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On Operational Equations

Yoshio Kinokuniya

Abstract
k This paper deals with regular solutions of the operational equations: (A).. Plu)=7(x,y,2),
(B) - P(u) = ¢ (v, y,2,%) where I is supposed as a certain partial differential compound operator

of rational 1ntegral form. For (A some important formal solutions are given with some ex-
amples and especially for the equation P () = D} (u) (P and D are independent) the Initial-
value-Problem is studied on an'important theorem.

For (B) P is shown its composition by means of functlon-theoretxcal caleulus and is chara-
cterized by the parameters 4 #, v and a function ¢ (§,%, ¢; 2,%,2), which corresponds to-a solution
in the sense of one-to-ome as far as the solutions are regular. :

It has been my attempt to reach after some new points -of view on
partial differential equations, which might look over them more system-
atically than the classic methods, and there have been found out two ways
on the whole. In this paper, giving each chapter to each of them I will
show some important. results. The above-mentioned title has been chosen -
to explain the methods to state, but in this paper I do not mean to expand
the field beyond the differential equation’s. :

Chapter 1 Formal Calculus

1. Definition -of the Operator P. In this chapter equations of the
form ‘ S
Pu) = f(5,9,2) (A)
will be principally 1nvestlgated Whﬂe in the next chapter equations of
the form : ,

will be discussed, g1v1ng another deﬁmtlon for P, which is different because
of caleulating method but not essentially. In this chapter the operator P
is difined by the following six assumptions: (i) If f(z, y,2) is a function
which is continuous and has every partial derivativ'e /88 continuous in a
certain domain, P(f), P(f), P°(f)--; P*'(f)=P{P*(f)}, aré all con-
tinuous in the same domain. (In this case 7 will be called “endlessly oper-
atable” or “operatable for the operator P”.) (ii) P(0)=0. (iii) If h is a
function of ' certain variables independent of z,y,z, P(hf)=hP(f). (iv) If
Q is another operator of the same ensemble as P, (P + Q) (f)=P(f) +



14 - Y. Kmokumya

o). ) PQ(f) =QP(f); PQ(f)= Q(f) (vi) If o(2,y, z) is another
operatable function, Q(f+4g¢) = P(f) + Py

The assumption (ii) makes our operator impossible to include any 1nte-
gration’s or general inversion’s process, for Whlch the operator ,must be
difined under another system of restrictions. And we must pay attention

to thg ensemble to which our operator belogs, for if we take two operators
3 :

9 __L -
P=x % and Q—— oy

o o
then QP = P + 2¢ e lLe. PQx0QP. In this case we see the assump-
tion (v) is not satisfied, and P and @ belong to different ensembles. ‘But
if two operators are written in the forms '

B, = aytal+- +a, P

£, = b()+bIP+ b, PV o
where @ (k = 0,1,2,-2) and b;(k = 0,1,2, ---7») are all constant coefficients,
they conform to the condition (v), viz. ' - o

R R, =R, N

and both R, and R, belong to the same ensemble as P,
2. Reiteration Principle. If f(z,9,2)is an endlessly operatable functlon
for the operator #, a function defined in the form

u(@,y2) = f—=P(f)+P(H—P(H+- @)
satisfies the formal relation ’
Pluy) = P(f)=P(f )+ P(F)=P()+ -
and therefore makes a solution of the operational equatidn
E (1+P)(uy) = uO+P(uO) = f(x,y,?).
~ Here we take the operator (#—1) in place of P and find (A) is solved for- ;
mally by u(z,y,%?) Whlch is defined as . ‘

u(x Y, 2) = (1 —PY{(f). (2,2)

This solution is, in pomt of fact, a spe01a1 one of the follovvmg cases.
9(x,y,%) be an arbitrary -operatable function, then the function v(%,9,2)
“befined as follows is found to be a formal solution of (A): '

v(x,y,z) =49 (fu"‘ff."‘}fﬂ"f‘f‘r’“ ot ) ‘ o (2, 3)
where fi, = P(fi9)—Sf (k=0,1,2,---), fy = f. Here naturally comes another
yet similar way solves (A), i.e..-----if h(¢) is supposed as an arbitrary con-
tinuous function of ¢ 1nependent of z; ¥, z for Whlch naturally

P(h) = hP(l)

- and is taken in place of ¢g'in (2 3), it is found that
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u;(x,y,z:t):hg)<1fﬁ;¢1>>k<f> 2

solves (A) too: Morever u = 0w/9' may solves P(u) =0, but by some com- .
putation this solution v is proved to be but a trivial one which -vanishes
identically and therefore the series of type (2,4) can converge and give a .
solution of (A) only when w (w, ¥, z; t) is shown to be independent of ¢,
while the solution (2, 2) remains to be tested -in this respect.

