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A Renovated Course of Functional Analysis
By

Y. Kinokuniya*

Abstract

In making observations on the most primitive space of numerical functions, where two functions
equal almost everywhere are not always regarded equivalent, the classical analysis is not a competent
one. Renovations are needed in definition of orthogonality, effectuation of a linear operator, spectral
methodization and so on. In this paper, two important methods are introduced to topologize the
space, called “reaxilization” and “orthogonal transmutation”. 1t is remarkable that the ideal-theoretical
method is found useful in similar way to what is found in the classical analysis.

1. Introduction.

In this paper the space X is posited as the aggregation of all the complex-
valued functions x (&) that satisfy the conditions: (i} |z (&)] < oo for all €€ &;
(i) x (§)=x (1) whenever &=7%. When z (&) € X, x(£) is called a vector in X and
is denoted by x. 5 is a metric space provided with a normal system g to measure
a subset I" of £ by the a priori measure

Wl =G () (1)

(pe=p for au_ ¢ef and n (') is the inversion number of I” w. r. t. #) and it is
posited that 5>q (the cardinal of enumerability) and

=1 , (1, 1)
On the other hand, & may be originally expressed in the form’)
r=Cx(£)0;

where 4. (%) is the characteristic function of the single point set {&}, so d; is natu-
rally regarded as a vector in X. Next, let a scalar product be introduced by the
formula

(@|y)=C 2 (&) 9(©) s

so that we have a norm measure x| such as
|| =& |2(€) e

= e

(231)



810 Y. Kinokuniya

The calculus of (x|y) is specially characteristic in point that
(ly)=0 1€z (&) y(&)=0.
In this meaning, if exactly, the symbol 0 should be altered by the symbol ¢ which
indicates the empty nully (= sheer void), and then any infinitesimal quantity will
be indicated by the symbol @. In addition, for an integral of the form

€4

A bzing a metric space provided with a positive system 7,(say, >©), is demanded
the restriction

€|z, < oo
iz

whenever the value (1,3) is posited as finitely determined (= convergent). This is
that we conform to Riemann’s viewpoint on convergence in a generalized form.

Hereafter, a space or a subspace will mean a vector space or a vector subspace
respectively, generated on complex suffices. The minimun subspace wich contains
any of subspaces Y, (¢ce I)is the span®of the family (¥’) and is denoted by

VY, or V.g¥,;
when I'=(1,2) it is written as
Y.VY.
The orthogonal projection of a vector £ on a subspace X is denoted by
Py ().

A subspace generated by a single vector y will be denoted by <y3>, and on such
a subspace the projection P, y(x) may be simply denoted by

When lyll >0

it must be remarked that P, (d.) cannot be existent except the case of vanishing,
because then it must be

1Py (0] <U0: | =V p=/O =B (1,4)
while P, (9.)is written in the form
¢y (c: a complex number)
if existent, so that
1P, (@:)| =|el-]ly | >0. (1,5)

As the quantity 0 should mean @ from our standpoint of view, (1, 5) means either
its left hand is strictly positive or vanishes to be equal to ©. So, in case of not
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A Renovated Course of Functional Analysis 811

vanishing P, (9}, (1, 5) is contradictory to (1, 4).
In our theory, the function Z| of z defined by
Z| = sup| z(g)|

is called the height of x to be distinguished from ||z| defined by (1, 2); and when
Z| or [|x] is finite, x is said to be of finite height or of finite norm respectively. By
a certain reason we do not define a norm nor a height of a transformation. So as
to be of finite norm, a vector may not necessarily be of finite height, but when a
vector is of finite height it must be of finite norm (because of the restriction (1, 1)).

