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Measure-theoretical Decomposition of a Set

Yoshio Kinokuniya*

Abstract

If a set M is posited accompanied with the (non-negative) value defined by

(M) = @Srp,
PEM

some important singularities are found when a decomposition applied to devide M. The notion of
overflow and that of a quantitative metamorphosis are defined to analyse the set M in a clearer

aspect.

1. Simple and Singular Decomposition

In this paper the applicaton 7, (the measure quantity given to the point P)
is supposed non-negative and # oo, and the normal system g** is given as the
standard scale to be compared with any application system ; the points and the sets
are restricted to be observed in a finite-dimensional Euclidian space E. 7, is called
non-negative when

Tp = © = empty null”,
and positive when
>0,

therefore 7, may be infinitesimal even when it is called as positive; but, when a
quantity f is expressed as

S=0,

then f is destined as a positive real number, which is of the same notion as in
the classical analysis.

*OESE R
**% In case of a normal system &, if #p is the measure of the point P, then

#p = po = ¢ for all the points P, Q,
and the measure

m{M) = & up

gives the same value as the Euclidian volume-value, whenever M is measurable in the Euclidian
volume-theory.
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548 Yoshio Kinokuniya

When there exists at least one sequence of sets {M,} such that
(i} M,NM; = void whenever &+ ;
(i) M=2 M,
(iii) 7(M,) = €7p<oo for each k=1, 2, -,
rPeM
then M is said to be of a simple decomposition in respect to the system {7} or
briefly to be simple in respect to ¥. When there exists no such sequence of sets

as the above-stated, then M is said to be of a singular decomposition or briefly
to be singular in respect to ©. Let E,, be the aggregation of the points for which

7/P/ﬂ = 0

then it is easily verified that
E.NM=#*void

when M is singular, though in general this cannot make a sufficient condition for
the singularity. When it is observed for each point P that '

0<)Tp/p<oo

then {7»} is sald to make a regular system.

2. Overflow

To study about a singular set in respect to 7, we find it appropriate to intro-
duce the following notion to build up a clearer aspect on a decomposition of a
set. If a set V contains the point P as its inner point, then V is called a neigh-
borhood of P. If it is observed for any neighborhood V of a fixed point P that

(V)= oo,

then P is called a point of overflow, and the aggregation of all the points of
overflow in E is called the overflow in respect to 7.

Proposition L.—If a set M be singular in respect to T, the aggregation of
the points of overflow contained in M has a power stricily larger than enumera-
bility.

Demonstration. Suppose the points of overfiow contained in M are exhausted

by
£21, £22,"'
and M* = M— 3 {Q,}
then, if PcM?*, there exists a neighborhood V(P) of P such that
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T(V(P) < o0

{because the point P is not a point of overflow). = Therefore, by the covering theo-
rem of Lindeloef, there exists a sequence of points {P,} = M?¥*, such that

M*< 3 V(P
and T(V(P) < co.
Then M= 2 V(P)+ 21{Q.}

- so that the set M is discovered as of a simple decomposition. But this is contra-
dictory to the assumption that M is singular. ]|
Proposition 2.—Any inner point of E. is a point of overflow.
Demonstration. Let P be an inner point of £, and V be a neighborhood
of P, then there exists another neighborhood U of P such that

VoU and E.DU.
It is evident that

0<inl = € pp (e = 1),
Pev

so that, by the definition of E., we see

FV)Z27(U)=>nU-c0 = oo .
As V may be an arbitrary neighborhood of P, this induces that the point P is a
point of overflow. |
Moreover, the following fact is directly gained from the definition :
Proposition 3.—7The overflow is a closed set.
3. Integral and the Singularity

Let f(P) be a non-negative function of a point P and define the integral

T(f, M) = €1, f(P),
reM
‘then, if we denote it as

M, = M (f) = {P/PGM, _/l;<f(P)<—k—_—1—}%

we have U M)}Z—;{'—?(Mk)

#* The symbol {P/P} indicates the aggregation of the points P which satisfy the property D.
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Therefore, if T(f, M) < o0
and M(f) = {P| Pe M, filP)>0},

the sequence {M,} gives a simple decomposition of Mx.(f); so, we have:
Proposition 4.—Let M be a singular set in respect to 7 and f(P) be a non-
negative (real-valued) function jfor which it is observed that

7(f, M) < oo,
then Myp(f) is simple, so that the set
M—M.(f) = {F| Pe M, /{P) = 0}

must be singular in respect to 7.
A point of overflow is not to be generally excepted from the supporting domain
of the above-stated integration. For instance: for a fixed point Q, let’s write as

