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On One Method of Solving Stress Problems in
Cylindrical Co-ordinates by Means of Finite
Fourier Hankel Transforms (Part II)

Sumio G. Nomachi*

Abstract

By making use of the formulas prescribed in Part IV, two dimensional stress problems according
to the cylindrical co-ordinates are considered in this paper. After finding out the finite Fourier
Hankel transformations with respect to the two components of the displacement which occur in an
annular disc submitted by tractions on its inner and outer circumferences, the stress distribution in
a solid disc with two equal and opposite forces on both end of a diameter is presented. As a

consequence of it, the variation of normal stress gy along a certain diameter, with arc length where
uniform loads radially act, are numerically computed.

1. Equations including Finite Fourier Hankel
Transforms of « and v )

In this case the stress components ¢, ,, 7.,
are zero and the state of stress is specified by o,,
65 T, only. As it may be assumed these three
components are independent of z, and w,., is equal
to w,-,, then the finite Fourier Hankel transforma-
tions of the components of the displacement « and
v which are derived from the equations of equili-
brium, can easily be written from Egs. (31) and

(34) in Part I, as follows Fig. 1. Co-ordinate system
> considered here

{(—m [ols] )
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and
(Sulledaal - Ry — Sm[mr:a]'R,,} ‘
[ euray 1@~ dr
[Sm[v] __—2£)+z»~0 [u]J
e (2)
+j Cole] - #+z)_d§~2(2 +2) z}dr
+jsm[v]{ ‘f;f f6§>—(2p+z)u27}dr
:j [K,] - Rdr

respectively, where y= Mz _— M, K, K, denote body forces, which are the
@
notaion used in Part I. To make the further evaluations easyer, new notations

A, and B, denoting

Cm [u] = Amr + er, } ( 8 )
Sm ['U] mr - er)

are here introduced. In stead of the direct determination of C,[«] and S,,[v] from
Egs. (1) and (2), the resolution of A,,. and B,, will be carried out.

2. Finite Hankel Transforms of 4,, and B,
Being replaced C,.[«] and S,.[v] by A,.., and B,., (1)+(2) and {1)—(2) yield

R, {c [(6)rzo] + Sw [(m)r:b]} —R, {cm [(6,)r—d]

+Sul(en)-dl) - j R {(—1)’" [(zsalo-s] — [(n.o)o:o]} dr

_j {z(fjf v B) 2L +1>} [(—1 (o))

(b} dr = Aua[ 31043 (LR = B )=+ 1]
_me(,a'h?)(%e——kuf)r:b%—Ama[(Serl)(Cgf if—) S
—(n—2) (u+1)§—:lrza+3ma(ﬂ+2) (—i,ﬁ—ku §>r .
+(3ﬂ+z)j';AW{‘§f ax (u+2)§-}dr
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IdzR ﬁ ' 5 dR R ) -
(y+2)§ B,.. | & rdr +2v (rdr 7‘2>J dr

= ["elk1 + 8.1k Rar,

and

R, [Culle)...]1=S. (7]} = Ra | Callo) -]

- "R o]
o e T (e [ (XS B R

__L f,z( dR__ f) + 2 Afl—v)} {(“U”[(‘Wﬁw]

"\ rdr
_[('U)g:o]jdl‘— mb(y—Fl)(i{f y§> ,

B, [(3 i) (_d& =)t =2 (”_1)5‘1»

dr P
+ Al +2) <d—R— u—R—> 4B, [(3,,5“) <%§,_ %)

dr r
N 4R dR
+(#+4)j A, { e 142

(&R dR

"\drt  rdr

=1 £

r=a

+u(24y) } dr + 3y+z)r8ﬂ
-

2) Rdr,

ﬂwl;g ﬁN’;U

}dr Hc (K] —S.[K]

N et

respectively.
Now by choosing R as

H,,\(&7)=J...(6r) Y. (6a) — Y,..(E) ., (Ga), for Eq. (4)

H,_(¢r)=J,.(6n) Y, (§a) — Y, (67) ] (&), for Eq. (5)
which are reduced from the function

H,(&r)=J.(r) Y, (§a) — Y, (&r) ] (Ea),
where &, is a root of the tronscendental equation
H,(&r)=0,

then by virtue of
f SJ' (&)

Er H){(&) == v H, (&) = l H,,. (&7,
Hi(gb)=H,..(¢b)=— H, (&)
H/ (5 (1) l(gza) - H +1 <£za),

(129)
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we have
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when R—=r H,  (&7)

