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On Operational Célculus

Yoshio Kinokuniya

Abstract

Let F(P) be the abridgement of F(P) (») and P, Q be commutative operators, then
if F(y) is analytic the mean-value theorem and the Tavror-expansion have their ahalogies
for F(P-+tQ). If F(P)G(Q) converges F(xP)G (xQ) is regular in |2| <1. And some
other important facts are shown basing on the fact that when some of the operators are
-being principally investigated the rest can be regarded as parametric elements. In the last
paragraph, two generalizations of the Larracz-transformation are shown.

Introduction

In algebra an operation which is defined by the equality
d ) =dw)v + ud (v)
is called derivation”. This is a generalization for differentiation of the first
order, so it will be very natural if we define the operator by the following
three conditions: (i) if P (uwv) = P (u)v + uP (v), P is called of the first
order ; (ii) if an operator @ is expressed by a rational intégral form of the
n-th degree of some operators of the first order, @ is called of the n-th
“order; (iii) for any operator of the first order 2, Q'(u) cannot be discon-
tinuous in the range where its values are bounded. )
The present author has been interested to name these operators as
derivers (of finite order, say) and make a study of them, but he has come
across a difficulty, that the process

¢ =P (u) — P (g)= 1)

cannot be posited as a unique correspondence. So the operators mean in
this paper derivers and not inverse derivers. '

If a function ¢ (2, ---, #,) and the result- P (¢) are analytic both in a
domain (of (&, ---, %)), ¢ is called operatable® for P there.

To build up an algebraic system of operators and to study its topo-
" logical proprieties is of course important, but when we are going to research
about unknown practical principles, it seems rather circuitous to mannage

1) The word © differentiation” can be used, too, instead of “derivation”.
2) Cf. Y. Kinokuntya: On Operational Equations, Mem. Muroran Coll. Tch. Vol. T, No. 1
(1950) p. 13.
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‘our eyes only upon the proprieties of the topological structure. So the
author attempts in this paper, to show a simple composition of neighbouring,
starting from the fact, that when some of the operators are being princi-
pally investigated the rest of them can be regarded as parametric elements.

§1. Analogies to Differential Calculi (

Suppose the operator P relates to (&) = (&, -+, &) and is independent
of « and the function ¢ (&) = ¢ (&, ---, &,) independent of « is operatahle for
P, then positing

(@ y) = 96’“?/ yu=f(z P)e) (1, 1)
and denoting
_ 7 D, = 9/995
we have
DLPi(u) = DLP {o° Pt (g)} =k (k—1) - (k—i+1) 2" P (g) -
= PIDi(H) P'(g) = PP Di(w)
ie.

DL P () = P Di(u) = P —gi (¢) = { gf P"j (9). (1,2)

-This relation gives an important operation by Whichk we may reach a
~ definition of neighbourhood of any operator.
If F(y) is an integral function of finite degree, we can erte
F(P +tR)=Sa,t PR, .
then if the function f is operatable for £ which is commutative with I
(say, PR = RP) and the variable ¢ is 1ndependent of f, P and R, the ‘
functlon g () defined by ,

. 9(&) = F(P + iR) (f) (1, 3)
is an integral function of the same degree with F'(y). Hence, by the
 mean-value theorem ‘

g(t)~—J(0)—“g(01t)t 0 <6 <1) .
where it holds that '

w@zuFW+ﬁmn:9”P¥mw>
~ S PEPRE), |
so we have : .
{F(P+tR)~In(P)} (f) = F'(P+<‘}1tR)tR(f) @4

This theorem may be called the mean-value theorem too, and if some
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suitable eonditions are given on the convergency, we.may put F(y) as a
general regular function of y, for which the theorem (1,4) effects. It will
need no further explanation that the TaAvror-expansion can be applied
too, viz. ‘

(FP s o) - R ()= S re) ""] bR ) 8
' 0 < 07 <1

in the range where F (¥)(f) is continuous (D, n)° (¥ = P + {R).

It may be very convenient, when we ommit the explanative symbol (f)

and simply use the abridged notation : -

F(P+tR) — F(P)=F (P+6,tR)tR (1,6)
instead of (1,4). And it will be rather general if we say (1, 6) is effective
for a certain range of operation (which means (1, 6) holds for any operatable
function f the value of which belongs to a certain range), because we can
thus associate with a manifold of functions f.