* There is another method to be stated about, which is particular yet
important. Let us suppose the following conditions: (a) There exists an .
operator S for which the equation.S(v) = 0 is solVed by. v = h(t)( ko 25 0),
and the equations § (hm) = h; have their solutions #,,, for every 7 = 0,1,

.- (b) ¢ is independent of x,y, 2 Let g(x,7,2) be taken as an arbitrary
operatable‘ funetion for P to make a funktion of the definition :

, geet) . o
where ¢, = g, P(9) =g; (J =1,2,-), then
P(u)= 2) P(hjrgj) = 2’ h; P(g;) = )}; -’}L‘jg.m«

S(u) = T8 (o)) = T,0,50) = 0SU) + Lol =98(0) + Lhugyr -
J=0 J=u R J= g=
accordingly (P—8)(u)= —g80h)=10 , , ‘
i. e. the equation (P—8)(u)=0 ‘ /(2, 6)
is solved by (2, 5) '
But it must be noted that this Iast course mvolves the inverse process
‘by the condition (a) viz. .
hjsy =87'(hy) ;
- which means a general inversion and belongs not to the ensemble restricted -
by the primarily shown assumptions. because §7'(0) =/ = 0 i e. (ii) is not
satisfied.
3.- Examples.
Ex. 1) Put £=0a—72 and suppose ¢" (f)=0 in (2,4), then we have
(1=hPY(f) = C(;/AV+CUAV B+ -+ CL AV (R QY= (f)
: (v=0,1,2)
where A = 1—ah. Hence we gd.m

sy =l L L HQ 9 (1 N, GO T
w(x’y’“’t)“hll‘A“Lu 24\ 1— A>+ Tn—1 04 1( (f>

- u A+<,i,>,m+ () ey } )
(L O

a

-

A
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as far as lAl—]l-—-ah]<1 :

This solution takes the eliminated form in regard to the agent functlon ‘
h(?), but it is not always the. case. For instance, if we take the case P
=d/dx and f_x we have ;

'Lv(x H=~h Z (x—kh)= :choo—-hoo
So-we can have no h (t) to be effective for this case.
Ex. 2) A formal solution Ofv' “reiterated type” of - the equation

Au_"uzt—o A”‘*v — +
] o5’ 94 93

, ¢ = const.

is given by -
S a bt
u(x Y, % t) = 2‘(‘"\"275 "2k+1 £ c’”A’“

where @, b ale arbitrary constant numbers and ¢(w, ¥,%) is an arbitrary op-
eratable function for A. .

Exs 3) If v(w y,z) is another solution of (A) from u(x,ym) deﬁned by
@2)

P()=f =3 (1-PyP@)
.and moreover it can be shown that the relation
= A=PFPLA-PY6)
is effectlve Therefore if we denote
2(1 PYP=g,, ;(1— Py Py (1—-Py=€,,
. J=0. R
* for an arbitrary solution of (A) we see '
U= €(v) = €v)
Ex. 4) If (2,2) converges, both of
ae) = fFER()+ER(f)+ -
P(&) = u+ERW+ER (W) + -
; f=floe), B=(1-P) |&<1 :
~_converge and s!}(é:) Z, Ri(%). (1 cannot afford to demonstrate this theorem -

throughly in this hmlted paper, and I wish to leave it off here, - expectmg
another opportunity of publlshlng it in detail.)
Ex. 5) For the equatlon

P(u) = uﬂ P, lndependent of ¢

there can be shown two solutions of our type, viz.

e
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u_‘i g sinh (tv P).

f2k +1 Pr(g) = VP

" k=0

lc P (g) = cosh (¢v P ) (9)

where g is an arb1trary~cperatable function for P.