2. Reaxilization.

The set
C E,=(€: €& and x (&) # 0)

corresponding to a fixed vector x € X, is called the defining support of x. When

Y is a subspace of X, the set
c=H.(Y)=NE, (x€X and (&) = 0)

&
&

will be called a supporting scale or simply a scale of ¥ on condition Z.# void,
which, in other words, is the infimum of the defining supports of x€ ¥ for which
x (€) # 0. Now, on denoting as

Y.=(x: xe ¥ and x(§)+0)

we have

Y.C X, for all 7e£, (2.1)
because it is direct from the the definitions that

(x(€)#0 and ne £,) > x() #0. (2.2)

Next, let us suppose that there exists a vector y € ¥, for a certain 7 such that

y(7) 0 but y({§) =0,
then, on picking up an arbitrary vector x€ Y;, by (2.1) it follows

xe X,

so we have

z:x——x—w)—y ey

y (%)
for which
2(g) (= z(&) # 0 but 2(%)=0.
This is contradictory to (2,2). Hence, it must be
Y.2 X, (2. 3)
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812 Y. Kinokuniya

Then, by (2.1) and (2. 3), we see
Y. =Y, for each 7€ 2,
so that, in regard to the definition of &, we may conclude :
Lemma 1. faﬂbﬁ:h@v.
If there exist two vectors x and y in X, for which x(¢€) # 0 and y(£) # 0 but
x
e s

for a certain y€ &,

is a vector in ¥, because then z, y € ¥, and therefore y (5) # 0 by Lemma 1, and
then

z(é)zy(é){——@- —“;;}7&0

but z(M) =0.

This is a contradiction again to (2,2). Hence, there must exist a vector ¢ in X
for which

[xy
I
),

and such that
Yeyby=k+E ylEo 2.4
€z,

% being a complex number.

From Lemma 1 it is direct that

E.UZ,# void [> &, =£

7

so that the family of the distinct scales of ¥ is a family of disjoint sets, i. e. a
partition of the set

In
Iy

y=U &,
<Y

which is called the support of ¥. Now, let it be written as

( /1) ac4

then the set 4 of indices may not be generally expected as a set of ordinal numbers,
though it is always found possibly existent. If 5,=5, in (2, 4), let ¢ be altered by
the notation

[y

o;

(234)



A Renovated Course of Functional Analysis 813

and let the subset of X generated by a single vector ©, be denoted by Y, then it
is direct from (2.4) that

YC VY. (2, )
It is very convenient if we may use the relation
V.Y, =V, L0, (2, 6)
on the ground that
Y, =<0,>, (2, 7)

but if we try to induce (2.6) from (2.7) we shall come across a need of Zermelo’s
axiom. IHowever, to avoid the controversial troubles about the axiom (of choice),
we may posit (2.6) as an intuitional representation of the structure of the subspace
V.Y, caused by the reality of the span (say, the right hand of (2,5)) and the
destination (2, 7), while we shall then leave the set 4 free from well-ordering in
general. Thus we posit the relation

YCV,<0> (2, 8)
instead of (2, 5).
To tell the truth, the inversive relation of (2, 8)
Y2V, k0> 2 9
is not evident. In effect, on an arbitrary fiinite number of indices
Ay Ay A,
it can be easily shown that there exists a vector x in ¥ such that
x=2,0+2,0,+ - +x,0, +x'
with 27(8) =0 for any SEkGlElk
on an arbitrary choice of n complex numbers z,, @, --+, x,. But this may not be
sufficient to assert that any vector = of the form
z=€ x40,

belongs to ¥. The logical leap between the abovestated result and (2.9) may be
simply cleared if we adopt some appropriate system of logic, though then may be
caused some new discussion about the construction of a subspace. However, we
merely posit the destination (2.9) as effectuated, in this paper, without getting in
the logical details. Then, combining (2. 9) with (2. 8) we will have the formula

Y=v,<0> (2, 10)

as effectuated, at all events. It can be verified in itself that

[y

y=U &,

(235)



814 Y. Kinokuniya

The family of the vectors (0,),., will be called the natural basis of Y, aud will

be denoted by
B(Y);

and the formula (2, 10) is called the law of reaxilization or simply the reaxilization
on the subspace Y.

3. On Linear Operators.

A linear operator L is understood as
Lxe X for each x € X.
The aggregation of the vectors Lx is called the range of L and is denoted by
R,
A complex number @ is regarded as an operator in the meaning that we write it as
=wx(x,yeX)
when y (&) = wx (&) for each £c 5.

As shown in §1, the projection P, on the subspace <€y > has no effective
image of a vector 9. when y (&) # 0 and |ly| > 0; therefore, in this case, P, may
not be regarded as a linear operator of X. A linear operator in our theory must
be first described by the formula

Lo, =€), (3,1)
so that for an arbitrary vector
xz =€x(§)0
we may have

Le =€ (€ (@17,

7

Since the right hand of (3, 1) must be a vector in X, Z(§,7%) take complex values.

