)iy /2405,
20(m—1)/2(02) T V2 (1 = tp=2H1X) (1 — tp=2i+1 X 1)
To prove Theorems 4.3.1 and 4.3.2, put

G,(B',p~™X? rord(det B'
Km(do, X,0)= ) ”(a(B,) Lo yoracaen )
P

P (do, X,t) =

P, (do, X, t) =

B'€Fr (do)
Proposition 4.3.3. Let m and dy be as above. Then we have
P (do, X, t) = Xmer= /20 i (dy, X 1)
[T, (1 —¢2X2p¥i—2=2m)=1 if K,/Q, is unramified
x4 [Tk, (1—txpimt-m)=2 if K, =Q,®Q,

[T, —tXxp—t-m)—t if K,/Q, is ramified.
Proof. We note that B’ belongs to }fl\e}m}p(do) if B belongs to }/I\e/rm,l,p(do) and
ap(B’, B) # 0. Hence by Corollary to Lemma 4.2.3 we have

Pm(d07 Xv t)

_ Xmepf[m/2]fp Z 1 ) Z GP(B’vpmeQ)Xford(det B/)Ozp(B/aB)

« a, (B’
Befm,p(do) p B’ p( )



KOECHER-MAASS SERIES OF THE IKEDA LIFT FOR U(m,m) 29

><)(ord(det B)—ord(det B/)tord(det B)

— G (B/ pmeZ) _ ’
— xmer—[m/2fp Zp\P 5P A ) y—1yord(det B')
Z ap(B’) ( )
B'€Fpm p(do)

« Z aP(B/’B) (tX)ord(det B)—ord(det B/).
o op(B)
BeFm,p(do)

Hence by using the same argument as in the proof of [[BS87], Theorem 5|, and by
(1) of Lemma 4.1.3, we have

Z aP(B/»B) (tX)ord(det B)—ord(det B')

B
BEFm »(do) op(B)
— Z (tprm)u(dct w)
WEM, (O)% /G L (Op)
[T, (1 =2 X2p*~272m) = if K, /Q, is unramified
=9 I[(1- '5Xplflfm)72 if Kp=Qp&Qp
[T, (1 —tXpi—t-m)~1 if K,/Q, is ramified.
Thus the assertion holds. O

In order to prove Theorems 4.3.1 and 4.3.2, we introduce some notation. For a
positive integer r and do € Z, let

1 Oor! €
Cm(d07t> —_ Z mt d(d tT).
TE€Fm,po(do) T

We make the convention that ((do,t) = 1 or 0 according as dy € Zj, or not. To
obtain an explicit formula of (,,(do,t) let Z,,(u,d) be the integral defined as

Zm (U, d) = / | det 2|~ ™|dx|,
Frm,p,+(do)
where u = p~*, and |dx| is the measure on Her,,(K,) so that the volume of

Her,,(0,) is 1. Then by Theorem 4.2 of [Sa97] we obtain:

Proposition 4.3.4. Let dy € Z;,.
(1) Suppose that K, is unramified over Q,. Then

-1 ,-2 -2 2
T (1t o) = 0P ions/2 (P72 izl
’ [, (1 = (=1)m+ipi=tu)
(2) Suppose that K, = Q, ® Q. Then

T a1, do) = Om (")

(3) Suppose that K, is ramified over Q,.
(3.1) Let p # 2. Then

1 _
Zm(u,do) = §(p L0 (mt1)/2)
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1 . .
72 (e if m is odd,

X ( 1 XKp((—l)m/zd())Pim/Q
[T

T (1—pi=1u) T2 (1-p2 —2u)

(3.2) Let p=2 and fo = 2. Then

) if m is even.

1, 4 _
Zm e (u,do) = 5(? L0 (mt1)/2)

w(m+1)/2
1202 (1-p2i—2u) /2 /2

m/2, —m/2 1 XK, ((=1)"*do)p™™
e <H:’;/f<1—p%1u> 177 (1—p2i—2u)
(3.3) Let p=2 and fo = 3. Then

if m is odd,

X

> if m is even.

1, ., _
Zm,«(u,do) = 5(1’ L0 (mt1)/2)

if m is odd,

u
L p =) . .
x b 1 X, (—1)™ 2do)p™™/
177 (1—p?i—1u) 177 (1—p?i—2u)

Proof. First suppose that K, is unramified over Q,, K, = Q, ® Q,, or K, is
ramified over Q,, and p # 2. Then Z,, .(u,dy) coincides with Z,,(u, dp) in [[Sa97],
Theorem 4.2]. Hence the assertion follows from (1) and (2) and the former half
of (3) of [loc. cit]. Next suppose that p = 2 and fy = 2. Then Z,, .(u,dp) is not
treated in [loc. cit], but we can prove the assertion (3.2) using the same argument
as in the proof of the latter half of (3) of [loc. cit]. Similarly we can prove (3.3) by
using the same argument as in the proof of the former half of (3) of [loc. cit].

