

各節点の所要動水圧が与えられた管網の流量計算法

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-06-04
	キーワード (Ja):
	キーワード (En):
	作成者: 森田, 健造
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3269

各節点の所要動水圧が与えられた 管網の流量計算法

森 田 健 造

A Method of Determining the Quantity of Flow of Pipe Networks When Dynamic Water Pressure Needed at Each Nodal Point Is Given

Kenzo Morita

Abstract

In order to determine the quantity of flow of pipe networks, a method has heretofore been employed by which the quantity of flow of each pipe-line is measured with regard to such factors as the inner diameter, the distance and the veloity coefficient of the each of the pipe-lines forming the pipe networks.

In this paper the writer presents a conditional equation at each nodal point in consideration of the dynamic water pressure needed at each nodal point as well as the distance and the veloituy coefficient of each pipe-line. He introduces, through the method of least squares, a formula from which the correlate normal equation of the pipe networks and the corrected value of the diameter of each pipe-line are to be found, explains how to make these formula and equation exactly and mechanically, referring to the pipe networks, and provides some examples of measurement by this method.

1. 序 論

管網の流量計算法としては Hardy Cross 法およびその改良法を始め種々の方法が発表され、筆者も先にこれについての方法を発表した¹⁾。 しかし従来発表された方法は主として管網を構成する各管路の内径, 延長および流速係数を与えて各管路の流量を求める方法であるため、内径の決定が適切でない場合は、節点のなかには所要の動水圧を得られないもののできることもある。

本文は、各節点の動水圧面の標高および管路の延長と流速係数を与えて各節点の条件方程式を作り、最小二乗法を用いて管網全体をまとめたコリレート正規方程式と各管路の内径の補正値を求める式を導き、これより各管路の等値管径を求める方法を述べたものである²⁾。この方法は三角網の角度調整法を管網の流量計算法に拡張応用したものであるが、三角網では各測点のすべての角はあらかじめ測定され既知であるから、その調整計算は1回で終るのに対し、この場合は実測角に相当する流量、換言すれば流量計算の基礎になる管径が未知であるから最

初にその値を仮定しなければならない関係上、節点条件が許容精度に達するまで繰返し計算を 行なう必要がある。

2. 本法の理論

平均流速公式として Hazen-Williams 公式を用いると管路の流量を求める式は一般に

$$q = 0.27853 CI^{0.54} D^{2.63} \tag{1}$$

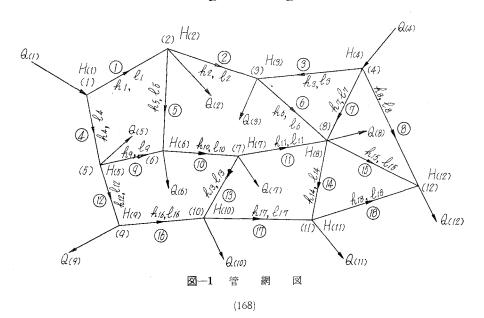
で表わされ、(1) 式で q: 管路の流量 $(m^3/\text{sec.})$,D: 管の内径 (m),C: 流速係数, $I=\frac{h}{l}$: 動水勾配で h は動水圧面の標高差 (m), たとえば 図-1 で節点 (1) と (2) の動水圧面の標高をそれぞれ $H_{(1)}$ および $H_{(2)}$ とすると $h_1=H_{(1)}-H_{(2)}$,l: 管長 (m),いま,D を mm で表わすように(1)式を変形すると,

$$q = 35.882 \times 10^{-10} \, CI^{0.54} \, D^{2.63} \tag{2}$$

となり、さらに q を l/sec. とし鋳鉄管に一般に用いられる C=100 とすると、

$$q = 35.882 \times 10^{-5} I^{0.54} D^{2.63}$$
 (3)

[3]式で既知数 $35.882 \times 10^{-5} I^{0.54} = \alpha$, D の指数を n とおくと,


$$q = \alpha D^n \tag{3'}$$

ここで管径の変化すなわち補正値を δ とすると $(D+\delta)$ に対する流量 Q は (3') 式から

$$Q = \alpha (D+\delta)^n = \alpha \left\{ D^n + nD^{n-1} \, \delta + \frac{n(n-1)}{2!} \, D^{n-2} \, \delta^2 + \cdots \right\} \tag{4}$$

[4]式で括孤内の第3項以下を小さい値として省略すると,

$$Q \doteq \alpha D^n + n\alpha D^{n-1} \delta = q + n \frac{\alpha D^n}{D} \delta = q + n \frac{q}{D} \delta \tag{4'}$$

表—1 コ リ レ ー ト 正 規 方 程 式 (図-1に関するもの)