On putting #— co in (1,5), we gain an operational series and then, if
the range of convergence is. found to be |¢| < p, the operator o2 may be
called the radius of convergence though it is of course an abstract one.
Thus we have a system of neighbourhood.

§2. On the Convergence Problem

In this paragraph the summation theorem of WEIERsTRASS gives
important helps for our aspects. Two lemmas can be induced by this
theorem and we gain some methods of investigation on the convergence
of our operational series.

WeierstrAss” TrrorREM® @ If f,(2) (n =1, 2, ---) are the functions which
are all regular throughout a contour C and s interior and the series

f(z) = Z £

converges uniformly on C, f(z) converges unifcrmly in the genemhzed sense and
regular inside C. Mcreover, on termwise differentiation, :

JP (@) = Z I3 (7)
n={
holds with the uniform convergence in the generalized sense inside C.

Lemma 1: If the series S a, is convergent
n=0

1) This means: the given function has its n-th derivative as continuous in the given range.

Then, consequently, F; F’, -, F\»~1 gre all continuous in the same range, too.
2) Cf. L.\BizperBacu: Lehrbuch der Funktionentheorie I (1930){ S. 155.

\,
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| f@)=E to @
converges and reqular in |x| < 1.

Lemma 2: When f,(2) = iwa,‘f’ 2 (k=0,1,2, ) are all convergent and,

n=0
the series f(z) = £ (2) converges uniformly in the generalised semse in |z| <7,
f(2) is regular in the same range and for its expansion

@) =3 ae | @ 2)

we have

an:]fjoa;k) m=0,1,2 ).

Proof of Lemma 1”: Since 3 @, is convergent, we can find an integer
N for any ¢ > 0 such as ‘ :
| (o] < e for every n > N,
then if we “write ' '

| Ja@) =0+ % + - + a,2"
we have '
|fors @) —Fa @) < ep™' X+ p+ p"+ ) = g™ [ (1—p)

for any ¢(=0,1,2,---) and any » > N, in |z| <p < L
Besides, we can choose an integer % for which

%

4

1= P <1
if we fix p< 1. So it follows that
1mum—nwn<si%~»o as > oo

‘independently of ¢, hence f,(x) converges uniformly in |z| < p, ie. on
 denoting by f(x) the limiting function we see, fa. (x) converges to f(x)
uniformly in the generalized sense in [#| < 1. Then, by WEIERSTRASS’
theorem, f(2) is regular in |z| < 1. QED. = : ‘
Proof of Lemma 2: Directly by WerrsrsTrRASS’ theorem f(?) is regular
and :

= O = BP0 = FaP . QED.

Let us posit two operational. series

1) Lemma 1 is well-known as Aper’s first theorem, but the author gives its demonstration to
show it can be thought as involved in WrERsTRASS.
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F(oP) = kio o, (@ PY |
and ; (2,8
G = 3 b0y

where a,, b, (k=0,1,2,.-) are constant coefficients and suppose that: (i)
P and Q are commutative (i.e. PQ = QP); (ii) G (Q) gives an operatable
function for F (P). Then it may give a critical problem how we shall
understand the range of G (Q), because, as has been remarked in the .
previous paragraph, we associate with the manifold of functions ¢ when
we regard G(Q) as the value of G(Q)(¢). But in this paper let us adopt
as G (Q) the value of a given function.at a given (therefore fixed) point
(€, ---, &), whose cordinates are all independent of z and .
By the supposition (ii) the series

F(P)G(Q) = X 0, P*(G (D))
is convergent, which implies, by the supposition (i), that
F(P)G(Q)=F(P)L 50" = 3 b @ F(P)

is convergent. So, in regard to Lemma 1, we have F (zP)G(Q) to be
convergent and regular for « in [z| <1 and F(P)G(yQ) to be convergent
for y in [y| < 1; and then by the similar considerations on F (zP) G (Q)
and F (P)G (1,Q) instead of F (P)G(Q) we conclude that F (zP) G (yQ) is
regular in |z| <1 and |y| < 1, and for fixed y (or x) the convergence of
the series (with respect to « (or y)) is uniform in the generalized sense.
Hence, F (xP)G (2Q) converges throughout |z| <1 and regular there,
because by WriersTrASS theorem