The alternation of the summation procedue &€ € by € & is always thought as
& 9 7 &

possible in our theory, whenever L is given as an effective operator of X. Next,
when

B (RL) = (‘ox)zem
at least one vector x, is claimed to be existent for each 1€ 4 such that
Lx Z:P 2 (33 2)

An operator thus defined by (3, 1) to (3, 2) is called an inzimate operator, or simply
an operator if there is no fear of confusion.
For an operator L, if exists an operator L, such that

(236)



A Renovated Course of Function®l Analysis 815

L,L =1,

L, is called the left inverse operator or simply the inverse of L (in this paper)
and is denoted by

L&,
When L¢P exists L is said left-invertible. The set 2, of the complex numbers

w such that (L—) are not invertible, is the spectrum of L. Besides, as it is
well-known, the spectrum of L has been originally defined by several authors as the
set of the proper values of L, i. e. the set of the complex numbers o such that

(Hx)(xre X and Lx = wx).

When the linear operators L and L are not necessarily expected to be intimate
ones, for that the above-stated two definitions of a spectrum perfectly accord, it is
necessary and sufficient that

(FL) > (T y)lye X, y#0 and Ly =0) (3, 3)

though, when L and L¢® are restricted within the intimate operators, to establish
the assertion (3,3} is not easy. It will be a nonsense under such conditions to
proceed any analysis dispensing with (3,3). So, it may be an opportune disposal
if we restrict our analysis within the case where the intimate operators L and L¢V
conform to the criterion (3, 3).

It is remarkable that the vectors x cannot be restricted to be of finite height.
In effect, for the operators defined as

S0.=15(£)0,;, s{€)#0 for eachée &
and s(€)— 0 whenever &, £—&,,

S is existent and

S as:ﬁae (=)

and then it is observed that
== A — 1
y5|'~,5< )8;[ = ‘T 5)1'900 as £ &,

so that apparently many vectors of infinite height may be found in the range of
S¢» In addition, the notion of the morm ||Ll of an operator L will not be used
by similar reasoning.

For an operator L defined as

Lo.=€L(&7)0,

the corresponding operator L by the difinition

237)



816 Y. Kinokuniya
I6.=€1(n,8)0, (3, 4)

({(7,€): the conjugate number of /(7, &) is called the adjoint of L (i.r. t. the basis
(0s):cz)- An operator is called a finite operator if both of the set of such 7 that
1.0 +0 for a fixed &
and the set of such & that
(£, M +#0 for a fixed 7

are always found as finite sets.

Proposition 1. When both of L and L are intimate operators, they are finite
operators, too.

Demonstration. In effect, if

y=Lx(xeX)
then, in view of (3,4)

y (1) =C z(&)(5, ).

3

Besides, « may be such that

=) =g
for a fixed 9, so that
Yy =1+1+---
Since y(7) % oo the points & for which
LE M =+#0

must be exhausted within a finite count.
Next, if we take L instead of L, according to the definition of L we similarly
see the points % for which

LEM+0

must be exhausted within a finite count. Then, since

LE,M+0>QlE M) +0,

the verification is completed.

4. Orthogoual Transmutation.

Given a subspace Y, if there exists another subspace Z such that any vector
z in X may be uniquely expressed in the form

(238)



A Renoveted Course of Functional Analysis 817

x=ay+pz yecX, zcZ)

{a, B: complex numbers), then Z is called a linear supplement of ¥. It is remark-
able that there may be found many linear supplements possible for a fixed subspace.
For an arbitrary vector ¢ in X, the following process to make up a supplement of
<€P> is very important. First, let a point & for which ©(&)# 0 be fixed in &,;
next, let the subspace

Z = \/7¢5<av>>

be taken up; then it is easily seen that Z is a linear supplement of €©¢>. In case
of a subspace ¥ generated by an enumerable family of vectors (0,).=1,2, --- the
process may be simply generalized as follows. First, let a point & for which
0,(6)#0 be fixed in 5, for each 2=1, 2, ---; next, take up the set

I'=@:7¢8 but 76, for all 1=1,2,---);
then the subspace
Z =N or €0,>»
is found to be a linear supplement of Y.