_ipl 1 _ip_pjo L) 1o
M, lP/ o siP-<] (k=1,2,--)

and define the 7-values such as

= 1

f(MQ,ic) = z
or rather Moo Pp7n =4 /772 (M)
and To= O,

then Q is found as a point of overflow in respect to this 7. In this case may be
found many pairs of a nonnegative function ¢ and a neighborhood V(Q) of Q
such as

P(Q)#0 and 7(9, V(Q))<oo.
It is, however, to be noticed that the system {7,} defined above, makes a regular
system (say, 7p/ps=co).
4, Singular System and Singularity
Let the sets E, and S, (£=1, 2, ---) be defined by
E, = {P| k—1<7p[u<Fk}

and S, = {P1P|<k),
then, if 7, are regular everywhere in E, any set M in E has a simple decomposition
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by the enumerable ensemble of the sets
M, ;= MNEN(S;—S;..) (k=1,2,--; 7=2,3,--+)
and M,,=MNENS.

Therefore :

Proposition 5.—If there exists a singular set in respect to 7, {Tp} cannot
be a regular system.

Now let’s denote it as

ER:E'—EOO,

then, by a slightly modified application of Prop. 5, it may be verified that E, cannot
be a singular set. Moreover, since the aggregation E, of the isolated points of E..
is at most enumerable, the set

ER+EI: ER (4, 1)

must be simple in respect to 7. So, we consequently see:

Proposition 6.—If E is singular in respect to 7, the set E., (the derived set
Jrom E.) must be of a power larger than enumerability. The set E, defined
by (4,1) is in any case a simple set in respect to 7.

By this theorem we have a necessary condition for E to be singular in respect
to 7; but, to tell the truth, this is not a sufficient one. To reach a clearer aspect
on the singular sets, the notion of overflow may serve as an indispensable medium ;
in effect, in the previous sections we have to some extent realized several interesting
relations between this notion and E.. However, it seems what is waiting for us
is a discovery of an essential chaos. It is similar to what has been destined to
the theory of sets. For instance, where

Tfp = oo
an inversion number n” which satisfies the relation
O<nt-T<<oo
may be an object set beyond the scale of our decision. This is the first gape for
our logic.
5. Quantitative Metamorphosis

In case of an a priori measure %#” applied in an Euclidian space E of finite
dimensions, E is treated as a simple set in respect to #, because E may be then
devided into an enumerable ensemble of rectangles of finite diagonal. From the
physical viewpoint, we may posit the space I as being filled up with a sort of
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homogeneous medium and interpret the 7i-value of a set M % (M) as the weight-
measure of this medium filled in M. This interpretation is not a new one, but,
for instance, in a part of the ergodicity theory several authors used this type of
expression.

Now let’s suppose a quantitative transition of the medium, which may not
necessarily be continuous. After such a transition is to be found a new repartition:
of the medium; in other words, we shall then find each point in a different dis-
tribution of the medium-mass from the first homogeneous one.  So, if we denote:
the new share-value for a point P as zp, these make together a non-negative ap-
plication system. In addition, such a transition causes a quantitative transmutation
of the space E; so we call this transmutation a quantitative metamorphosis of the
space F.

Ultimately, we may understand the mass-value 7, as the mass of the medium
filled in the point-occupation® ((P)) of the size p.  The case 7p=o00 is excluded
according to the promise at the beginning of this paper. When z,=0), the occu-
pation ((P)} is naturally understood as being left vacant. ILet the space E transmuted
by a metamorphosis be denoted by E. and let it be accomodated with the share-value:

FM) =€,
reM
to measure the medium-mass filled in a set M.
Proposition 7.—If there is a family of sets {M.}..; in the space E such that

F(M)>0 for all rel,

the indices’ set I must be enumerable.

Demonstration. Devide £ into an enumerable ensemble of rectangles {R,}
of the same form and of the same (finite) size, and search for the former position
of the medium filled in M, in which it was to be found before the metamorphosis.
Then, as easily verified, there must be found at least one R, in which the former
mass of the medium of M, was measured as strictly positive before the metamor-
phosis.  In addition, the number of M, thus corresponding to the same K, is at
most enumerable, because positive numbers can make by summation a finite positive
number only in case of at most enumerable density. So, putting the two enumera-
bilities together, the density of I is concluded as to be also of enumerability. |

6. Repartition Postulate

I being transmuted to E, by a metamorphosis, there exists at least one reparti-
tion {E.}..; such that

ENE = void for r+#«,
E: UEz‘
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and 0 <#(E)< oo for all 7. (6,1)

If we merely demand such conditions, there may be no other way than to posit
some postulate which gives them as satisfied. But, when

zp < oo for all P, (6, 2)
these conditions are satisfied if we define it as
E,= {P}land I = E,
except the alteration of (6,1) by
0<7(E,) < .
Since, if there can be no such set that
0<7(M) < oo, (6, 3)
the condition (6, 2) induces that
(F(E)=)* %(E)=0,

there must exist such a set M as described in (6,3). This being so, it may not
be a big venture to assert a disjoint repartition {FE.} as existent in such a manner
as described in (6,1); in effect there may be found no positive standpoint to deny
this assertion. Ultimately, we may regard the abovestated postulate about the
repartition of £ as collateral to the condition (6,2), which is assumed throughout
this paper.