種				左	y		v		辺ト				右 辺	摘 要
別	K ₍₁₎	K ₍₂₎	K ₍₃₎	K ₍₄₎	K ₍₅₎	K ₍₆₎	K ₍₇₎	K ₍₈₎	K ₍₉₎	K ₍₁₀₎	K(11)	K ₍₁₂₎	$\frac{w(j)}{n^2}$	摘 要
(1)	$\frac{q_1}{D_1} + \frac{q_4}{D_4}$	$-\frac{q_1}{D_1}$			$-\frac{q_4}{D_4}$								$\frac{w_{(1)}}{n^2}$	$w_{(1)} = Q_{(1)} - q_1 - q_4$
(2)	$-\frac{q_1}{D_1}$	$\frac{q_1}{D_1} + \frac{q_2}{D_2} + \frac{q_5}{D_5}$	$-\frac{q_2}{D_2}$			$-\frac{q_5}{D_5}$							$\frac{w_{(2)}}{n^2}$	$w_{(2)} = q_1 - q_2 - q_5 - Q_{(2)}$
(3)		$-rac{q_2}{D_2}$	$\frac{q_2}{D_2} + \frac{q_3}{D_3} + \frac{q_6}{D_6}$	$-\frac{q_3}{D_3}$				$-\frac{q_6}{D_6}$					$\frac{w_{(3)}}{n^2}$	$w_{(3)} = q_2 + q_3 - q_6 - Q_{(3)}$
(4)			$-\frac{q_3}{D_3}$	$\frac{q_3}{D_3} + \frac{q_7}{D_7} + \frac{q_8}{D_8}$				$-rac{q_7}{D_7}$				$-\frac{q_8}{D_8}$	$\frac{-\frac{v_{(4)}}{n^2}}{n^2}$	$w_{(4)} = Q_{(4)} - q_3 - q_7 - q_8$
(5)	$-\frac{q_4}{D_4}$				$\frac{q_4}{D_4} + \frac{q_9}{D_9} + \frac{q_{12}}{D_{12}}$	$-\frac{q_9}{D_9}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$-rac{q_{12}}{D_{12}}$			·	$\frac{v_{(5)}}{n^2}$	$w_{(5)} = q_4 - q_9 - q_{12} - Q_{(5)}$
(6)		$-rac{q_5}{D_5}$			$-\frac{q_9}{D_9}$	$\frac{q_5}{D_5} + \frac{q_9}{D_9} + \frac{q_{10}}{D_{10}}$	$-rac{q_{10}}{D_{10}}$	mayor and					$\frac{w_{(6)}}{n^2}$	$w_{(6)} = q_5 + q_9 - q_{10} - Q_{(6)}$
(7)						$-rac{q_{10}}{D_{10}}$	$\frac{q_{10}}{D_{10}} + \frac{q_{11}}{D_{11}} + \frac{q_{13}}{D_{13}}$	$-\frac{q_{11}}{D_{11}}$		$-\frac{q_{13}}{D_{13}}$			$\frac{w_{(7)}}{n^2}$	$w_{(7)} = q_{10} - q_{11} - q_{13} - Q_{(7)}$
(8)			$-rac{q_6}{D_6}$	$-rac{q_7}{D_7}$			$-\frac{q_{11}}{D_{11}}$	$\begin{vmatrix} \frac{q_6}{D_6} + \frac{q_7}{D_7} + \frac{q_{11}}{D_{11}} \\ + \frac{q_{14}}{D_{14}} + \frac{q_{15}}{D_{15}} \end{vmatrix}$			$-rac{q_{14}}{D_{14}}$	$-rac{q_{15}}{D_{15}}$	$\frac{w_{(8)}}{n^2}$	$vv_{(8)} = q_6 + q_7 + q_{11} - q_{14} - q_{15} - Q_{(8)}$
(9)					$-rac{q_{12}}{D_{12}}$				$\frac{q_{12}}{D_{12}} + \frac{q_{16}}{D_{16}}$	$-rac{q_{16}}{D_{16}}$			$\frac{w_{(9)}}{n^2}$	$w_{(9)} = q_{12} - q_{16} - Q_{(9)}$
(10)							$-rac{q_{13}}{D_{13}}$		$-\frac{q_{16}}{D_{16}}$	$\frac{q_{13}}{D_{13}} + \frac{q_{16}}{D_{16}} + \frac{q_{17}}{D_{17}}$	$-\frac{q_{17}}{D_{17}}$		$-\frac{w_{(10)}}{n^2}$	$w_{(10)} = q_{13} + q_{16} - q_{17} - Q_{(10)}$
(11)								$-rac{q_{14}}{D_{14}}$		$-rac{q_{17}}{D_{17}}$	$\left \frac{q_{14}}{D_{14}} + \frac{q_{17}}{D_{17}} + \frac{q_{18}}{D_{18}} \right $	$-rac{q_{18}}{D_{18}}$	$\frac{w_{(11)}}{n^2}$	$w_{(11)} = q_{14} + q_{17} - q_{18} - Q_{(11)}$
(12)				$-\frac{q_8}{D_8}$			1	$-rac{q_{15}}{D_{15}}$			$-\frac{q_{18}}{D_{18}}$	$\frac{q_8}{D_8} + \frac{q_{15}}{D_{15}} + \frac{q_{18}}{D_{18}}$	$\frac{w_{(12)}}{n^2}$	$w_{(12)} = q_8 + q_{15} + q_{18} - Q_{(12)}$

いま 図-1 のような管網において $Q_{(i)}$ を各節点における既知の流入量はまた流出量, Q_i を各管路の流量とすると節点の条件方程式は次ぎのようになる。

節点 (1)
$$Q_1 + Q_4 = Q_{(1)}$$
 より $\left(q_1 + n - \frac{q_1}{D_1} - \delta_1\right) + \left(q_4 + n - \frac{q_4}{D_4} - \delta_4\right) = Q_{(1)}$ $\therefore n\left(-\frac{q_1}{D_1} - \delta_1 + -\frac{q_4}{D_4} - \delta_4\right) = Q_{(1)} - q_1 - q_4 = w_{(1)}$

ここで w(1) は節点(1)の流入出量の代数和

節点(2)
$$Q_2+Q_5+Q_{(2)}=Q_1$$
 より

$$\left(q_2 + n \frac{q_2}{D_2} \delta_2 \right) + \left(q_5 + n \frac{q_5}{D_5} \delta_5 \right) + Q_{(2)} = q_1 + n \frac{q_1}{D_1} \delta_1$$

$$\therefore \quad n \left(\frac{q_2}{D_1} \delta_2 + \frac{q_5}{D_1} \delta_5 - \frac{q_1}{D_1} \delta_1 \right) = q_1 - q_2 - q_5 - Q_{(2)} = w_{(2)}$$

以下同様の方法で

$$(3) \quad n\left(-\frac{q_6}{D_6}\delta_6 - \frac{q_2}{D_2}\delta_2 - \frac{q_3}{D_3}\delta_3\right) = q_2 + q_3 - q_6 - Q_{(3)} = w_{(3)}$$

$$(4) \quad n \left(\begin{array}{cc} q_3 \\ D_3 \end{array} \hat{o}_3 + \begin{array}{cc} q_7 \\ D_7 \end{array} \hat{o}_7 + \begin{array}{cc} q_8 \\ D_8 \end{array} \hat{o}_8 \right) = Q_{(4)} - q_3 - q_7 - q_8 = w_{(4)}$$

$$(5) \quad n \bigg(- \frac{q_4}{D_4} \, \delta_4 + \frac{q_9}{D_9} \, \delta_9 + \frac{q_{12}}{D_{12}} \, \delta_{12} \bigg) = q_4 - q_9 - q_{12} - Q_{(5)} = w_{(5)}$$

$$(\,6\,)\quad n\Big(\frac{q_{10}}{D_{10}}\delta_{10}-\frac{q_{5}}{D_{5}}\delta_{5}-\frac{q_{9}}{D_{9}}\delta_{9}\Big)=q_{5}+q_{9}-q_{10}-Q_{(6)}=w_{(6)}$$