) dFG . . s .
is convergent, so that —dg  €Xists and is equal to this value. Especially

on setting F () = G(2) =1/(1—%), we shall obtain the result which was
shown in p. 16 of the preceeding number of this memoirs as Ex. 4.
Now on denoting

fi (@) = a, PP 3 b, O @ k=012,
. . =0
by Vitarrs theorem” we find the series ,
f@) =fi@+ fil@)+ -

1) Cf. L. Brzsrrsack: Lehrbuch der Funktionentheorie I, S. 170.
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converges uniformly in the generalized sense in |z] < 1, because by the
foregoing result f(z) = F' (xP)G (zQ) and each of f,(x) (n=0,1, ---) is
regular in |2] < 1. So, according to Lemma 2, on expanding f(z) in the
form

fl@)=A4,+ Az + A2+ .- 2,4)
. we find that this series converges uniformly in the generalized sense in
lz] <1 and =

A, = a,b, )

A =0a,b, P + a,b, Q

o= aby P+ b, PQ + ayb, O - (2,5)
A_zaknthQn— (n—01 -

TueoreM : If F(P)G(Q) converges, F(xP) G(acQ) is regular in lxl <1,
and its expansion (2,4) converges uniformly in the generalized sense in the same
range, given its coefficients by (2,5). It is notable that the radius of comvergence
of (2,4)_ vs not less than 1. v

I

§3. Parametric Effects of Operators

To solve an operational (especially differential) equations regarding
some operators as parametric elements, is not a new idea in our calculus.
In the theory of HEAVIsIDE’S operator, the operator p = 9/9t is supposed
as a positive number in the formal process of calculation and is regarded
as a parameter when it is combined with another differential operator
2/or, where the solution is first put in the form u = u(p, ). If we associate
a special abstract field of operators and put them in some process as
parametric elements, there will happen many extensions of calculi of this
kind and the investigations thus will find an important field. So, in this
paragraph let us have some examples of this idea.

Ex. 1) For the equation

(75 =P o) (=0 @,

positing R, P as two commutative operators in respect to only (x), which
are the variables independent of £ and & simply we may have a solutlon
by

u(@; &t) = f(EP + ER) (¢ (x)) (3,1):
when f is an analytic function for .its argument and ¢(x) is operatable for
P and RB.
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Besides, if we set [u],_, = d(x; 0,%t) in the form .
u(@; 0,8) =f(P) (¢(x)) (3,1

we have

§=0

ot
On repeating this process, ‘we have

= [ otV J = f» (tP) (PR)" (¢) = PY [ avu] -

(B2 =r6P) PR() = PP Bly) = (22

< l.e.

AEY e =0
R f (tP) (¢) = [ l 0 with PY(s,)=0.
Then, . - .
usz(tp) i_l_(t_P_)_Ri }((p)_{_s o %
> 8 ;
’ S = E I-E & ’
which means:
u=fEP +ER) (9) + S . (a)

 And if we take the similar consideration on

u=rf(x;&0) ()
we shall gain another solution }
u=fF(0CP + ER) (¢) + 8 . (b)

“where § = i‘—g‘—t‘ with R'(5)=0 (=12 -).

i=0

To regard (a) and (b) as the same solution we should have S=S to -
be described in the form

8=8=Foa,;e¥ w1th P( 21 :R(d—‘";’—j*—'),

while the solution (3, 1), makes a special case for
~o;=0  for every ¢J=0,1,2, -
Ex. 2) For the equation

{(P Dt) (R : (u) =0 | (3, 2),
we have a solution by
w=F(P +iR) (¢) + g(tP —EB) (¢) (= v=1) (3,2
under suitable con‘ditions_‘on S, 9, ¢ and ¢.
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[

Ex. 3) To solve the equation

9 9 9’ ‘ o
. u) = 3,3
(959m + 299y * acoz)() 0 3, 3)
& 7, ¢, %, y and 2z being independent, we have a convenience to write
92 " 2 2 .2 :
=, o, — =0, — =D, -, — =D, .
2 f o 0, o0 ) o7 ;. and suppose u 1y the form

u=fQAz + Ay + Az)

* because for this case, we may set

A=k (08, =9, A=k (x; = const., ¢ =1,2,3)
which leads to a solution ‘
‘ & . 9y _ L L _ i)
=S (n o+ may + 5i2) g (\Ic_{ By Ky ks ks By &2

when f, ¢ are arbitrary functions being differentiable for their arguements
respectively. '