IR AR v R = e b,
R IR B (R Ry e b e
(3p+1) (375 fz)—(y—l)(u+l)7R—i:(3y+Z)EirHy(Eir)
—(+ 104y H, (&),
R R e Hg,

and when R=r H,_ (&)

dR

P

ad*R
dr®

(3#+2/<dr B+ = o—1 &

*c_zg—'—y(p— )E“:HSZTH (Sir)’
rar r
— AR 12 s azn B e HLE),

dR R

—(Bu+)&r H (7)) + Apv—1) H, ., (&7),

dR

R

AR R e Hier)
:

dr

Eqgs. (4) and (5) therefore yield

b H,oo(66) | Callo )l + Sullee-ol

—a Il (Eh) {c [0,),- + S, [<r,‘ﬁ),:(,]1

— <—1)"°Hy+,[< e )] +H,., [ -
— (=1 -{zH, [<%>9J +2u(v+1)H [ J >

+iH

|

+ 4# (y—’_ 1) Hv+1 (625) mbd T 4# ())+ 1) Hy+1 (Eza) Ama
—Bu+ A& Howi [An ]+ (p+2) &7 H, . [B,.]
= Hy+1 Cm [K7] + H»+1 Sm [K9]7 J

and

o
y[(%)m]jt 2u(v+1)H [( ) }
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—b Heos (60) | Call0o] — Sulledoa))

+aHm§ﬂ%CAde—Sﬁhﬁwﬂ

—(—1"H,,, [( g LJ +H,., R = >0:J
gl o 2]

4 {,2 H, [(%)M] —2p(v—1) H.-, [(%)H}}

+Ap (v—1) H,.. (§5) B,,, — 4p (v—1) H,.. (§,a) B,
—@Bp+4& Ho [B,, ]+ (e+24) 8" H [4,.]
= Hu—l Cm [K7] — Hu*l Sm [K€]7

respectively, iu which H,[f]= jbf- r- H,(&n) dr.

They are the two simultaneous equations that define H,.,[A,,] and H,_; [B,..].

3. Annular Disc, without Body Forces, submitted by
any Tractions at its Boundaries

If there is no dislocation at each point of the elastic medium now considered,
the condition of continuity lead to that » included in v, is a even integer: that is

i
=7 1923 ... .
’J 2 > ’(%’

On the other hand the condition of continuity and the condition of equilibrium
of stress should satisfy

(©)p=y + (V)yo = 0, ]
(21)
(Tro)o=o + (Trads=o=0, f

respectively. The trems including (z,5)i—p, (trsds—or (¥)o=,, and (v),., can therefore be
vanished in Egs. (19) and (20), which accordingly yield

H,..(&0)

Hoaldwl=—7 5 e

{Z#b Cmb + 2 (2ﬂ+)k) Z) T’mb

A (B 1) (E 1) Ay + Ap (et 2) (v—1) B,,;b}

H,..(&a) |
4pCp+a& |

G Ap Bt 2) v+ 1) A+ A (g ) 1) Bm}

2vaC,,+202u+2aT,,

and
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— Hu-PI(Eib) I — i
H,.,[B,..]= A2t )E lZy bCu—202u+00T,,

— A+ 2) (o41) Ay — A (B 2) —1) By

4
J

_ H.ga) |, o .
4#(2/1‘%‘/2)52 l ‘uaCma 2( /j+2>a me

A (g4 ) (o 1) Ay — A (Bt 2) (o—1) BW,}

where
Cmb = Cm [(Ur)r::b]> Cma = Cm [(ar)r:(ﬂ]’
Tmb = SIIL [(Trﬁ)rzb]y Tm(z = Sm [(Trﬂ)r:a]'

4, Stress Distribution in Solid Disc

The application of the inversion theorem of finite Hankel transforms to Egs.
(22) and (23), can give the desired displacements which occur in the annular disc.
This will however, not be attempted here but the stress problems of a solid disc
will be carried on. In this case, as a is zero the simbolic notation J has only to be
taken instead of H in the results so far indicated.

Then Eqgs. (22) and (23) are transformed to

Jo &) |
N Am,- — v+1 1570
Voldnd =g opiaiE \

b A (B2 (1) Ay + dp (n 4 2) (v—1) Bm,,}

25 Cry+ 2 (2u+1) b T

>

— J;+1(Eib) f
B ==L &0 o pC 2 2p+2)b T,

b A (b ) (o 1) Ay + Ap (Bt 2) (—1) Bm,,}

where £, is a root of the transcendental equation
Jv (Ezb> = o>
then at each point of (0,5) at which A,,, and B,,. are continuous

2 s Laler) g 14, (26)

A = 27 )

B,, =" r B, rdr + - % Jelen g 1,1, (27)

in which the first term of B,, is evaluated by the substitution of »** for R in
Eqg. (4), as follows

Y I pc. —p \
rmoES il b Coy = Ty + 2 (v+1) 0 (A, + B

[ B, rdr = |

(28)
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If f(6)=0, we can write

&f 1 df LT s »
Jy Ir-;zzrz- + *7"? "d? v 7":| = Ez Ju [JC]
so let
A S S S
d? rodr r b,

from which we reduce

v+ 2

f” 7 . i
T A+ 1) A1)

Here reverting to the formula

: [5_]_“ b T (ED)
’ bv h 5'& >
we have
1y = Dlstet)
to which applying the relation
: *
A
— ar , f
EZ]v[f]4 Ju*l[dr +yr]’

we find that.