$$(7) \quad n\left(\frac{q_{11}}{D_{11}}\delta_{11} + \frac{q_{13}}{D_{13}}\delta_{13} - \frac{q_{10}}{D_{10}}\delta_{10}\right) = q_{10} - q_{11} - q_{13} - Q_{(7)} = w_{(7)}$$

$$(8) \quad n \left(\frac{g_{14}}{D_{14}} \delta_{14} + \frac{g_{15}}{D_{15}} \delta_{15} - \frac{q_6}{D_6} \delta_6 - \frac{q_7}{D_7} \delta_7 - \frac{q_{11}}{D_{11}} \delta_{11} \right)$$

$$= q_6 + q_7 + q_{11} - q_{14} - q_{15} - Q_{(8)} = w_{(8)}$$

$$(9) \quad n \left(\frac{q_{16}}{D_{16}} \delta_{16} - \frac{q_{12}}{D_{12}} \delta_{12} \right) = q_{12} - q_{16} - Q_{(9)} = w_{(9)}$$

$$(10) \quad n \left(-\frac{q_{17}}{D_{17}} \, \delta_{17} - \frac{q_{13}}{D_{13}} \, \delta_{13} - \frac{q_{16}}{D_{16}} \, \delta_{16} \right) = q_{13} + q_{16} - q_{17} - Q_{(10)} = w_{(10)}$$

$$(11) \quad n \left(\frac{q_{18}}{D_{18}} \, \delta_{18} - \frac{q_{14}}{D_{14}} \, \delta_{14} - \frac{q_{17}}{D_{17}} \, \delta_{17} \right) = q_{14} + q_{17} - q_{18} - Q_{(11)} = w_{(11)}$$

$$(12) \quad n \left(-\frac{q_8}{D_8} \delta_8 - \frac{q_{15}}{D_{15}} \delta_{15} - \frac{q_{18}}{D_{18}} \delta_{18} \right) = q_8 + q_{15} + q_{18} - Q_{(2)} = w_{(12)} + q_{15} + q_{$$

各管路はそれぞれ p_1 , p_2 , …… p_{18} の重みを有するものとし、また [5] の各節点条件式に対するコリレートをそれぞれ $K_{(1)}$, $K_{(2)}$, …… $K_{(12)}$ とし、最小二乗法の原理により、

(5)

$$\begin{split} W &= [p\delta^2] - 2K_{(1)} \left\{ n \left(\frac{q_1}{D_1} \delta_1 + \frac{q_4}{D_4} \delta_4 \right) - w_{(1)} \right\} - 2K_{(2)} \left\{ n \left(\frac{q_2}{D_2} \delta_2 + \frac{q_5}{D_5} \delta_5 - \frac{q_1}{D_1} \delta_1 \right) - w_{(2)} \right\} - \dots \\ &- 2K_{(12)} \left\{ - \frac{q_8}{D_8} \delta_8 - \frac{q_{15}}{D_{15}} \delta_{15} - \frac{q_{18}}{D_{18}} \delta_{18} \right) - w_{(12)} \right\} \end{split}$$

を最小とするために $\frac{\partial W}{\partial \delta} = 0$ を求めると

$$\begin{split} &\delta_{1} = \frac{n}{p_{1}} \frac{q_{1}}{D_{1}} (K_{(1)} - K_{(2)}), \qquad \delta_{2} = \frac{n}{p_{2}} \frac{q_{2}}{D_{2}} (K_{(2)} - K_{(3)}), \\ &\delta_{3} = \frac{n}{p_{3}} \frac{q_{3}}{D_{3}} (K_{(4)} - K_{(3)}), \qquad \delta_{4} = \frac{n}{p_{4}} \frac{q_{4}}{D_{4}} (K_{(1)} - K_{(5)}), \\ &\delta_{5} = \frac{n}{p_{5}} \frac{q_{5}}{D_{5}} (K_{(2)} - K_{(6)}), \qquad \delta_{6} = \frac{n}{p_{6}} \frac{q_{6}}{D_{6}} (K_{(3)} - K_{(8)}), \\ &\delta_{7} = \frac{n}{p_{7}} \frac{q_{7}}{D_{7}} (K_{(4)} - K_{(8)}), \qquad \delta_{8} = \frac{n}{p_{8}} \frac{q_{8}}{D_{8}} - (K_{(4)} - K_{(12)}), \\ &\delta_{9} = \frac{n}{p_{9}} \frac{q_{9}}{D_{9}} (K_{(5)} - K_{(6)}), \qquad \delta_{10} = \frac{n}{p_{10}} \frac{q_{10}}{D_{10}} (K_{(6)} - K_{(7)}), \\ &\delta_{11} = \frac{n}{p_{11}} \frac{q_{11}}{D_{11}} (K_{(7)} - K_{(8)}), \qquad \delta_{12} = \frac{n}{p_{12}} \frac{q_{12}}{D_{12}} (K_{(5)} - K_{(9)}), \\ &\delta_{13} = \frac{n}{p_{13}} \frac{q_{13}}{D_{13}} (K_{(7)} - K_{(10)}), \qquad \delta_{14} = \frac{n}{p_{14}} \frac{q_{14}}{D_{14}} (K_{(8)} - K_{(11)}), \\ &\delta_{15} = \frac{n}{p_{15}} \frac{q_{15}}{D_{15}} (K_{(8)} - K_{(12)}), \qquad \delta_{16} = \frac{n}{p_{16}} \frac{q_{16}}{D_{16}} (K_{(9)} - K_{(10)}), \\ &\delta_{17} = \frac{n}{p_{17}} \frac{q_{17}}{D_{17}} (K_{(10)} - K_{(11)}), \qquad \delta_{18} = \frac{n}{p_{18}} \frac{q_{18}}{D_{18}} (K_{(11)} - K_{(12)}), \end{split}$$