It is remarkable that, when E, is provided with a disjoint repartition {E.}
satisfying the condition (6, 1), E, is simple in respect to #; the demonstration can
be directly gained from Prop. 7. So, with regard to the above-stated collateral
relation between (6, 2) and (6,1), we may believe that, if {z,} makes an applica-
tion system (with the restriction given in Section 1: say, finite and non-negative),
then E, is simple in respect to 7.

7. Constructive Aspect

In case of a regular system {7}, it is specially distinguishable that we may
then have an enumerable decomposition of E by the sets

E, = {P/k—1<ﬁ’—<k> (F=1,2,-;
J7

*

E and E; may be identified in point that E is the occupation of E.

(167)
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in effect, when it is combined with the spherical decomposition given by
Se = {Plk—1<|P--Q| <k) (k=1,2,-+)
Q being a fixed point, the space E may be found in a very concise construction.

In case of K, the repartition {£,} given in the previous section as to satisfy
(6, 1), gives us an effectual method to analyse the frontier circumstance of oo, which
is denoted as

(Jool)
in the theory of a priori measure®. Let an increasing sequence of sets be defined by
Ek:UE] (k:172>)5
i<k

then the medium filled in £ may be exhausted by the process
lim (E—E,).

This being so, it must be confessed that we are assuming the part (Joo[) is either
vacant or holding an invariant state of the medium. However, if we renounce the
standard restriction

@ Lrp <L 0O
and allow the case
Tp = OO

as possible, the part (Joo[) must be the source of this pile of the medium; so the
above-mentioned invariant state must be broken. This is the second gape for our
logic.

8. Stochastic Metamorphosis

In the theory of a priori measure the occupation of a point is posited as pro-
vided with a geometric shape ; in case of the rectangular coordinates it is elucidated
as an infinitesimal parallelogram and so on. Therefore, when a quantitative trans-
mutation is assumed to be realized by a metamorphosis, it may need some distortion
if the direction of transition of the medium does not accord with any direction of
the axes. In such a case, it is appropriate to apply the notion of a distribution of
the theory of probability ; in other words, the transmutation caused by a metamor-
phosis can be understood as a change of the distribution of the medium, the formula
of which may be given as follows:

aplp = AP)
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A(P) indicating the density of the distribution of the medium.

Conversely, the notion of a metamorphosis may be utilized in the probabilistic
theory of distributions. For this purpose, the total mass of the medium should
naturally be considered equal to 1. It is critic that the starting stage of the dis-
tribution is then to be given as homogeneous, whereas it is generally believed in
the classical analysis that the homogeneous (probabilistic) distribution is impossible.
Hence, at the starting stage, the measure of probability at the point P

Tp
is to make a non-negative homogeneous application system on condition that
1=%FE =€ . (8,1)
L being a finite-dimensional Euclidian space, if there exists a metamorphosis
Tp—> Wp (8, 2)
true fo our expectance, it shall be a singular one, because then, if

(M) = S wp>0 (8, 3)

PeM

for a set M of a finite measure (say, 0 <<#(M)< o), it may be directly induced
that at least at one point P we have

(l)p/ﬂp = 0.

Despite of such a condition, we cannot deny the metamorphosis as impossible,
because, if we admit both of (8,1) and (8,3) as simultaneously existent, there may
be no other physical way than to admit the metamorphosis (8,2) to make an in-
termediation between the two states.

To permit the metamorphosis (8, 2), we have only to remark that the principal
part on this transportation is (Joo[). It may be better understood by way of the
calculation on the state (8, 1) itself. In effect, if

#(F)>0
it must be that
#(F) = #(FN(Jool))s
because, on denoting it as
E, = {P] |P|<n} (n=1,2,-),
we have
0<Z(FNE,)<7(E) =0

(169)



556 Yoshio Kinokuniya

for all n, so that
#(F) = lim #(F N (E—E).

Besides, the inlaying of the medium of F into the set M may be interpreted as a
transmutation of the point-measures

Tp ™ Wp .

7-measurability is realized when the upper- and lower- destinations for the value
of 7(M) are found to be equal. When the two destinations give different values,
the distribution share of the points of M is taken to be indeterminate in total.
This will be the most characteristic difference of our view from the classical one.
In our analysis, the indeterminate 7-value for a set M is regarded as oscillating

between its upper- and lower-destinations.
(Received Apr. 16, 1960)
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