This process of supplementing is brought to an evident standstill when the
power of B(Y) is larger than enumerability, because then the axiom of choice
will be needed again if we try to build up the set (£,),e, in analogization. Never-
theless, there is still a way to throw light to our idea. If we cease to treat the
total space X as perfectly given but prefer to test it to restrict within the construc-
tion of the meaning of a formal extension of the above-shown supplementing, then
there may be left no objection in regard to the axiom of choice. Thus reasoning,
we may posit a set of & as given such that

0,(6) #0
whenever B(XY) = (03) s
Now, let us take a positive system of application (7,),c:+(7,),er such that
er+er,=1
where I'=r(Y)=0:1%¢, for all 1€ 4),
and introduce a new product described in the form
(wly) = € E@FT, +E 1) 7, (4,1)
on condition that x and y are uniquely expressed as
r=€z(Ae,+€ 2o,
ond y=CgAe,+&y"a,
respectively ; the universal possibility of such expressions is now evident. Then the

(239



818 Y. Kinokuniya

subspace
Z = A% 9zl < 8,] >

) and thus we will have

is found orthogonal to X in respect to the product (4,1, »
) is called an orthogonal

a new topological structure of X. So, the formula (4,
transmutation of X with respect to the subspace X.

The adjoint I, of an operator L i. r. t. (4,1) may be defined by the relation

(W x2) (Vx9): (Lxly)° = (x|Ly)" (4,2)

1
1

If it is described as

L0, =€ g,(v)0,+C F.(0)3,
Ler

vEA

and Lo, =Cg,v)p,+€ £,(L)d,
vEA Ler

we have (i/ leaﬁ = /?)w) 7,

and (0.1L0,) = g,(A7,,

so that in view of (4, 2)
f )1, = g, (.
which means 0<T,/T < 0

whenever f,(7)# 0, because it is evident that f,(7)# 0 implies g,(2)#0 and con-
versely. Since L is essentially arbitrary, this result may force the system (7).
+(0,),sr to be given as a regular one, i. e. 07,/ < oo, 0L T,/T, <o and 0«7,/
7, <<oo for all 2, €4 and %, Vel

Proposition 2. For that each intimate operator has its adjoint effective
with respect to the transmutation (4, 1), it is necessary and sufficient that the
system (13):a+(V,) o @5 a regular one.

5. On IR,

When B(R,)==(0,),s the set of the vectors y such that
Ly=0,

is denoted by* X,. For any vector x in X the vector Lx can be expressed in
the from

Now, let us take a vector y describable in the form

* As is stated in § 3, it is claimed that X; # void, in our theory.

(240)



A Renovated Course of Functional Analysis 819

y=Cxx,

on condition that

x,€ X, for each 1€ 4,
and let £ be composed as

r=y-+=z.
Then we have
La=Ly+Lz=€Z)r,+ Lz,
so that, in view of (5, 1), it must be
Lz=0.
If 20, LOP cannot exist, because then
L(x,+2) = L{x,) =0,

whereas x,+z# x,. Consequently we may have :
Proposition 3. For existence of L° it is necessary and sufficient that
each X, (A€ A) consists of a single vector z, and any wvector x€ X can be

uniquely expressed in the form
x =€ (A,

It is remarkable that the original domain of definition of L is &, but not
X itself; in other words, L may not bs regarded as an intimate operator of
X except the case R,=X. In case R,= X, as it is evident that

B(R7) = (0c)ses>
the sets X, may be altered by the sets
X, =(x: ze X and Lx=23,),
and almost directly we may see:

Lemma 2. In case R;=X, if a family (x.):: satisfies the condition
x:€ X,, then for the operators defined as

S8, =, for each £€ 5
it is observed that L=8"".

By Prop. 3 ond Lemma 2 it is obtatained that :
Proposition 4. In case B, =X, if LUP exists, LS is in fact the both
side inverse of L, 1. e.

LL<=L-L=1.