〔6〕式に管路の重みとして $p_i = \frac{q_i}{D_i}$ を用いると

$$\begin{array}{llll} & \tilde{\sigma}_{1} = n(K_{(1)} - K_{(2)}), & \tilde{\sigma}_{2} = n(K_{(2)} - K_{(3)}), & \tilde{\sigma}_{3} = n(K_{(4)} - K_{(3)}), \\ & \tilde{\sigma}_{4} = n(K_{(1)} - K_{(5)}), & \tilde{\sigma}_{5} = n(K_{(2)} - K_{(6)}), & \tilde{\sigma}_{6} = n(K_{(3)} - K_{(8)}), \\ & \tilde{\sigma}_{7} = n(K_{(4)} - K_{(8)}), & \tilde{\sigma}_{8} = n(K_{(4)} - K_{(12)}), & \tilde{\sigma}_{9} = n(K_{(5)} - K_{(6)}), \\ & \tilde{\sigma}_{10} = n(K_{(6)} - K_{(7)}), & \tilde{\sigma}_{11} = n(K_{(7)} - K_{(8)}), & \tilde{\sigma}_{12} = n(K_{(5)} - K_{(9)}), \\ & \tilde{\sigma}_{13} = n(K_{(7)} - K_{(10)}), & \tilde{\sigma}_{14} = n(K_{(8)} - K_{(11)}), & \tilde{\sigma}_{15} = n(K_{(8)} - K_{(12)}), \\ & \tilde{\sigma}_{16} = n(K_{(9)} - K_{(10)}), & \tilde{\sigma}_{17} = n(K_{(10)} - K_{(11)}), & \tilde{\sigma}_{18} = n(K_{(11)} - K_{(12)}), \end{array}$$

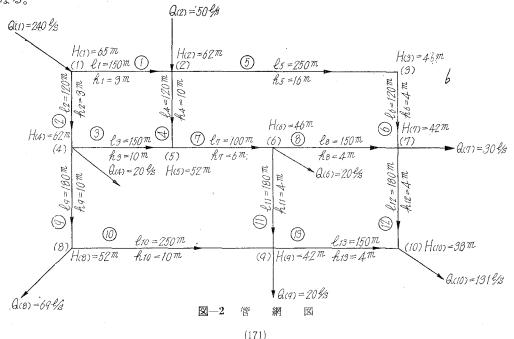
[6]式を条件方程式[5]に代入すればコリレート正規方程式が求められ、この式のコリレートの係数を抜き出して配列すると表-1のようになる。

3. 理論式の機械的作製法

表-1 のコリレート正規方程式および管径の補正値を求める式[6]は上記のように一定の計算手続きで誘導したものであるが、これらの式を検討するとそれぞれ一定の規則正しい性質を有するから、それを利用すれば式の作製は図上を参照しながら機械的に正確に行なうことができる。すなわち、

(1)、コリレート正規方程式は各節点に1 箇ずつ成立し、これらの各式にはその節点のコリレートと、その節点に連絡する管路の他の節点のコリレートが存在し、前者のコリレートに対する係数はその節点に集まる管路の $-\frac{q}{D}$ の和(ただし正号)で方程式全体として左肩からの対角線係数になり、後者のコリレートの係数はその節点に連絡する管路の $\frac{q}{D}$ (ただし負号)で対角線係数を軸にして対称に配列される。なお右辺の $w_{(j)}$ は各節点の流入出量の代数和で表わされる。

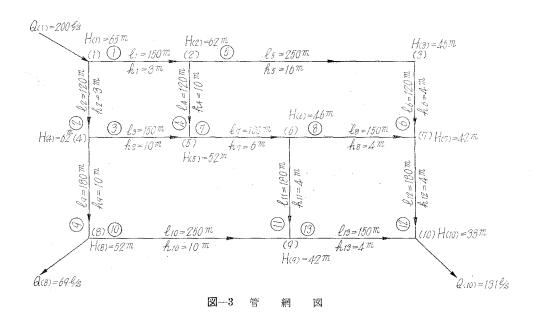
(2), 管径の補正値 δ を求める一般式は


$$\delta = n \Big[$$
 求める管路の $\Big\{ ($ 動水圧面の高い節点コリレート $) - ($ 動水圧面の低い節点コリレート $) \Big\} \Big]$

例

すなわちこの方法によると管網図を参照するだけで、以上の理論式は簡単に機械的に作製され且つ式の照査も極めて容易である。

4. 計 算 その1.


図-2の管網図に対し上記の機械的作製法を用いると、管径の補正値 δ を求める式[7]およびコリレート正規方程式表-2が得られ、これらを用いての計算の経過を示すと表-3のようになる。

$$\begin{array}{lll} \delta_{1} = n(K_{(1)} - K_{(2)}), & \delta_{2} = n(K_{(1)} - K_{(4)}), \\ \delta_{3} = n(K_{(4)} - K_{(5)}), & \delta_{4} = n(K_{(2)} - K_{(5)}), \\ \delta_{5} = n(K_{(2)} - K_{(3)}), & \delta_{6} = n(K_{(3)} - K_{(7)}), \\ \delta_{7} = n(K_{(5)} - K_{(6)}), & \delta_{8} = n(K_{(6)} - K_{(7)}), \\ \delta_{9} = n(K_{(4)} - K_{(8)}), & \delta_{10} = n(K_{(8)} - K_{(9)}), \\ \delta_{11} = n(K_{(6)} - K_{(9)}), & \delta_{12} = n(K_{(7)} - K_{(10)}), \\ \delta_{13} = n(K_{(9)} - K_{(10)}), & \end{array}$$

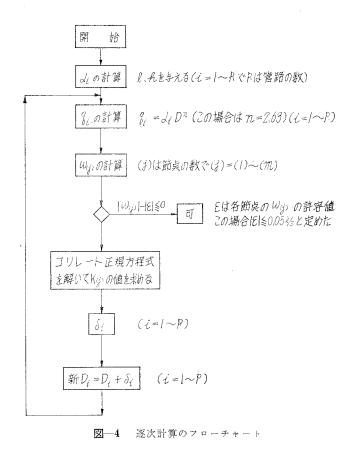
その2.