W

4, On‘(P Dy(u)y=10--..- Imtlal—value—Problem ‘Setting D)=~

: Dt"
and 1 in place of & ane h(f) in (2, 5) and (2,6) respectlvely, the simultaneous
re]atlon

.‘n: “"' _P/v tnk nk .
= 3 Pt nk 41
P, )— 1)” (#,); n, a positive integer
- is brought about. :
According to Stirling’s formula
. [nk =Y 2k (nk)yte
hehce “iuk ="V 2ngk (nk) e ~ (nkle)'  as k—o
therefosre if ﬁ'ﬁ "V | PHg)]| /i nk <17 4,2) .
FVIPHg)] £ (wle for bigk - (43)

when (4, 1) converges for || <1. Then, as it i3, £ may.be called “equivalent
to D}” as far as related to 7, in the above-mentioned sense, and henceforward
we may say g(x,y,z) is “of n-th order for P” in the equivalency when (4, 2)
or (4, 3) is satisfied.
g(z,4,2) be.of n-th order for .P, then (unﬂ)(z = (,1,2,--) all converge and
P(”nﬂ) - D Ak (Z{n+i>
that is easily verificated. And by some analytic-function-theoreical consider-
ations the following fact is demonstrated: ------ If w(z,y,2; t) is regular for
[t| < 1 when z,y,z belong to certain domains respectively and
P(u)y= D¥u); P, independent of t,
u(%,9,2; 0) is of 1-st order for P and .
w= 5 FIP W k Dy
k=0 g L -
The inverse case of this theorem is true, too, ie.:-- If g9(z,y,7) is opera-

table and of 1-st order for P, the equation P (u) = D'(u) is solved uniquely on
condition that u(x,y,z;t) has his initial value af ¢ = 0 as

u(x,y,7;0) = g(x, y,z)

1) Cf. CAUcuy-HApAMARns theorem, e.g. Kworr: Funktionentheorie, T (1937), S. 68, or T.
Taxevovcni : Kansu Ron, T (1937), p. 235.
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and 7s regular for |t} < 1.-
But as far »>1, the solutions of
Plw)=Dp(u); P, 1ndependent of ¢t (S

are no longer unique even if u(x,,2;0) is ‘given. In this case, it’'is impor-
tant to takev up an analytic regular solution of (C) u,(#,4,#;t) in the ex-
pression : : _
' U, (2,y,2:t) = i g"”')t/i k »

. where B g = [Py t)], “o , (4, 4)
" Let us posit ; Unyi (X, 9,25 1) = Z gé""”’t"’"‘*‘/"i nk+1i, . (4,5)

. N g k=0 I \

~ then it can be verficated that
. P(umb): ﬂ?(?’tmt)‘ <7: :0,1;2,"‘, u—1> .
. Therefore ‘ :

u_z,mn,z e " (4,6)
solves (C) on every parameter’s combmatxon (Ao xl, sty Apey) O condition that

u(x,y,2; 0) = g‘”’(m,y,z)
Of the solutions (4 6) the primary one u = u,(x,y,2; t) makes only a special
case for A4, = 4, = +» = Ay, = 1.
Ultlmately, in the ‘case n>1, the unicity is really brought about as
follows
Tueorem: If g,j)(x,y,z) (1 =0,1,2,-", n—l) are arbitmrily given as of n-th
order for P, (C) is solved uniquely by ’

U = Zg(l)tk k : g1(l'n+7) — P(g(l)) (,7 — 0 1 2 )
on condition that 9P (my,2) = [1)‘ ()} (1 =10,1,2,- ,n-—l). l

Chapter II Functlon-Theore‘tlcal Calculus.

1. Definitions. Denoting by £ the set of combmatxons (2;9,2) of the
three variables: D, wyeD, zeD,
where D,, D,, D, are certain domains in -, y-, z-planes of complex number
respectively, let us-eall a function f(x,y,2) “regular in E”, when f(x,y,2) is
regular for wxeD,, for yeD,, and zeD,. .