) if m is even.

(I
Corollary. Let dy € Z,.
(1) Suppose that K, is unramified over Qp. Then
! 1
o LT )
(2) Suppose that K, = Q, ® Qp. Then
R 1
C Omp ) IS (L —p't)

(3) Suppose that K, is ramified over Q.
(3.1) Let m be even. Then

Cm (d07 t)

Cm(dov t)

pm(m+1),fp/2—m252,pﬁp(t)

Cm dp,t) =
(o1 20/2(p~2)
“ 1 Xk, (=1)™/2dy)p~i»™/2
MR- p=r) | 0o
where i, = 0, or 1 according as p =2 and f, =2, or not, and
1 if p#£2
kp(t) = tm/2p=mm+D/2if p =2 and fo = 2

p~™ if p=2and fy =3
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(3.2) Let m be odd. Then
pm(m+1)fp/2fm262,p,{p(t) 1

d ,t = ’
{1 20m-12(P7%) IR (L - pre)
where
1 if p#2
p(t) = § 40D 2=t 2 i =9 and fy = 2
tp~™ if p=2and fo =3

Proof. First suppose that K, is unramified over Q,. Then by a simple computation
we have

Zm (™™ 7d
Cm(d07t) = W

Next 0 suppose that K, = Q, ® Q. Then similarly to above
Zm,*(p_mt7 do)
dm(P~1)?

Finally suppose that K, is ramified over Q,. Then by a simple computation and
Lemma 3.1

Cm(d07 t) =

’m(7n+1)fp/2—'m262.pzm L(p~™t, d
Cn(do,t) = p o, (p 0).
Gm(p~t)

Thus the assertions follow from Proposition 4.3.4.

Proposition 4.3.5. Let dy € Z,.
(1) Suppose that K, is unramified over Q,. Then

K (do, X, t)
P XY IS (= (D)™ (—p)IX?)
=2 Omr (D)
(2) Suppose that K, = Q, ® Q. Then
K (do, X, 1)

Go(do, tX 1),

r—1

m 2 ;
P XY S (1 - p'X?) -
- Z - _01> Cr(do, tX 1),
—0 m—r\P
(3) Suppose that K, is ramified over Q. Then
Km (dOa X7 t)

m/2 g2 —1\(m/2+r)i, TT"—1 2i 12

T (tX |, 1 X
z :p ( ) HZQZO( p )CQT(( 1)m/271“d07tX71)
r—0 ¢(mf2r)/2(p_ )

if m is even, and

Km(dOa X7 t)

(m=1)/2 (2r41)%, (4 x —1)(m+1)/24r)ip TTT=1 (] _ p2i+1 X2
_ Z p ( ) L[z:O( p )<2T+1((_1)(m—2'r'—1)/2d0,tX—l)
= Bim—2r—1y/2(p72)

if m is odd.

Proof. The assertions can be proved by using Corollary to Lemma 4.2.2 and Propo-
sition 4.2.4 (cf. [[IKO06], Proposition 3.1]). O
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It is well known that #(Z; /Nk, /q,(0;)) = 2if K;,/Q,, is ramified. Hence we can
take a complete set A, of representatives of Z; /Ng /q,(O5) so that N}, = {1,&0}
with xk, (o) = —1.

Proof of Theorem 4.3.1. (1) By Corollary to Proposition 4.3.4 and Proposition
4.3.5, we have
1 L, (do, X, 1)
Om(—p~ ) [TiL, (L + (=1)p~" X 1)’
where L,,(dg, X, t) is a polynomial in ¢ of degree m. Hence
1 Ly (do, X, 1)
G (=p ) ITZ L+ (=1)ip~ X 1) [IL, (1 — p=2X%2)

K, (do, X, t) =

P (do, X, t) =

We have N N
F(B,-X Y= F(B,X)
for any B € EEO)(B,X). Hence we have
P’rn(dOa _Xilvt) = P7n(d0) Xa t)7

and therefore the denominator of the rational function P, (dy, X,t) in t is at most

m m

[T+ o xn]a - (-1 xo.

i=1 i=1
Thus

Pm,(d07Xat) = a

Om(—p ) [ (L + (1)~ X 1) [[Z, (1 = (=1)'p'Xt)’
with some constant a. It is easily seen that we have a = 1. This proves the assertion.