図-3 に対する管径の補正値を求める式は前例その1の(7) 式と同じく、コリレート正規方程式は表-4 で示される。 本例は北海道大学計算センター所属の電子計算機 HIPAC 103 を利用し図-4 のフローチャートに従って作製したプログラムによって計算し、その結果を表-5 に示した。

(172)

表-2 コ リ レ ー ト 正 規 方 程 式 (図-2に関するもの)

種	-		3	左	1	/	辺	I s			右 辺	
別	K ₍₁₎	$K_{(2)}$	K ₍₃₎	K ₍₄₎	$K_{(5)}$	K ₍₆₎	K(7)	$K_{(8)}$	K ₍₉₎	K ₍₁₀₎	$\frac{w_{(j)}}{n^2}$	摘 要
(1)	$\frac{q_1}{D_1} + \frac{q_2}{D_2}$	$-\frac{q_1}{D_1}$	i	$-\frac{q_2}{D_2}$							$\frac{w_{(1)}}{n^2}$	$w_{(1)} = 240 - q_1 - q_2$
(2)	$-rac{q_1}{D_1}$	$\left \frac{q_1}{D_1} + \frac{q_4}{D_4} + \frac{q_5}{D_5} \right $	$-\frac{q_5}{D_5}$		$-rac{q_4}{D_4}$						$\frac{w_{(2)}}{n^2}$	$w_{(2)} = q_1 + 50 - q_4 - q_5$
(3)		$-rac{q_5}{D_5}$	$\frac{q_5}{D_5} + \frac{q_6}{D_6}$				$-rac{q_6}{D_6}$				$\frac{w_{(3)}}{n^2}$	$w_{(3)}=q_5-q_6$
(4)	$-rac{q_2}{D_2}$			$\frac{q_2}{D_2} + \frac{q_3}{D_3} + \frac{q_4}{D_4}$	$-rac{q_3}{D_3}$,	$-rac{q_9}{D_9}$	-		$\frac{w_{(4)}}{n^2}$	$v_{(4)} = q_2 - q_3 - q_9 - 20$
(5)		$-\frac{q_4}{D_4}$		$-rac{q_3}{D_3}$	$\frac{q_3}{D_3} + \frac{q_4}{D_4} + \frac{q_7}{D_7}$	$-rac{q_7}{D_7}$					$\frac{w_{(5)}}{n^2}$	$w_{(5)} = q_3 + q_4 - q_7$
(6)					$-\frac{q_7}{D_7}$	$\frac{q_7}{D_7} + \frac{q_8}{D_8} + \frac{q_{11}}{D_{11}}$	$-rac{q_8}{D_8}$		$-\frac{q_{11}}{D_{11}}$		$\frac{w_{(6)}}{n^2}$	$v_{(6)} = q_7 - q_8 - q_{11} - 20$
(7)			$-\frac{q_6}{D_6}$			$-\frac{q_8}{D_8}$	$\frac{q_6}{D_6} + \frac{q_8}{D_8} + \frac{q_{12}}{D_{12}}$			$-rac{q_{12}}{D_{12}}$	$\frac{w_{(7)}}{n^2}$	$w_{(7)} = q_6 + q_8 - q_{12} - 30$
(8)				$-rac{q_9}{D_9}$				$\frac{q_9}{D_9} + \frac{q_{10}}{D_{10}}$	$-\frac{q_{10}}{D_{10}}$		$\frac{\tau v_{(8)}}{n^2}$	$\tau v_{(8)} = q_9 - q_{10} - 69$
(9)						$-\frac{q_{11}}{D_{11}}$		$-rac{q_{10}}{D_{11}}$	$\left rac{q_{10}}{D_{10}} + rac{q_{11}}{D_{11}} + rac{q_{13}}{D_{13}} \right $	$-\frac{q_{13}}{D_{14}}$	$\frac{\tau v_{(9)}}{n^2}$	$\tau v_{(9)} = q_{10} + q_{11} - q_{13} - 20$
(10)							$-rac{q_{12}}{D_{12}}$		$-\frac{q_{13}}{D_{13}}$	$\frac{q_{12}}{D_{12}} + \frac{q_{13}}{D_{13}}$	$\frac{w_{(10)}}{n^2}$	$\tau v_{(10)} = q_{12} + q_{13} - 131$


表-3 (図-2 お よ び 表-2 に 関 す る も の)