In this chapter the operator Pis supposed as expressed by a_ certain
rational integral form of finite degree of

D, =205, D,=00y, D,=0/oz
the coefficients of which are all regular functions in E. And the funection
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¢(x,y,2;u) is posited as regular for (x,7,2) and u, @ complex value belongs
to a certain domain D* of the Gauss-plane. If we denote by G the set of
kx y,z;u) of the above-stated conditions, ¢ may be called “regular in G”.
2. Composition of the Operator . To investigate the solutions. of
the equation P(u) = ¢(x,y,2;u) - (B)
which are regular in £, it is convenient firstly to take simply closed analytic
. eurves ¢, ¢, ¢ in domains D, D, D, respectively and denote by 4,, 8., ¥,
domains enclosed by ¢, ¢, ¢, because by the Cauchy’s theorem?® the relation:
wyy=—+f & @ S e u(E,r/,:) 2,1

8’ de f—xdeyp—ydep—2

“ig effected when xzed,, yed,, 2ed,.
If (2,1) is effected

P (u)= glz S(,‘dé" S(‘Zdry Sc;dC‘“@’?rC)' ___Fl_ | 1

7 L(E—) (7— y)(c —2) J
Then if we set: \‘
(1 1 P&, ¢ w,9,2) ,
P l(é—-x) (v_y) (C__z) J- (E*ﬁ«)“‘(v“?/)““(c—z)”“ (2,2)
we can possibly associate 1, z, v as non-negative integers and p(&,7,¢:%,y,2)
~ has non of (6—®), (y—y), (¢—2) as factor--- - that is to say

(lp)e-mtxboy (p>v=yx\ Or <p>§:2:\$0! if Y :\—E 0 v~ . (27 3)
By the way, if u(x,y,2) is regular in E
) P(x,y,2) = ¢(z,y,2; u(2,9,2)) L - o (2,4) ‘
must be regular in & too, hence by the Cauchy’s theorem
( —1 IGYY I
(0 T, Y %) = de\ d d, 2,5
(x,y,2) = 8 S,} S vS S o) (=) (e—7) . (2,5)
Then if we ‘set o ‘ .
. ¢(&76) e e ulE )
( 7] C z’y!‘) = (C—x) (77 y) (/’ Z) (i;:-___xy+1(7/__,y)}1+1(c__z>v+1 (Zr 6)
{ aef @ { dcwencnun=0 @
“ Cy ‘s ; . C 2 .
because “
- =1 P& Y2) U (E9,0)
r =\ d dn \ d
(u) 8 S“; GCSA”]S C (E—2) 1 1(y— U);LH(C 2
and according to (B) and (2,4)
@ (x,9,2) — P(u) = 0. . (2, 8)

Moreover, if we set

1) Krope: Funktionentheorie, I, S. 61; also T. Takenovcnr: Kansu Ron, I, p. 199.
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¢ (&, c,w viz) = (=) (=P (e — Z)”“%(E,v,c,w Y,2)
_ = (=) (g—p)*(¢—2) - 2(EnL)—pEncrya)uént) (2, 9)
e TY.2 ) is regular for (£7,¢), (z..2) <E, because. &(£,7, ), (E—=x), (7=,
(e—2) (EMCE ,y,z) and u(g,ay ¢) are all regular in E’ Hence by the Cauchy’s

theorem ' » 7o
[9*'*“"““"‘,./ ] _:j&f_is dgs dv‘ & oEnGTY2)
el = e 1), G g (e

Then according to (2,7)

91+p+v¢ i : -
pstopoc iz = O « B
while by (2,9) ‘ ‘ <
QR rrTYy ] L 9“’“+”_?p(f,v,v:x,w)u(5,7;,6)] "
;[aslar;” ey R ooz =

fomy
z § =2

Therefore

© ’
1/

” ‘ 1 [9‘ Y ou ]
P2 = TauE Lostapraey 1i

then comparing With (2,8) we see dlrectly E '

Lok Y ‘ LRSI A il 7 €K7 x,’b/,z)
BRI [“ o&k=tgpk =gV * ]
» e g CY =y ik vk

~ If the case P = p(2,y,2:%,y,2), where P contains non of D,, D,, D, really,
is omitted as a trivial case, we can go with the supposition that -

1): 1
. A

-DIDIDL (2,11)

