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Linear Topologies on Semi-ordered Linear

Spaces and their Regularity

Koji Honda*

Abstract

It is desirable that linear topologies on semi-orderd linear spaces have continuity-
properties of join and meet.

In this paper, we have introduced a linear topology on.semi.orderd lihear spaces,
so that we have investigatel some properties, especially those of regularity of the
space.

1. Introduction.

By a semi-ordered limear space we mean a vector lattice in the sense of
Birkhoff1.
Let R be a linear space.

A topology on R for which the additive operation+and the scalar multiplica-
tion (i. e. £x for xER, £ is real number) are continuous is called a linear
topology. (

Prof. H. Nakano has introduced a linear topology on universally semi-
ordered linear space2 as follows. ‘

A set of posilive elemenis V is said to be a pesitive vicinity, if

1) for any a=0 we can find >0 such that Ea&V.

2) 0=b=alV implies bEV.

3) VéarTa aimplies aéV.
Above linear topology was defined by a collection B of positive vicinities
satisfying the following conditions :

1. VEDB, VCU implies UEDB

2. U, Vimplies UVEDB.

3. VEB implies EVEDB for every E>O.

4. for any VED we can find UEDB such that UxUCV.

Then he has proved that {1;¢=x=D} is complete by thus llnear ..Opology for
every two element ¢=<b.

k% ARegE—

1 Cf.G.Birkhoff : Lattice theory, Amer. Math, Soc. Collogium Publ. vol. 1, 25(1949)

2 Cf.H Nakano : Linear topologies on semi-ordered linear spaces,]. Fac. Sci. Hokkaido Univ.
vol XTI, no. 3, (1953), pp. 87-104. This paper will be denoted by H,Nakano (4] in this paper,
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832 Koji Honda

In this paper.considering only the conitnuous semi-ordered linear space® R
we have introduced a linear topology on R as described in the section 2.
Farthermore, in the section 2 we have proved that the coperation ., — are
continuous by such linear topology (Theorem 1.1).

In the section 3, we have shown the relations between the order-topology*
and the linear topology that satisfies some conditicns and that its linear
topology is sequential completed (Theorem 3.3).

In the section 4, we shall introduce a topology on the set of continuous
linear functionals on R and refer to regularity of R.

The notations used in this paper follow those in .H Nakano (13, (2], (3)8.

It is a pleasure to record here a debt of gratitude to Professor H.Nakano
for his kindness in reading the original manuscript,and to Mr. Amamiya to
his helpful advices.

2. The definitions and remarks.
In this section we shall infroduce a linear topology by the notion of
vicinitor.
Let R be a semi-ordered linear speace.
A maaifold V in R is called a wicinifor, if it satis{ies the following condi-
tions : ;
(1) for any x ER, there exisis a positive number & such that ExEV for
- 0=E=a.
(i) if &V, W< emplies y EV.
By definition we easily see that vicinitor has the following properties :
(1) for every vicinftor V.aV is a vicinitor for every real nunber a=0
(2) for iwo vicinitors U, V, their intersection is also a vicinitor. )
(3) every vicinitor V is symmetric ; (—DV=V.
(4) every vicinitor V 1s a star ; EVCV for 0=£<1.
We can define a linear topology by a collection B of viciniters V ia R
satisfing the nexi conditions : ‘
(1) VESB, VCU implies UED.
(2') U, VEB implies UVED,
(8) VEDB implies EVED for every EX0.
(4") for any VEB, we can find UEDB such that VEUXxU={x+y;%.yEU}.

3 R is called a continuous semi-ordered linear space, if 0=ay (»=1.2. ... ) implies
~ ay ¢ R.
y=1

4 G.Birkhoff . loc. cit. p. 60 and H.Nakano : Modullared semi-ordered linear spaces. Tokyo.
Math, Book Ser. I, Tokyo (1950). This book will be denoted by H. Nakano [1].

5 As to this terminology, cf. J.v.Neumann : On compleic topological spaces, Trans. Amer.
Math. Soc. 37 1-20. (1935) .

6 H.Nakano [2) and (3] represent the following books : Modern spectral theory, Tokyo. Math.
Book Ser. II, Tokyo (1950) and Topology and linear topological spaces, Tokyo Math Book Ser,
11, Tokyo(1951), o
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As a basis of B, we can take a colleciion B of vicinitors ia R satisiyng

(1") ‘for every U, VEB we can find WEB and N>0 such that N\WCUV.
(2") for any VEB we can find UEDB and N>0 such that NUXANUCV.

we can uniquely introduce uniformity 1% in R of which % is basis. The

"induced topology T by this uniformity I is called the 1nduced foporogy™ 3°
by a linear toporogy V. In this paper, saying we merely a linear topology we
mean the above linear fopology.