種	類		既	知	数		仮	定		值			第	1 次	修	正		第 1	次修正の	結 果
節点	管路	l	h	$\left(\frac{h}{l}\right)^{0.54}$	α	D_0		$q_0 = \alpha D_0^{2.63}$	$\frac{q_0}{D_0}$	K	δ_0	$D_1 = D_0 + \delta_0$	$D_{1}^{2.63}$	$q_1 = \alpha D_1^{2.63}$	$\frac{q_1}{D_1}$	K	δ_1	$D_2 = D_1 + \delta_1$	$D_2^{2.63}$	$q_2 = \alpha D_2^{2.63}$
(1)	$\left \begin{array}{c}1\\2\end{array}\right $	150 120	3 3	0.12094 0.13642	(×10 ⁻⁵) 4.33943 4.89513	255 285	×10 ⁵ 21,34300 28,59180	92.62 139.90	0.36 0.49	$K_1 = +1.61$	$-2.13 \\ +7.36$	252.87 292.36	$\times 10$ 20.86280 30.57548	90.533 149.671	0.358 0.512	$K_1 = -0.34$	$-0.39 \\ +0.18$	252.48 292.54	$\begin{array}{r} \times 10^{5} \\ 20.79010 \\ 30.62440 \end{array}$	90.217 149.912
						w ₍	$_{1)} = +7.48$	$\frac{\tau v_{(1)}}{n^2} = -$	+1.081	$\Sigma \frac{q}{D}$	=0.85	$w_{(1)} = -$	-0.204	$\frac{w_{(1)}}{n^2} = -0.$	029	$\Sigma \frac{q}{D}$	= 0.870		$w_{(1)} = -0.12$	9
(2)	1 4 5	150 120 250	3 10 16	0.12094 0.26136 0.22663	4.33943 9.37798 8.13194	255 175 170	21.34300 7.92848 7.34650	92.62 74.35 59.74	0.36 0.42 0.35	$K_2 = +2.42$	-2.13 +5.55 +0.37	252.87 180.55 170.37	20,86280 8,60700 7,38860	90.533 80.716 60.084	0.358 0.447 0.353	$K_2 = -0.19$	$ \begin{array}{r r} -0.39 \\ -0.26 \\ -0.32 \end{array} $	252.48 180.29 170.05	20.79010 8.57443 7.35219	90.217 80.411 59.788
						τυ(;	$_{2)} = +8.53$	$\frac{\tau v_{(2)}}{n^2} = -$	+1.233	$\Sigma \frac{q}{D}$	=1.13	$w_{(2)} = -$	-0.267	$\frac{v_{(2)}}{n^2} = -0$.039	$\Sigma \frac{q}{D}$	= 1.158		$w_{(2)} = +0.018$	
(3)	5 6	250 120	16 4	0.22663 0.15935	8.13194 5.71780	170 190	7.34650 9.84288	59.74 56.28	0.35 0.30	$K_3 = +2.28$	$^{+0.37}_{+4.87}$	170.37 194.87	7.38860 10.52030	60.084 60.153	0.353 0.309	$K_3 = -0.07$	$-0.32 \\ +0.11$	170.05 194.98	7.35219 10.53600	59.788 59.940
						$w_{()}$	$_{3)} = +3.46$	$\frac{w_{(3)}}{n^2} = -$	+0.500	$\Sigma \frac{q}{D}$	=0.65	$w_{(3)} = -$	-0.069	$\frac{\tau v_{(3)}}{n^2} = -0.$.010	$\Sigma \frac{q}{D}$	= 0.662		$w_{(3)} = -0.15$	2
(4)	2 3 9	120 150 180	3 10 10	0.13642 0.23170 0.20997	4.89513 8.31379 7.53411	285 145 200	28.59180 4.83500 11.26430	139.90 40.20 84.87	0.49 0.28 0.42	$K_4 = -1.19$	$^{+7.36}_{-3.95}_{+6.39}$	292.36 141.05 206.39	30.57548 4.49626 12.23580	149.671 37.381 92.186	0.512 0.265 0.452	$K_4 = -0.41$	+0.18 -0.84 $+0.82$	292.54 140.21 207.21	30.62440 4.42618 12.36400	149.912 36.998 93.152
						w ₍	$_{4)} = -5.17$	$\frac{w_{(4)}}{n^2} = -0.747$		$\Sigma \frac{q}{D}$	$\sum \frac{q}{D} = 1.19 \qquad w($		+0.104	$\frac{w_{(4)}}{n^2} = +0.015$		$\sum \frac{q}{D} = 1.229$		$\tau v_{(4)} = -0.238$		8
(5)	3 4 7	150 120 100	10 10 6	0.23170 0.26136 0.21888	8.31379 9.37798 7.35378	145 175 230	4.83500 7.92848 16.26840	40.20 74.35 119.63	0.28 0.42 0.52	$K_5 = +0.31$	$-3.95 \\ +5.55 \\ -1.34$	141.05 180.55 228.66	4,49626 8,60700 16,02300	37,381 80,716 117,830	0.265 0.447 0.515	$K_5 = -0.09$	$ \begin{array}{r} -0.84 \\ -0.26 \\ +0.03 \end{array} $	140.21 180.29 228.69	4.42618 8.57443 16.02580	36.998 80.411 117.450
	,		<u> </u>			w	$_{5)} = -0.58$	$\frac{w_{(5)}}{n^2} = -$	-0.734	$\Sigma \frac{q}{D}$	=1.22	$w_{(5)} = -$	+0.267	$\frac{w_{(5)}}{n^2} = +0.$.039	$\Sigma \frac{q}{D}$	= 1.227		$w_{(5)} = -0.04$	6
(6)	7 8 11	100 150 180	6 4 4	0.21888 0.14127 0.12802	7.35378 5.06887 4.59347	230 175 200	16.26840 7.92848 11.26440	119.63 40.19 51.74	0.52 0.23 0.26	$K_6 = +0.82$	$-1.34 \\ +1.03 \\ +7.78$	228.66 176.03 207.78	16.02300 8.05180 12.45370	117.830 40.814 57.206	0.515 0.232 0.275	$K_6 = +0.10$	$+0.03 \\ -0.03 \\ -1.18$	228.69 176.00 206.60	16.02580 8.04820 12.26850	117.450 40.795 56.355
				· · · · · · ·		w _{(i}	$_{6)} = +7.70$	$\frac{w_{(6)}}{n^2} = -$	÷1.113	$\Sigma \frac{q}{D}$	-=1.01	$w_{(6)} = -$	-0.190	$\frac{w_{(6)}}{n^2} = -0$.027	$\Sigma \frac{q}{D}$	= 1.022		$w_{(6)} = +0.30$	0
(7)	6 8 12	120 150 180	4 4 4	0.15935 0.14127 0.12802	5.71780 5.06887 4.59347	190 175 220	9.84288 7.92848 14.47350	56.28 40.19 66.48	0.30 0.23 0.30	$K_7 = +0.43$	$+4.87 \\ +1.03 \\ +5.65$	194.87 176.03 225.65	10.52030 8.05180 15.47160	60.153 40.814 71.068	0.309 0.232 0.315	$K_7 = +0.11$	+0.11 -0.03 -0.66	194.98 176.00 224.99	10.53600 8.04820 15.35290	59.940 40.795 70.523
			1. 1			w ₍	$_{7)} = -0.01$	$\frac{v_{(7)}}{n^2} = -$	-0.001	$\Sigma \frac{q}{D}$	-= 0.83	$w_{(7)} = -$	-0.101	$\frac{v_{(7)}}{n^2} = -0.$.015	$\Sigma \frac{q}{D}$	= 0.856	1	$w_{(7)} = +0.21$	5
(8)	9 10	180 250	10 10	0.20997 0.17584	7.53411 6.30942	200 140	11.26430 4.40876	84.87 27.82	0.42 0.20	$K_8 = -3.62$	$^{+6.39}_{-3.89}$	206.39 136.11	12.23580 4.09384	92.186 25.830	0.452 0.190	$K_8 = -0.72$	+0.82 -3.34	207.21 132.77	12.36400 3.83490	93,152 24,196
						$w_{(8)} = -8.95$		$\frac{w_{(8)}}{n^2} = -$	-1.728	$\Sigma \frac{q}{D}$	= 0.62	$w_{(8)} = -$	-2.644	$\frac{w_{(8)}}{n^2} = -0.$.382	$\sum \frac{q}{D} = 0.642$		$\tau v_{(8)} = -0.044$		4
(9)	10 11 13	250 180 150	$\begin{vmatrix} 10 \\ 4 \\ 4 \end{vmatrix}$	0.17584 0.12802 0.14127	6.30942 4.59347 5.06887	140 200 205	4,40876 11,26440 12,02020	27.82 51.74 60.93	$0.20 \\ 0.26 \\ 0.30$	$K_9 = -2.14$	$-3.89 \\ +7.78 \\ -1.10$	136.11 207.78 203.90	4.09384 12.45370 11.85130	25.830 57.206 60.073	0.190 0.275 0.295	$K_9 = +0.55$	$ \begin{array}{r} -3.34 \\ -1.18 \\ +0.50 \end{array} $	132.77 206.60 203.40	3.83490 12.26850 11.77500	24.196 56.355 59.990
						w ₍	$_{9)} = -4.37$	$\frac{w_{(9)}}{n^2} = -$	-0.198	$\Sigma \frac{q}{D}$	= 0.76	7U(9) =	+2.963	$\frac{w_{(9)}}{n^2} = +0.$.428	$\Sigma \frac{q}{D}$	= 0.760		$\tau v_{(9)} = +0.56$	1
(10)	12 13	180 150	4 4	0.12802 0.14127	4,59347 5.06887	220 205	14.47350 12.02020	66.48 60.93	0,30 0,30	$K_{10} = -1.72$	$^{+5.65}_{-1.10}$	225.65 203.90	15.47160 11.85130	71.068 60.073	0.315 0.295		$-0.66 \\ +0.50$	224.99 203.40	15.35290 11.77500	70.523 59.990
						w(10	$_{0)} = -3.59$	$\frac{\tau v_{(10)}}{n^2} = -$	-0.519	$\Sigma \frac{q}{D}$	= 0.60	τε'(₁₀₎ =	+0.141	$\frac{\tau v_{(10)}}{n^2} = +0$	0.020	$\Sigma \frac{q}{D}$	= 0.610		$w_{(10)} = -0.48$	37