Aﬁ
S~
[«
]
‘N.Qb

s S

A, py v are three non- negai"@'ve,integérs which do not all vanish.  (2,12)
3.. Loosened Relation. Let us denote as -
(7,03 BU2) = (E—2)t (g—y)* (¢=2)” _
CH(Encmu,2) = og(w)—plEnci tys)-u ES
) =gEnciu); u= u<5»77 9] '
then (2,9) effects the relation :
H(gpgs oz u) = g6 w,y,z)
‘ su=u(Ene)

when H is to be considered naturally accompamed only to P and ¢ and ,
therefore in our case (8, 2) is equlvalent to (B) 1tse1f

(3, 2)
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H(EmL5 2,y%) is considered as a regular function of the restmc’clon (2, 10),
therefore if for a function i(&7,¢;2,y,2) the relation )
h(&v,gsx,y, ) H_I(“ﬂ?r Xy Y% ‘/) : (3’ 3)
is found effective, by (2,10) and (3,1) :
FHMEE,
[¢(¢v,y,z:h] -t [9 ph] =0

§ =2 2 v Logkopk ey
1=y 7/“7/ *

-2 £=2

Then according to (2, 11) -
e = (@25 h(2,,2)). (3

[P (R, %gz)}]
L 7=y

This is the “loosened relation”.

w B

. 4. ¢ and the Solutions. The function’s set of h(&73e;%,y,2) in the
looseéned relation (3, 4) is given by means of all the regnlar functions as far
"as their values belong to the domain D*", and generally bigger than the set
‘of regular solutions of (B). This is realized when P is given as P =9pr
+9y+9/z and ¢=1u* for example, where p = (§—1x)(y—y) + (y—) (6—2) +
(¢—2)(é—2), A=p=v=1 and u = 1(A—ax~by—cz) makes a solution and
for

(5_9”)(77“1/) (C'—O‘) ("—x><77"‘1/>+(77-—y>(C—7)+(C__ZX _x)
(A—ag—by—cg)* A—aE—by—or

[ﬁé:if f‘,’, vanishes if A—az—by—cz2:0 and a+b+c-. 1, but does not ge-

nerally vamsh if a+b+ec=2:1, whereas fis given for any value of a+b+ec.
 Moreover the relation (3,2) which can be written as

o(Em,E 2,9,2) b (Eme w)—p(Ep e 2y, 2 u(E ) = gémeiz,yz) (4, 1)
allows not two different regular solutions of (B) for the same ¢. This is
demonstrated as follows: ------ If there exist two different regular solution.
w, and w |

(&8 0Y,2) pEML U =P Ems B2 = $(EnG oY)
s ug=uléne) (E=1,2)
ie. o) —pu, = wb(u)—pu, ;. $w)=g(&n.0u)
then () — B, )} ) = Do, , ‘
The left hand is dependent only on g, 7, ¢ and independent of z, y, 2z, there-
fore the right hand must be naturally mdependent of z, y, é, too, that ¢can
happen only when 1= p=v=.0, hence
l(E-—?ﬁ)(v —)(c=2) ) (6=x)(=D)(c=2)

1) See N° 1 of this chapter
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» but this has been omitted from our cases as related in (2,12). q.e.d.

Denoting here by G, ;the'sét of possible ¢ (&6 %,y,2) related to the
solutions of (B), the above-stated fact ean be enounced as follows.

THEOREM : ¢ and u cowespond one-to-one, as far as u is & regular solution
of (B) and ¢eG. ,
‘ Next, let us ‘take up the case ¢ = const = ¢ viz.

,(u@-——puzc - : 4,2) ‘

s ouw=uEng) @ =2 (En0). | | ;
Then accordmg to (3, 1) - ! ;
' [D“’“’”w(ﬂ 2 (D(x,y,» %) 9‘+J+’”a) ]
ot aybz H " axi oyozFde- y . , |
5 (4;8)

=0 1fiis;20r1&/10rk~¢u
K . —= (1’(w,y,z_,) if % = A, _f—'t M k =V
On the other hand ' ' '

giHiZX’L] i _ [ oititkg ] . )
[91: 9y797’” = w@YR) 249y 02k -z : (4, 4)
§=z K C z -
And by (4 2) (4,3)(4,4) togather it is seen that the regular functlon pu can
be wr1tten in the form
U= u(§y77 C) B(E;’]:C)*‘(U(Eﬂbc; xyy’z)A(Eﬂ];C); ‘ ) (4! 5)
‘where "4, B are certain regular functions of (£7,¢)eF.
Substituting (4, 5) in (4, 2), we geu :
(u(ﬁ—uB——-ua)A =c

from this it is clear that: ¢ = @(/A and —uB=c. And in this case by (4,5)
and (2,11) g