Ex. 4) If the operators P.(k=1,2,8, .-, s) are expected with the
probabilities w, (%, -+, ¢,) respectively, we may have the expected operator

P=wP + - +wP,. ‘ (3, 4),
Putting here ,
Py) =0 (8,4).
and
9
D, =
2T ox,

we have: z ,
Dk@(xu ey By) = Z(Dkw>P(¢) + ZwiP(Dk(¢)) ’
on condition that D, are all commutative with P, (¢ = 1 2,-,v; k=1,2,
-, 8); 80 We may write symbohcally
| = (@P) (9) + P (dg) - B,
Then, under the restr‘ictior'l that d¢ = 0, we may have
(dP) (¢) + P (d¢) =0

ie. B ,
—{PPszstwzwmwm. 3, 4),

‘Ex. 5) We may have a new type of operational equation in
uy Pi(w) +uy Po(w,) + - +uy Py (wa) = f () (3, 5),
where w, are operatable functions for P, k=1,2,---,n

For this case, it will be very convenient if we can find the difieren-
tiable functions a; (0, ---, 6,, %) such as
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Pw)=a,, (k=1,2-,n) (3,5):
because we have then the well-known equation of the 1-st order
Ug, O+ Uy O+ o+ Uy Q= f(u)

So, the system (8,5), will be called a subsidiary system of the equatlon
(3,5) .

This idea will be applicable in the equations of hlgher order, for
instance

P (u) = u“” O Pe(w) =F) (3, 6)

and in this case we may have a subsidiary system by
Plc(wlc):a’k(ﬁ) ’ (k:]-;zy"‘yn) ) (3,6)2
and consequently reach at the equation of one-dimension

7 dky
w0 =) .
k=0 Y

But, we are not dealing With a new idea in the above course. of
calculation. In fact, we learn in the theory of primitive solutions® we
are given with the type of solutions

u:u(ﬁ) 5 0:0(71‘1;_"':%11»> 

‘and this case gives more complex types of operations, when we posit as

P =398 P@)

because P, (6) (k=1,2, .-, n) cannot be regarded then as linear operations
but give ones which have ont yet been introduced by the author in' this
series of papers. So we see: it should give a natural source of calcula-
tions if we put up the metamorphisms of the theory of primitive solutions
to find the way of calulation for the complex operations of higher order.

§4. On Limiting Metamorphoses

" If there is a sequence of functions f,(n=1,2, ---), which are operatable
for the same operator P and converges to a function f(x), it is very
convenient if we can have the relation

lim P (£) = P (/) | 1)

But it is sometimes not simple, especially for the case when the equation
is satisfied but bit by bit in the given domain; we have some well-known
types of examples which do not conform to the expectation (4,1) but are

1) Cf. H. Barrmax: Partial Differential Equations (1931), p. 95.

i
H
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very interesting. For instance, by the funection defined as
g(&x) =ax(l —¢&) (<9
o =¢(1 — =) (>¢)
which is called Greex’s function, the equation 3" =0 is solved except the
point ® = ¢ in the interval — oo < T < o and by the funection

Y= 5231 fsg (%, &)
is solved the same eqdation bit by bit (say : except x = &, j--,En). But
1
v={sworede

does no more solve the equation but gives a solution of the equation-
Yy’ (x) + f(x) =0. In the following the author will show an analogy of this
fact in the operational calculus.

Suppose that: (i) the function u (& x) is operatable for £ which is
independent of &; (ii)

R =a,  (0<z<9),
and ‘ R (u) =0, <],
where both a, and b, are constants as far as z does not move beyond ¢,
and f(§) =a; — b, is a continuous function of ¢ in 0 <L &< 1; (iii) the
integral

@

1 - . . .
fueoi=v@ .9
exists. Then by (iii) we can choose &, ,(k = 0,1, -, n) such as
‘ 0 = Sn,()_< fn,i < et < Sn,n - 1
and , ’
lim (én,k - ‘En,k—]) =0 (k = 1, 2, )

so that on positing
Un (x) - E‘ (En,lc - Sn,l.c—-l) U (Sn,k’ x)
we may have _ ' ‘ »
lim U, (%) = U (x) . ’ (4, 4)
In this case, if D = 9/oxr is commutative with R, for |
‘ P = DR 4, 5)
it may hold that - ‘ '