] [ o b J,L.Eh)
T2k (w+1) g

] [r”“ . vt 0 bJ,. . (&b)
H 2p 2(v—1)b""? &

By making use of Eqgs. (28), (36), and (37), A,.. and B,, take the forms:

- o+t [ . -
Am.r — 8# (2#_!_2) (p+ 1) lZ‘Ub Cmb _I_ 2 <2/J+A) b —[mb

(Bt ) (1) Ay + dpr (- 2) (v—1) B,,L,,}

(4,48, 0CutTy)

| 20+ 1)+ f

L w2 o9
NI <p (u+1)> (200 Con —=22p+ 20 T

4 4 2) 0+ 1) Ao — 4t (Bpr+2) (o—1) B |

er — lov——l

dr o \dr r

711

&L= S:fr J, (Ear) dr=5:fr {m—*————d‘]””(&ﬂ +(u+1)——Jy+iﬁ(€ir) } d7‘=5b (%i —y f) rH, (&) dr.

(133)



712 Sumio Nomachi

,
where 0= -~

b .

The displacements u, v and the stress components ¢,, g,, 7., are expressed by A
and B, as !

w= %ju a0 + % % 0330 (A, + B (40)
- % % sin 30 (A, — By, (41)
and
v, = %jz"{(zwz)%_ + 14 ap
+71?}3 cosvﬂ[Z;H—) ( 1) Ar >+(.df7'jw (42)
— (1) B )} { . }J J
"a:‘gl;j; {(2 +AL 4 ,z%%} o
+ L5 cos uﬁ[l {Cff}:— ) Ame )y (D (43)
— =B )+ 2 {%(uﬂ)-—ﬁ;ﬂ(u—nﬂ, J
ro= Y sin vﬁ[églfi (v 1) Arw _ dfz;w
o+ (p—1) Dm0 {f%_(vﬂ) + %(u—l)” _ (44)

On calculating ¢, and z,, by the above formulas, it is seen that A4,, and B,
completely satisfy the boundary conditions, so long as

Amr 7= :Am',
) vo = Aus | |
‘ B,.) vy = B f
The evaluation of the conditions (45) lead to
24
(v4+1) Ay (p42) — (v—1) B,y (gt 2) = g {Cmb+ ug;z Tmz,}

and

(46)

(v+1) Ay B +2) — (v—1) B,y B+ 2)
Bp+2b fC 2;;4—2
(

mb m?)f

As illustrated by the above, the two conditions in (45) yield the same thing, hence

(134)
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one more equation for the determination of A,, and B, has to be built up. For
this purpose, we return back to the equation of equilibrium and check the functions
of A,,, and B,, to fulfill the equations

04 ow
Y T — Py =
2+ 2 —2p 00, (47)
. o4 H 0@ _

where 4 and o denote the dilatation and the angular change in the elastic medium,
that is

A:‘au Zn ov l

ar T e
. ¢ (49)
Q.- 0V LU o J
0 r rof -
Representing 4 and w by A4,,. and B,,., we have
C,[4] = .Tf";[cmb v opl A v b1)— By (u—mq ,
2p+2a | | (50)

Wz

+ Ay o+1) + B, @-1)} ,
Then, Eqs. (47) and (48) yield the same result as

At (v—1) By = (Ciy— Tous). (51)

Next inserting the above in Eq. (46), we obtain

Amb (V + 1) - %{:—Tﬁ—; (Cmb + ’Z‘;m,) . (52>

Thus it follows that
_ bBu+i v C 53
Amr - 4# (‘U’{"/U <D+ 1) ( md + Tmb) y ( )

B — bpu~1 ]( Cmb+ ngk + Cmb_ Yme]
A A B | v—1

(54)

B PO ol Vo ]
4# lp v y+1 I( uzb+ mb)'

5. The case when the Discis
subjected by two equal

and opposite uniformly
distributed Loads

The lack of the shearing traction along Fig. 2. Disc with two equal

. . P 1 Ty f rces
its circumference, lead to 7T,,=0 and opposity lorces

(135)
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Hence, .the displacements and the stress components may be, under the consideration