(2) The assertion can be proved by using the same argument as above.
(3) By Corollary to Proposition 4.3.4 and Proposition 4.3.5, we have

K. (d, X,t)
1 L(O)(Xv t) + XKP((_I)m/QdO)L(l)(Xa t)
2 H:f;/f(l — 2t X 1) H;T;/f(l —p2iX 1Y)
with some polynomials L(®)(X,t) and L") (X, ¢t) in t of degrees at most m. Thus
we have

Pn(d, X, 1)
_1 { LOX, 1) L ()P LX) }
2 {2 = p 2 X [T, (L= pmiXe) LA = p 2 X [T, (1 - p i X0)
For [ =0,1 put

PO = 3 37 X, (1)) Po(d, X 1),

deN,
Then
PO (X.1) = LOY(X,t) 1
T 20mp (07 TP - pr 2 X ) [T (1 - piXE)
and
PO (X.1) = LOW(X,t) 1

20m/2(P2) TIM2(1 — p~2 X 1) T, (1 — p=iXt)
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Then by the functional equation of Siegel series we have
Po(d, X7 ) = X, ((—1)"/2d) Por(d, X, 1)
for any d € NV,,. Hence we have
POX1t) = PID(X,t).

Hence the reduced denominator of the rational function P,S? ) (X,t) in t is at most

m/2 m/2
[Ja—p*x—1t) ] —p > X1),
i=1 i=1

and similarly to (1) we have

1
20 2(p~2) [T (1= p2 X —10) [ (1 — p2Xt)
Similarly
1
Pr(nl)(X, t) = } | .
2¢m/2(p*2) Hl_";/f(l — p,le,lt) H?;/f(l N p*zHlXt)
We have

Pm(d07X7 t) = PT(nO)(Xv t) + XKP((_l)m/2d0)P7S’L1)(Xa t)

This proves the assertion.

Proof of Theorem 4.3.2. The assertion can also be proved by using the same
argument as above. (I

Theorem 4.3.6. Let dy € Zj,.
(1) Suppose that K, is unramified over Q, or that K, = Q, ® Q,. Then

P (do, X, t) = Pp(do, X, t)

for any m > 0.
(2) Suppose that K, is ramified over Q. Then

Papi1(do, X, t) = Payi1(do, X, t)

and )
Py (do, X, t) = on ()
9 { e N xx, ((—1)"do) (txx, (p))™" }
[T (1 —tp= 21X -1)(1 —tp=2X) i (1 —tp~2ixk, (p) X (1 — tp~ 2+ xk, (p)X) |

Proof. The assertion (1) is clear from the definition. We note that Py, (do, X, t) does
not depend on the choice of 7. Suppose that K, is ramified over Q,. If m = 2n+1,
then it follows from (3) of Theorem 4.3.2 that we have

Ap(m'd, X) = A7, (7", X)
for any d € Z;, and in particular we have

A;kn,p(pidOa X) = A;,p(ﬂ-ia X)
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This proves the assertion. Suppose that m = 2n. Write pzn(do, X,t) as
P2n(d0a X7 t) = PQn(dOa X7 t)e'uen + PQn(dOa X7 t)odd;

where

Pan(do, X theven = 3 {Ponldo, X,) + Pan(do, X, ~0)},
and

Pon(do, X, t)0dq = %{Pgn(dO,X, t) — Poy(do, X, —t)}.
‘We have

P (do, X, ) even ZA%Z, (p%ido, X, Y )% = ZAQM m%dy, X, Y)t%
=0

and

P X s = 3 i 077 X5 = 3K 8y,
1=0 i=0
Hence we have

. 1
Pgn(do,X, t)e'uen - §{P2n(d07Xa t) + PQn(d07Xa _t)}a
and )
an(do,X, Kt)odd = §{P2n(d077p717Xa t) - PQn(dOﬂ-pila Xa _t)}7

and hence we have

. 1 _ N
Pa(do, X, 1) = Py (do, X, 1)+ 5 (1 + x, (7 )xc, (—1)"do) P, (do, X. 1)

1 — n
+5 (1=, (mp ™ )xac, ((—1)"do) P, (do, X, ).
Assume that x g, (mp~') = 1. Then x(domp~') = x(do), and we have
Py (do, X, t) = Pan(do, X, t).
Suppose that xx, (rp~1) = —1. Then x(domp~t) = —x(dp), and we have
PQn(d07X7 t) = PQ('?L)(dOaX7 t) + XKP((_l)ndO)PQ(:L) (dO,X, _t)

Since m € Nk, /q,(K,), we have xk, (mp~') = xk, (p). This proves the assertion.
O

Corollary. Let m = 2n be even. Suppose that K, is ramified over Q,. Forl=0,1
put
(X, 1) Z i, (=1)"d)! Pon(d, X, 1).
deN
Then we have

. 1 - A
Pon(d X, 1) = 3 (P (X,0) + x, (-1)"d) P3) (X, 1)),
and
B (X, 1) = Py, (X, 1),

and
PL)(X,t) = PL)(X, xk, (D)),
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The following result will be used to prove Theorems 2.3 and 2.4.
Proposition 4.3.7. Let d € Z,;. Then we have
Ap(dy X) = up A p(d, X).
Proof. Let I be the left-hand side of the above equation. Let
GL1y(0p)1 ={U € GL,(0,) | det U det U = 1}.