B is called separative linear topology. if VH szSV:{O}-
&

A mapping a defined on R is said to be continuous by B,if a is continuous
by TP
THEOREM 1.1 : The operations ; addition, scalar muliiplication. w. ~, are
continuous by B respeciively.
Proof. The continuities of the addition and of the scalar multiplication
are obvious by the definition of a linear topology.
(i) The continuity of the opration —.
For any a, b&R, VED, there exists UEB
such that UxUxUCYV,
Therefore, for any wu. u, &U. since
(us+a)~(uz+b)—a~b
=(r+a)~(sa+5)+(—a)(—0b)
{wsta+(—a)r (=} ~uz+b+(—a) (=D}
={ws+(a—b)0}~{us+(b—a)-0}
={w+(a—b)*}~{u+(a—b)"}
and lota+ (@— B <jus+(a—Db)*
Juz+(a—b) 1< lte)+(a—b)7s

Haa+(a—0)* t~{uz+(a—b)7}
={jus)+(a—0)*}~{Juz+(a—b)"}
Sl Nsof+ sl ~(a— )™ +Hud~(a— )+ +(a—b)*~(a—b)~
SlutabNstel 1| ool €V '
and consequently (U+a)~(U-+b)CV+a~b.
(ii) The contiouity of the operation ‘..
On account of the formulation a—b=(a+b)—(a~b) we can easily demonstr-
ation it. Q.E.D. :
Let V be a vicinitor.
Putting laly, = inf IE] for t&R,
. x EEV .

‘we have

we obtain a pseudo-noums on R satisfying next property :

7 Cf.H, Nakano (3], §54.

8 A functional A(x) on R is called a pseudo-norm on R, if A(x)=0 for every x¢ R and
ACEx) =[g}alx) for all real number &,
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Sty implies. |afy Sy
Conversely, let A(x) be a pseudo-norm on R satisfying aboave property.
We see that
V={%M2=1},
is a vicinitor.
8. The reletions between the linear topology and the order-topology.

On account of Theorem 1.1, we can prove easily the analogy to the prope-
rties valid in the normed semi-ordered linear space?.

When @, is convergent to ¢ by 8B, we may write T-lim a,=da.

V>0
THEOEM 2.1; Let B be a separative linear topology on R.
oo > [ee]
a, | » T-lima,=a implies a,| aand e, » T-lima, =a implies
r=1 y >0 r=1 v=1
[ee]
a 1 a.
Y oy=1
THEOREM 2.2 ; Iy R is a coniinuous semi-ovdered linear space, ithen in
o] . -
order that 0=a, 1 1a implies T-lima,=a, it is necessary and sufficient that
y= y-»o0 :

any b=0, cpmm ) (p) implies T-1im (p,)b=Cpb.
= »~»00

Let R be continuous semi-ordered linear space, We shall consider a linear
topology B on R of which basis consists only of vicinitors satisfying the-
following condition ;

(oe]
(#) a,EV(r=12, ) implies U1 a,cv.
=

In the sequel, Bos and Vo denote the above linear topology and its basis respect-
ively. .

THEOREM 2.3 ; When Bo is separative, if alv=1,2,---- ) is convergent to a
by Bo, then ¢, &R (v=1,2..-.-.) is order-convergent to a.

Proof. T-lim au=a, for any VE&Bos we can find #», such that ¢,—a &V for

V—CO
(o]

- ,
all v=#n,. Now, setting U (lau—a)=8&; (k=1,2,+ ) we see that V2& |  and
u==F,

Gy —@ =& (=1,2 - ).  Furrihermore, by theorem 2.1, since T-lim &,=0
y->0 <
(@] .

we have & 0. Q.E.D.

THEOREM 2.4 ; if &, ER (v=1,2, - ) is uniformly order-convergenil® fo a.
then ay ER (v=1,2,-- ) 'Zs convergent to a by B. '

9 Cf.H. Nakano (1], Theorem 30,1 and 30.5, 126127,
10 Cf, H, Nakano (1], §2.
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Proof. If ¢,ER (v=1,2,- ) is uniformly order-convergent to &, there
O
exists [ER, &, 0 such that |&—d<& (v=1,2,--- ).
v=1

e e . 1
For any V&B, by the definition of vicinitor we can find u such that _;Tl &V

and further we can find s, such that ;c&,—a@&nolém’i—fl for all v=n,.
Therefore T-lim a,=a. Q.E.D.
A des]

THEOREM 2.5 ; A conitnuous semi-ordeved linecr space is sequenial comp-
leie by Vo, if Bo 15 sperasrve.