(241)



320 Y. Kinokuniya

6. Left Ideal in the Ring of Operators.

Apparently the intimate operators of X make up a ring together; so let it be

denoted by . If an operator S is defined on a subspace ¥ of X, on replenishing
such as

Sx=0 for all xre X—Y

we may regard S as an element of . In the following, we will deal with only
thus replenished operators, so that the inverse L‘® may have X always as its
domain of definition instead of R, If a subset § of J satisfies the following
conditions, & is a left ideal: (i) (33L,S) > aL+bS€ X, by arbitrary complex
numbers @ and &; (i) I2*RNF. When I+ {0}, R, the ideal I is said non-
trivial. Given an operator L, the subset L is evidently the minimum of the

ideals containing L, and is denoted by &;. If there may be no non-trivial ideal
%’ such that

JFEI and FC I C R,
then the non-trivial ideal X is a maximal {left) ideal.

The results that hnceforth follow are what have been gained by a study aimed
for analogization of the theory of normed ring of operators. In our study it may
be specially characteristic that all of the measures {lx||, @I, | L|| and [| are put out
of use and the restriction (3, 3) is universally applied. Let the aggregation of the
operators of X which are not left-invertible be denoted by It; this subset of %t
plays an important role in our analysis. By some simple computations the following
lemmas may be gained,” where a left ideal is simply called an ideal.

Lemma 3. If an ideal & is non-trivial, then

{0} =3
Lemma 4. If 0+ L&, the ideal 3, is non-trivial.

Lemma 5. For that an ideal S is non-trivial, it is necessary and sufficient
that

{0} =3 CN.
We insert here the following axiom as a logical agent in our analysis:
Axiom 0. Given a set 9 fixed, by § be denoted a property which is
either possessed by a subset in 9 or not, in relation to at most a finite number

of fixed sets, and let it be assumed that : if there is a subset B, C ¥l (i. e. U—B,
#void) haviug ), there exists another subset B, having ) such that

BB, Y,

¥ R % means the set of all SL such that SER and L € J.
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A Renovated Course of Functional Analysis ‘ 821

and moreover it is certain that at least one subset exists in Y| having Y. Then,
there exists an increasing sequence of subsets having §)
BB, S-S
Jor which no subset B is found having ) such that

Proposition 4. For that an operstor L is left-invertible, it is necessary and
sufficient that thers is no maximal ideal containing L.

Demonstration. If L is left-invertible, in view of Lemma 3, no maximal
ideal contains L, because a maximal ideal is a non-trivial one too. Therefore, for
completion of the demonstration it is sufficient if the negative assumption for exist-
ence of a maximal ideal containing L is induced to a contradiction when L is
not left-invertible. In this case, as L€, by Lemma 4 &, is a non-trivial ideal,
and if &, is not a maximal ideal there exists by definition an increasing sequence
of non-trivial ideals such as

Schlcf\"SJzC Q%

We may denote by ) the property that a subset of ¢ be a non-trivial ideal con-

taining I, so that by Axiom 0 we may assume that there exists no non-trivial
ideal & such that

Us:c3Ick 6,1)
Now let it be denoted as
r?NSL = UJ%
then ¥, is a non-trivial ideal. In effect,

Zc3S, 5D k) HE)(S€ Zs STEZ)

and on denoting k= max(k, £')

we have S, S'e Sx
because then 3 C Iz and I S Iz
so that aS+p5e€3:C8,

by arbitrary complex numbers « and 5. Ience, we consequently have
$:38, S'DaS+a5 e

Next, RIS ES)AS,) (HE) (S e, S;€ I and S=.S5.5,)

and then S=858eRNI:CTISIr

Besides, it is evident that

(243)



822 ) Y. Kinokuniya

St

so that &; is a non-trivial ideal. Then, in regard to the indication about (6, 1),
we may conclude that %, is a maximal ideal containing &, which gives the con-

tradiction promised.
For any maximal ideal & of %R, let the residue class ring /S be described as

R/F = (S(Fsen
where S(x)3L>]L—Seg.
Then, since evidently

L—Se%>qS—Leg

we have LeS() >1Se L)
which is written as L= S(mod g).
When it is observed for a fixed complex number o that

(V xx) (Sz = wz),

we adopt the simple notation  instead of S, and &(3%) instead of S(X). By 2, is

denoted the spectrum of an operator L. Then, the following theorem may be

verified without any difficulty, which is an analogization of the classical one.”
Proposition 5. When Q% void, if

LeS(g)
for a maximal ideal 3, then exists a number w2, such that
S = @,
and conversely if o€ Q,, exists a maximal ideal X such that

Lean(3.)
(Received Apr. 25, 1961)
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