Then there exists a bijection from Herm(d, Op)/GLp(Op)1 to
Her,,(dNk,/q,(0;), Op)/G Ly (Op). Hence
=(0
. 5 F7 (A, X)
_ ap(4)
AeHer, (d,0p)/G Ly (Op)1
Now for T € Iflg;m(d, Op), let | be the number of SL,,(O,)-equivalence classes in

Her,, (d, Op) which are GL,,(O,)-equivalent to T'. Then it can easily be shown that
I =1, 7. Hence the assertion holds. O

5. PROOF OF THE MAIN THEOREM

Proof of Theorem 2.3. For a while put \5(d) = A}, ,(d, a, ). Then by Theo-
rem 3.4 and Proposition 4.3.7, we have

L(s,12n(f)) = p2nk,p Z H(u;lA;(d))d*S+k+2n.
d p

Then by (1) and (2) of Theorem 4.3.1, and (1) of Theorem 4.3.6, \;(d) depends
only on p°d»(@) if p t D. Hence we write As(d) as Xp(pordp(d)). On the other hand,
if p | D, by (3) of Theorem 4.3. and , (2) of Theorem 4.3.6, A;(d) can be expressed
as

Ap(d) = AP (d) + xrc, ((=1)"dp~ " D)AD (d),
where )\I(,l)(d) is a rational number depending only on p°*d»(4) for { = 0, 1. Hence we
write )\I(,l)(d) as Xg)(p‘“dp(d)). Then we have

Z H —1)\ ord, d) HX ordp(d)

QCQp pld,ptD q€Q
% H u;lXéO) (pordp(d)) H XK, (pordp(d))
pld,p|D,pgQ q€Q
~ H U’p /\(1) ord, H YK ordp(d)) H XKQ((_
pld,peQ q€Q,q#p q9€Q

for a positive integer d. We note that for a subset @ of Qp we have
(m) =TT xx,(m)
q€Q
for an integer m coprime to any ¢ € Q7 and

XQ( H XK, (

q€Q7q75p
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for any p € @. Hence, by Theorems 4.3.1 and 4.3.6, and Corollary to Theorem
4.3.6, we have

L(s, Ion(f)) = pangep D [ D Ao )xoph)p s Hhrem:

QCQp ptD 1=0

< II D w2 @ xe®)p 2o ((-1)")
p|D,pgQ i=0

x H Zuglxz()l)(pi) H XK, (pz) p(—3+k+2n)i-

PEQ =0 q€Q,q#p

= p2okn Y X@((=1)") [J(uy " Pon (1,0 xq(p)p™=HE42))
QCQp ptD

— 0 — —s n — 1 — —s+k+2n
< T P xq)p =2 T (up t PLY (ot Xl (p)p > 74421,
p|D,pgQ PEQ

Now for [ = 0,1 write Py, (X,1) as

PO

2n,p

(X, ) = " )

2n,p

(X, 1),

where i, = 0 or 1 according as 4||D and p = 2, or not. Notice that u, = (1 —
x()p~")"tif pt D and u, = 271 if p|D. Hence we have

L(s, Ion(f)) = p2app Y xo((=1)")

QCQp
X H p(—s+k+2n)n( H XQ(p) H X,Q(p))n

PEQD PEQ D, pEQ PEQ

% H((l = X()p" ) Panp(L, 0, X (p)p*THH?M)
ptD

~(0 B . . ) 3

x H (2P2(n);17(ap 17 XQ (p)p +k+2n)) H (2P2(n?p(ap 17 X/Q (p)p 5+k+2n))’
p|D,pgQ iy

where Q) = Qp\{2} or @p according as 4||D or not. Note that
22ch(—s+k+2n) H p(—s+k+2n)n — D(—s+k+2n)n

PEQ)

I xe® I xe® =1

PEQD . PEQ PEQ
Thus the assertion follows from Theorem 4.3.1.

and

Proof of Theorem 2.4. The assertion follows directly from Theorems 3.4 and
4.3.2.
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