Proof. Let sequence ¢, ER (»=1.2, -+ ) be a Cauchy sequence by LBo.
For any U &Bo, there exists VEBo, A>0 such that AVXAVCU. By assumption
we can find #, such tha: ¢,—a. EAV for all p. v=n,. Setting #e=#,1k we cee

first that a subsequence o, (R=1.2,+ 0 ) is a Cauchy sequence by the order-
topology, because, setting . « (lay,—aul) =& &AV, we have T-1im & =0 and hence
V= k>
oo

by theorem 2,1, we have g, 0 and la”;c —da, <& for all j=k. Therefore there
k=1

(o]
exists ¢ such that Iim11! ln, =0 then we have a= « ( m™ G, ) and hence

k> y=1 iz
oo [ee]
fa'n — d;_—<;l o/ ( ~ (an — Cn ))’é N ( ™ Ian —ani Désl-
k v=1 {=v k J y=1 j=p F ’
Accordingly, we have an — aENV for ail £=1,2, .- »namely, T-lim G =a

y—rco
Therefor, we may conclude that ap—a=(au—an d+(an —a)EXVXAVCU  for
allu=#n,. The proof is completed.
4. Adjoint space.

A manifold A of Ris said to be topologically bounded by B, if for any V&%,
there exists A>0 such that ACAV.

A linear functional @ on R is said to be iepologically bounded if
su;;l]cp(x)K +co for every topologicaily bounded manifold A.
x €&

The totality of the topologecally bounded linear functionals on R is calied

the assoctaied space of R by B and we may write R® .
We shall be able to consider as semi-ordered linear space by the next
semi-order = ;

for R® &L, F, L=F means L(x)ZF(x)  for all x20.

Because, for any ¢&R , setting

11 lima,= emeans thal g, is order-convergent to a.”The om’er—topology is sequeni,ql comgllete” )
As to this theorem, cf, H, Nakano (2], Theorem 6. 4,
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P(a)_o sup a(x) for any a=0,

=x=a
obviously Plaa)=aP(a) for any a=0, a=0.

Furthermore, for any a, b=0 we have

P(a+B)= sup a(x)= sup a(i+y)

x=Za-+b 0==y=<<b
=  sup a(x)—l— sup a(y) P’a)—i—P(b)
0=x=a

On the other hand , if 0<z<a+b, then putting x=a~z, ¥y=2z—2% we obtain
0=x<a, z=x+y and 0<y<p and consequently P(¢+0)=P(a)+P(b). Therfore,
for any x &R, setting L(x)=P(x*)—P(x"), we obtain a topologically bounded
linear funciional L on R. (for any a=0. VEB, ihere exisis ¢ M>0 such that
AVD{x ; 0<x<la}) Furthermore, it is obvious that other postulatesl2 on the -
semi-order are satisfied.

A linear functional ¢ on R is said to be fopologically coniinuous by B, if
we can find VE&DB, «>0 such that
lp(xol=alxly, for every xS R.

The totality of the topologically continuous linear fnnctionals on R is called
the adjoint space of R by 0.
By the definition the adjoint space is oviously a semi-ordered linear space and
we shall write RY.

Setting V={x; ]x(%)]<1 for x €R},V satisgies the condition (ii) in § 2.

Let ® be a collection satisfying the condition that there exists a vicinitor W

in ® such that Wo V+U forany V, UED and EVED for VED, £4-0.

Furthermore, (Vir)={x; suII)/_ x(x)<r} (VED) defienes a convex topology
! x &

on R® and We may write ¢ this topology.
LEMMA s The linear topology 3% o RE is convex and Separative.
proof. It is obvious that 2% 15 convex by the definition. For 0:\:5{:‘?%, we

can find ¢ ER such that «(e)>1. Therefore, fo_r any V such that a6V ESB,

GEV={x; sup x(x)<<1} namely, 3% is separative. Q.E.D.
xeV

Let R3 be the totality of the continnous linear functionals on I‘{% dy E%,

12 This postulates are furnished in H, Nakano (1}, § 1
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Any of the elements x&R is considered as a topolocrlcahy continuous
linear functional on RE by the relation ;

GX)  2(®)=x(x)  for evesy TERS,
R is said to be regular. if it satisfies the following conditions ;

(i) the correspondence (3) from R to R s a isomorphism, that is,

Q) for any aER®, there exisis a€R satisfying (%) and R® is the semi
-ordered linear space.
(2) a=0 if and only if a=0.
(i) B is a reflexive lincar topology'®, vhat is, for any VED, if for
V={x; sup W(x)<1}, we have = supl %(%) for every % ER.
Hv=1 Il