>

C,p=— qJ“ cos vl df = 2g SYE
e " y

written as

o My s b
Tt A + Z cos vl . Au(pr ) v+ 1 551
B
2u(V*—1) 4p v+1/§7
v = +—Zzb > sin vl smpua {4#3&122) P”“——Z'lz yzil ot
1 1 o
2 2 i -2
S Zoc - Trq_z cos o - sn;ua [ZPV_;_{(DJFZ) 0y 07 H . BT
0'6:“@—2—;‘2 COSU&M{(Uﬁ—Z)p”-—y[O”‘Z}, <58)
T P v
TTO:_ZJZ sinyg. Syl L [(p+2) e (59)
z 5 v 21 §
In case of two equal and opposite loads acting concentratedly, we let
__r —
1= 55 @0
so we have
. Ir £ [ Sp+2 o
U= 2(#+2)ﬂb+ - ‘?‘COS”0[4/J(#+,2)IO 0
1 v y—1 l v+1 y—1 ]
R/ S v+l l
2p Vv—1 P 4p <p ofr )>j ’
P . ( 3pu+i 1 v -
R J_OPTA  geer L y-1
v b Z s vﬁl p(p+2) 2p v—1 o (61)
L /g go ]
___i_P ](y_lJ u___u«z]
g, — n‘b -T[—b‘zy: COs L'ﬁ lp ‘2—<IO lO )j N (62)
Gy =— {ig— 7@-2 cos vl {(u+2) p”—upwz} , (63)
Tpp = L >, sin vf P’*L{(v+2) P’mvp”‘z\ . (64)
b 5 2 J

Here, by the aid of the following formulas

(136)
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0* (cos 26— %)

; freos b = 1—20% cos 20+ 0" ° (65)
. 0% sin 26
v _ 66
Zy: frsing 1—20° cos 20+ 0* > (66)
43 ﬂ)—cos v =— log (1 —20° cos 260+ £), (67)
v Y
0. _ 0° sin 26
2 = v el 68
; o # = tan 1—90css26 (68)
, 20% (cos 20— 20° + p* cos 26)
. A 69
2, vl cos vf (1—20cos 20+ 0°F > (69)
. 40° 81n 26 (1—0)
’ A — 70
Lot = o oo (70)
v=2,4, 6, ,

we can write the prescribed displacements and stress components in simpler forms,
for instance we will obtain the expression of ¢, in this way.
A pair of balancing concentrated loads yields

P 2P { (°~1)(cos 260—20°+ 0" cos 20)

YT wb | (120" cos 20+ 0 (71)
N ©* (cos 20— ©7) |
1—20%cos 20+ 0% §°
from which we have
P
Tplo—o = b
(72)

s =5 (=) = (e

We can find the above formulas just the same as the results acquired by the
other methods of caculation®.
Under the distributed loads as shown in Fig. 2 it follows from Eq. (58) that

” __ P 14 (e*—1) sin 2 (a +6)
' zb 20 | 1—20%cos 2 (a-+6)+ 0"
sin 2 (a—#@) 1 T p'sin2(f+a) 73
+ 1—20%cos 2 (a—0) + 0" § + 20 \ltan 1—p*cos2(0 +a) 73)
-1 2 5
o'sin 2 (0—a) ]}
AN g s 2 f—a) | |
where P==2agb,
which, when #=0, yield
__ Py (P*—1) sin 2 - OsinZa ) v
Talo=o = b [1+a(1—2p2 cos 2a+ %) + tan 1—0f°cos2a § ° (74)
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As for the normal stress o, along a diameter which is corresponding to the
line of action belonging to the two equal and opposite forces, when these forces
concentratedly act, it has been well known fact that the normal stress along the
diameter is in a state of uniform tension as given by Eq. (72).

Adding to it, with the aid of Eq. (74) the variation of o, along the diameter
with 2a which is arc angle of load distribution, is shown in Table 1 and Fig. 3.

Table 1.
Variation of g0 along 0=0, with 2«
r/b 2a=0 2a=30° 20 =45° 2a=90° 20=135° 20 =180°
1.0 1.0000 — 2.3095 — 2.1780 — 1.78564 — 1.3925 — 1.0000
0.8 1.0000 0.6336 — 0.4064 — 1.2720 — 1.2662 — 1.0000
0.6 1.0000 1.1590 0.5260 — 0.5939 — 1.0830 — 1.0000
0.4 1.0000 1.0533 0.7652 — 0.1162 — 0.9000 — 1.0000
0.2 1.0000 0.9459 0.7999 0.1804 — 0.75564 — 1.0000
0.0 1.0000 0.9099 0.8005 0.2732 — 0.7000 — 1.0000
Postscript r
1.0b
The determination of the stress N | 2e=0
distribution in an annular disc leaves ' NG
half finished in this paper, the author 0.66 VN S
thinks, the completion of it will be \ \\
presented on another chance. ;azlgo-/—\ N \ /
(Received May 1, 1961) 0.2b — _,,\ \ \T—'Za=45‘;
2a==135°
0.0 — | | -
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Fig. 3. Variation of ¢y along =0 with «