P(UG) = 1511301%- {R(U(JM—a))—R(U(n))} . lﬁig—:—R{U(x—l—e)—U(x)} .
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So, if lim P (U,) = P (U), we may have ,
PU@) = lim i B [Hm > {u Enro TH) =2 sy x)} (§k~§k_,)]

= 1¥m l [hm )3 [R(M(En o B4e) — RW(E s T))} (ér— fk-l)]

n=oo k=1

where we may possibly suppose &,.3x 2, # + ¢ for £, = 1,2, .-, hence in
accordance with the suppositions 4,2) and (4,3)

PwE)=tim L[ (T e+ [ bode~(Ta - [v. ]

z+ &

=tim L[ (a2 g”gbé dg]

e 5.7

—1im (" r @) ds .
Since f(x) is continuous we gain
P (U (@) = f(x) ~ 4, 6)

while dlrectly from 4,2) P{U,(x)} =0 for every z ¢ Enk(k =0,1, -, n).
On the loosened relation

[P (h (2, )]s = ¢ (b (2, 2)) O
where k(z, £) is a solution of the system » :
w(®8) ¢() —p @ &) h = ¢(z,6)"

( DV1+V2+ +Vn¢(x E) ) . 0 (4; 8)
2x 19t .- (my=(g)

we may find another similarity of GREENS case, positing

Uy @) = 3 7 @ b (@, 60)
where
P = 1 when (x) € D,;
=0 when )€ D,, (*k=1,2,.N,);
@)=(x )3 E.0€ Dy Dj,kﬂDj,k’:O if k¥ and D=D,+ -+ Dy x;
diameter of D;,<<1/j(k=1,2,---,N,). In this case, if & (z, &) is bounded

and regular in D U; converges to a limiting function u(x,x), but we
cannot say generally Ilm P U, (x)) =P (u(z,)).

§5. Generalizations bof Laplace-transformation

In operational analysis, especially in practical mathematics, the theorjy

1) For the details ¢f. Y. Kinvokuniva: On Operational Equations. Mem. Muroran Coll. Tech.
Vol. I, No. 1, -
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of Larrace-transformation” has given us many contributions. So, it will
be a natural try to research for any analogous course or generalization of
this standpoint. )

For such a purpose as merely to raise the dimension of the variable’s
set we may have an answer simply by the following means, when we
define the symbol & (or £,) by

QA(E, vty =D Dy Sm S“Q*Pztx— e —=pyly Alty, -, b)) dt, —-dty, (5, 1)
N . 0 [}
and call the transformation ,
v f(ply ey pv) = QA4 (tn ) tv) (5, 2)
the Laplace-transformation of v-dimension. In this case we have the in-
verse transformation ‘ i

1 Y pl1 +ioo . peytioo Dyy <y D, ,. .
4t =(gg) | an | S e ean, 69
€1 — i ()y—ioc v .

which is to be named Mellin’s formula of v-dimension. The unit-function
1 will be defined as -

ioo prey+ o Tpyey

R e

=1 ‘When >0, >0, -, 2, >0, .

=0  when v, < 0 for at least one j(=1,2,-,) .
And we may have many results which are induced analogously from the
‘theory of L-transformation of 1-dimension.

But, if we persist on our standpoint which has been shown in Para-
graph 2, the conditions would differ accordingly. When two commutative
operators P and R are independent of the variable #, we have the difinition
in the form ‘

s

QA(P,tR) = p S”A (P, tR) e dt | ,3)
the inversion of which is ,
- . o 17 ¢+ ico f(py _P R)
Q 1 . — ¢ d ) .
L0 P R) = S . et dp . (5,5)

¢c—goo -

To deal with the last generahzatlon, we have the equatlon
. (p —P) (u) = f(t; )
to be solved by . ’

e S:e—“"’f(ac; =) dy - (5,6)

1)‘ Cf. G. DorrscH: Theorie und Anwendung der Larrace-Transformation )1937).
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and as for the unicity problem of the solutions Kixo-theorem on the -

equation P (u) =Y (w)® will come in close relation.
Instead of the form A (P, tR) we can adopt different types A (P, -,
P IR), G(P)g¢(t; ---) and so on, but these will make no difference to

our principle.

(Received August 25, 1950.)

1) Y. Kinoruniva: On Operational Equations. Mem. Murcran Coll. Tch. Vol. T, No. 1.
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