Remark. If ¢ &V, since jg(a)=sup a(x) for a=0, then for any y €V we have
lx|=a

la(lyD=<1 further
la(lyDzla(y)Zla(—lyD=—lalyD
namely. la(y)=<le(ly)<1 and hence |zl V and consequently V'={x : ja(xD=1
for x €V},
A linear topology 8 on R such that the system V, ={x ; la(lm=1}(a s R
is a basis of 2 is called the absoluie weak topology of R by R®.
THEOREM 3.114 : A manifold A of R is topologically bounded by ihe absolui®

weak topology R by R® of and only if sug X(x)<+oo for every % ERC.
x &

For every manifoid A, A~ denotes the closure of A by the induced topology

%,

Let {F be a linear subspace of the set of all linear functionals on a Iinear
space R,  For any finite subset fi, fa,-oreeeet » fn of IF, %,ER and real positive
number >0, {x; If(2)—fi(x<rs i=1,2, »n} 1s regarded as neighorhoods

of x, in R.  This topology is obviously a linear toporogy on R and we may
say the weak topology of R by {F.

A manifold K of R will be said to be weakly bounded, weawly closed, weakly
compact, if K is so respectively by the weak topology of R.

In theorem 4 of § 65 in H. Nakano (3. modifyjng we its proof, we have

THEOREM 3.2 : For every vicinitor VEB,

V={x; W(D=1 for x&V} is absolutely weakly compact by ®E
Let Dx be a family of subsets of R such that there exists a subsets K, in

Dx satisfying the condition K2 K.+ K, for any K. K,&Dx. (where notation -+

13 Cf.H, Nakano (4], 103—104.
14 Cf.H,Nakano (4], Theorem 8.2
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means union of sets)
Denoting we {%; su};{&(xjkr} by (K/7) for #>0,Dx3 K, {(K/r) : K&Dx,»>0}
x & . :

defines.a convex linear topology on R® and this topology will be called the Dx
-topology.

We may say p-fopology and wx-topology if Dx is the class of ail fin'te sets of
R and the chass of convex weakly compact subsets of R by R® respectively.

THEOREM 3.3 : In order that R is regular. ii is necessary and sufficient

that B is convex, separative and every V™ (VED) is wearly compact by Rr®

Proof.

Necessity. If R is regular,then for any VED,since V™ ={x; l[xuv—gl}15 and
Ixll .= sup ()l for V={x; sup |%(x)=1}={%; W(x)=1 for every x&V},
xeV “x”V—§1
we have

(7)":{;; ]}(E);_S_l for every x &V}
={x ; Z(x)=<1 for every xEV}
={x;sup B(x)<1}=V"
xl=1
and hence V™ is weakly compactl6é by R®. Further % is convex, separative 'by
Lemma. '
Sufficiency. Let R be to satisfy the conditions of the theorem.

At first, we shall show that for any x sR® there exists x,€ R such that
%,(%)=5(%,) for every x&R°. For any V&%, there exists VED such that V>

{x; sup lx(x)<1}, namely,i% is weaker than s-topology.It is obvious that G
xEeV-

is stronger than p-topology. Therefore, by theorem 2 in R. Arens’s paperl?,
the elements of R represent precisely the contianuous linear functionals of

R®  Futhermore. for any VEDB, ¢& R, by Banach’s extension theorem8, there
exists a linear functional @ on R such that
g:(a):lla”V , lgp(x)léllxnv for every xER.

This @ 1s obviously topologically continuous and hence ¢8R% and that @& A
for A= {x; sup Ix(%)<1}). Accordingly, sup l:?(a)lg¢(a):nauv.
lladlyr=1 xeV
Opposite inequality is evident. Thus we conclude
lal,, = sup |x(a)  for every a &R.
x & A - - _
It is obvious that R & =20 implies 0=¢ ¢ R and @40 implies ¢3=0 (¢ is element

15 This equality is obtained easily by theorem 3 of §49 and theorem 2 of §54 in H. Nakano (3)
16 This conclusion depends on theor:m 4 of §65 in H, Nakano (3).

17 Cf.R. Arens : Duality in linear spaces, Duke Math. J. 14, 787—794 (1947)

18 Cf. S, Banach : Théorie des opérations Linéaires, Warsaw, Theorem 1,27—28 (1932) .
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of ﬁ% corresponding to @ by (3%). Further, if ¢=£0, there exists « sR® such
that @(a”)>0 ; heace jal(a”)>0. We have then la(a”)(a™)>0 and lalad(a")=0.

Since |¢l(a)19 is topologically continuous positive functional, we have that

R 2 %>0 implies R 2 a>0.
Remark. By theorem 3.2 we see that if R is regular, V™~ (VD) is absolutely

weakly compact RE (Recieved June 19,1954)

19 If R is continuous, then all elements are normalable and consequently we can consider
the projection [a~].
Cf.H. Nakano (1}, Th.6.14 and Th.5.5.,19—28.
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