注 本表の単位は l と h は m, D と δ は mm, q と $w_{(j)}$ は ℓ /s とし, C=100 として計算。

表-4 (図-3 に 関 す る も の)

種			3	左	1		辺	<u> </u>			右 辺	
別	K ₍₁₎	K ₍₂₎	K ₍₃₎	K ₍₄₎	K ₍₅₎	$K_{(6)}$	K ₍₇₎	K ₍₈₎	K(9)	$K_{(10)}$	$\frac{w_{(j)}}{n^2}$	摘 要
(1)	$\frac{q_1}{D_1} + \frac{q_2}{D_2}$	$-\frac{q_1}{D_1}$		$-rac{q_2}{D_2}$							$\frac{w_{(1)}}{n^2}$	$\tau v_{(1)} = 200 - q_1 - q_2$
(2)	$-rac{q_1}{D_1}$	$\left \frac{q_1}{D_1} + \frac{q_4}{D_4} + \frac{q_5}{D_5} \right $	$-rac{q_5}{D_5}$		$-rac{q_4}{D_4}$						$\frac{w_{(2)}}{n^2}$	$vv_{(2)} = q_1 - q_4 - q_5$
(3)		$-rac{q_5}{D_5}$	$\frac{q_5}{D_5} + \frac{q_6}{D_6}$				$-rac{q_6}{D_6}$				$\frac{w_{(3)}}{n^2}$	$\tau v_{(3)} = q_5 - q_6$
(4)	$-\frac{q_2}{D_2}$			$\frac{q_2}{D_2} + \frac{q_3}{D_3} + \frac{q_9}{D_9}$	$-rac{q_3}{D_3}$			$-rac{q_9}{D_9}$			$\frac{w_{(4)}}{n^2}$	$ au_{(4)} = q_2 - q_3 - q_9$
(5)		$-\frac{q_4}{D_4}$		$-\frac{q_3}{D_3}$	$\frac{q_3}{D_3} + \frac{q_4}{D_4} + \frac{q_7}{D_7}$	$-rac{q_7}{D_7}$					$\frac{w_{(5)}}{n^2}$	$w_{(5)} = q_3 + q_4 - q_7$
(6)					$-rac{q_7}{D_7}$	$\frac{q_7}{D_7} + \frac{q_8}{D_8} + \frac{q_{11}}{D_{11}}$	$-\frac{q_8}{D_8}$		$-\frac{q_{11}}{D_{11}}$		$\frac{w_{(6)}}{n^2}$	$w_{(6)} = q_7 - q_8 - q_{11}$
(7)			$-\frac{q_6}{D_6}$			$-rac{q_8}{D_8}$	$\frac{q_6}{D_6} + \frac{q_8}{D_8} + \frac{q_{12}}{D_{12}}$			$-rac{q_{12}}{D_{12}}$	$\frac{w_{(7)}}{n^2}$	$w_{(7)} = q_6 + q_8 - q_{12}$
(8)				$-\frac{q_9}{D_9}$.				$\frac{q_9}{D_9} + \frac{q_{10}}{D_{10}}$	$-\frac{q_{10}}{D_{10}}$		$\frac{w_{(8)}}{n^2}$	$v_{(8)} = q_9 - q_{10} - 69$
(9)						$-rac{q_{11}}{D_{11}}$		$-rac{q_{10}}{D_{10}}$	$\frac{q_{10}}{D_{10}} + \frac{q_{11}}{D_{11}} + \frac{q_{13}}{D_{13}}$	$-\frac{q_{13}}{D_{13}}$	$\frac{w_{(9)}}{n^2}$	$v_{(9)} = q_{10} + q_{11} - q_{13}$
(10)							$-rac{q_{12}}{D_{12}}$		$-\frac{q_{13}}{D_{13}}$	$\frac{q_{12}}{D_{12}} + \frac{q_{13}}{D_{13}}$	$\frac{v_{(10)}}{n^2}$	$w_{(10)} = q_{12} + 13 - 131$

以上求めた値は等値管径であるから、実際にはこれを規格管に置換しなければならない。 それには前記 [3] 式

$$q = 35.882 \times 10^{-5} I^{0.54} D^{2.63} = 35.882 \times 10^{-5} \left(\frac{h}{l}\right)^{0.54} D^{2.63}$$

$$h = \frac{q^{1.85}l \times 10^{9.25}}{(35.882)^{1.85}D^{4.8655}}$$

より

となるから1本の等値管Dを2本の規格管 D_1 および D_2 に変換するには

$$h = \frac{q^{1.85} \times 10^{9.25}}{(35.882)^{1.85}} \left(\frac{l_1}{D_1^{4.8865}} + \frac{l - l_1}{D_2^{4.8865}} \right)$$