B(cv y,z)D‘ D DY
’ ‘Z 3 ';

—A@y@+ " (4,6)

Inversely, in the case P is given by (4 6) and L

¢ = A(z,y,2)u ~ 4,7)

for H(&pe;2y%;u) defined by (8,1) it runs - ' ‘ ‘ ,

H={ol&n¢; x,y,Z)A(E,v ok B(w,w)—*w‘i@,yﬂ) u(&pc)} 4 8) |

= $(EmLiTYR). ’

Then. apparently the restriction (2, 10) is altered by -
9ﬁii‘i?uﬁfm,c)B(@y@,] —~ 0

: QE"Qv’uZ‘CV 555;5 .

ie. DIDEDYY =0 - \ (4,9)

]
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- Here we see that (4, 9) is equivalent to the case where P is given by
 (4,6) and ¢ by (4,7). And comparing (4,8)with (4,5) it is seen that
A,B = const.

for the exact possibility of the case (4,2), when u = :222 = const.

5. Sequence of Uniform Increments Dlﬂ"erentlatmg (3,2) by u suc-
cesswely with regard to (3,1), we obtain the relations

. %
= (U_Q_%:“F ; ,(5, 1)
ou ou ouwr out ‘ ,
s k=123 - -

Then, if there is aﬁother'regular solution % of (B) which satiafies the relation:
' §Eneiwye) = HEn aye; i) ’

- 5,2
) s =4 (Enk) ( )
and if the expression: ;
’ L& di (d—u) ’
= -~ 5,
¢ = k}:/n du® lk ( 3)
is eﬁ'ected for every fixed (5,77 &) (Xy,2) eE it must coincide Wlth the serles
| _ b (d—u) ;
g =¢g— (ﬂ u)p+cu 2_, o | k v (5, 4)
- In this case, 1f Wwe suppose
= u+te (s = const.) , : ‘ (5, 5)
[ QR+V+V¢"—] _ OR+7Z+V¢ . Dl+#+!/p
oftoptogvde-x  Logt optory oftoptogyde—s
) L2y

g=z e

PP dedyd
SEIVATES A i g e
_—3—7?7;_—4 ‘k g (E x)1+1(77 y)ﬂ+1(c z)V-H

E=1 7. 2
The left hand and the first term of the right hand vanish accordmO' to (2 10)
and as seen in (2, 11)
9].+}l+)/p

Sl 9)7}1 Q,wl/

cag . ’ o
where A.o, the coefficierit of the zero-th power of B, 2, I3, in the com-
position of . Hence

9‘ edyd
CyEae o pde
=k s e
8% £ 1K e de (S—,x)‘“(7/*-?4«)’“'”((:‘2)"“
by the definition for » in (3,1)
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—_ ® o Ch fﬂdC ,
.:@@%;TygL&@:ﬁ@yxca

o0 &
.=Zj29¢*ﬂwﬂ¢w

: 14 —

i.e. i ] i ed, = ¢(u+5) ¢(u> ¢(72> ¢(’H)

This relatlon is exactly effected if 4, = 0 and ¢(u) isa functio® which has
€ as a p_erlod but the periodic case does not essentially refer to the con-
dition (2,10). Leaving out the periodic case, if (5,3) and (5,5) are appli-
cable and # changes continuously with the uniform increment ‘

Ao 2[3?? da l = (2 i

o de ou de —@zv .

In this last case, it is written

(%) = u(2,,2) — A s (5,6)

AO/EY‘_=1 Cfe A =99

o . ‘ ou
It is notable that the case of (5 6) is the case_ where uis a solutlon of
the implicite relation

_DJ&.’%’IL,Z_?/LL U(x,y,z) =0 . ‘ 5,7
lL N - =

Such a result is important when ¢ is put as an infinitesimal quantity major-
ating the increment of w and (5,6) is approximately effected.
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