より D_1 および D_2 の長さが求められる。たとえば計算例その 2 を,これに最も近接する規格管に置換すると 表-6 のようになる。

表一5 (図-3 に関するもの……HIPAC 103 で計算の結果) C=100

種	GH.		表 3				3 で計算の結果	第1次修正の結果					
	別	既 知	数	仮	定 値		修正						
節点	管路	l	h	D	9	D	<i>q</i>	D	q				
	1	150	3	250	87.905	244.145	82.594	243,107	81.673				
(1)	2	120	3	250	99.162	267.587	118.576	267.376	118.330				
	<u> </u>			w ₍₁₎ =	+12.932	τυ(1) = -	-1.170	$v_{(1)} = -$	-0.003				
	1	150	3	259	87.905	244.145	82.594	243.107	81.673				
(2)	$\begin{vmatrix} 4 \\ 5 \end{vmatrix}$	120 250	10 16	150 150	49.572 42.987	147.736 139.252	47.629 35.352	146.907 138.342	46.929 34.747				
(2)					-4.654	$w_{(2)} = -$		$w_{(2)} = -$					
	i												
	5 6	$\frac{250}{120}$	16 4	150 150	42.987 30.224	139.252 158,798	35.352 35.112	138.342 158.165	34.747 35.745				
(3)													
				w ₍₃₎ =	+12.763	70°(3) = -	-0.240	w(3) = ∃	-0.002				
	3	120					3	250	99.162	267.587	118.576	267.376	118.330
/ 4)	2 9	150 180	$\frac{10}{10}$	150 200	43.945 84.867	124.294 207.620	26.804 93.636	122.638 206.633	25.874 92,471				
(4)			10	,		207,020	90.000	i					
				W(4)=	- 29.649	w ₍₄₎ =-	-1.864	$v_{(4)} = -0.015$					
	3	150	10	250	43,945	124.294	26.804	122.638	25.874				
(5)	$\begin{vmatrix} 4 \\ 7 \end{vmatrix}$	$\frac{120}{100}$	10 6	150 200	49.572 88.468	147.736 185.624	47.629 72.708	146.907 185,703	46.929 72.790				
(-)				w ₍₅₎ =	= +5.049	$w_{(5)} = -$	+1.724	$w_{(5)} = -$	-0.013				
	7	100	6	200	88.468	185.624	72.708	185.703	72,790				
	8	150	4	150	26.793	164.690	34.256 40.577	163.896	33.823				
(6)	11	180	4	150	24,281	182.343	40.577	179.594	38,988				
				W(6)=	= +37.395	$w_{(6)} = \cdot$	-2.124	$w_{(6)} = -0.021$					
	6	120	4	150	30.224	158.798	35.112	158.165	34.745				
	8	150	4	150	26.793	164.690 224.745	34.256 70.321	113,896	33.823 68.579				
(7)	12	180	4	200	51.743			222,612					
				W(7) =	= +5.274	$w_{(7)} = -$	-0.954	w ₍₇₎ = -	-0.011				
	9	180	10	200	84.867	207.620	93.636	206.633	92.471				
(8)	10	250	10	150	33.351	134.642	25.103	131.303	23.499				
				W(8) =	= -17.484	w ₍₈₎ =	-0.467	$v_{(8)} = -0.028$					
	10	250	10	150	33.351	136.642	25.103	131.303	33.499				
(0)	11	180	4	150 200	24.281 57.096	182.343 207.091	40.577 62.575	179.594 206.914	38.988 62.438				
(9)	13 150 4				<u> </u>	201.031	02.075						
					= +0.535	$w_{(9)} =$	+3.105	$w_{(9)} = +0.049$					
	12	180	4	200	51,743	224.745	70.321	222.612	68.575				
(10)	13	150	4	200	57.096	207.091	62.575	206.914	624.38				
. ,				w(10)	=-22.161	$w_{(10)} =$	+1.896	$w_{(10} = -$	+0.017				
	i			1					7				

注,表中の単位は、l と h は m,D は mm,q と $w_{(j)}$ は ℓ /s.

	等 置	規格質			管		等置管		規		格管		
管路	D	l	D_1	l_1	D_2	l - l_1	管路	D	l l	D_1	l_1	D_2	l – l_1
1	243.107	150	200	10.8	250	139.2	8	163.896	150	150	79.8	200	70.2
2	267.376	120	250	62.5	300	57.4	9	206.633	180	200	139,4	250	40.6
3	122.638	150	100	7.2	125	142.8	10	131.303	250	125	158.4	150	91.6
4	146,907	120	125	8.7	150	111.3	11	179.594	180	150	40.2	200	139.8
5	138.342	250	125	83.7	150	166.3	12	222.612	180	200	69.0	250	111.0
6	158.165	120	150	83.3	200	36.7	13	206.914	150	200	114.8	250	35.2
7	185.703	100	150	14.1	200	85.9							

表-6 (等置管を規格管に置換)

本表の単位はDはmm,lはm.

5. 結 び

本文の要旨は次ぎの通りである。

- 1) 従来の計算法はあらかじめ管径を与えて流量計算を行なうため、その結果各節点における動水圧の値は必ずしも所定のものを得られず、従って動水圧不足の点に対してはそれを満足するように配水池の位置を変更するか、またはポンプ増圧を必要とするが、本法のように各節点の所要圧力を与えるようにあらかじめ定めると流向は自然に定まるから、管径をこれに合致するように決定すればよく地形上己むを得ない場合のほかポンプ増圧の必要をなくすることができる。
- 2) 節点の所要動水圧面を決定して管網図に流向を記入すれば、管径の補正値 ð を求める 式およびコリレート正規方程式は一定の計算手続きをしなくても図上を参照しながら前記のよ うに機械的にきわめて正確に求められ且つ誤りの発見も容易であり、このことから管網の節点 数が増加し複雑になってもこれらの式の作製に対する時間の増加は極めて僅かである。

終りに、前記のように本文中の計算例その2に対し、北大計算センター所属の電子計算機を利用して計算を行なったが、これに対しては北大工学部芳村仁博士の御厚意を受けたことを付記し深く感謝の意を表す。 (昭和41年4月30日受理)

文 献

1) 森田健造: 管網の流量計算について,室蘭工業大学研究報告, 2, 3.

森田健造: 管網の流量計算について (第2報), 室蘭工業大学研究報告, 5, 1.

森田健造: 管網流量計算の一方法について,日本水道協会第16回全国水道研究発表会.

2) 保野健次郎: 管網計算法に関する 2,3の研究,日本水道協会第16回全国水道研究発表会. (保野は上記の講演集に,各放流点に任意の所要水圧を与える計算例に対する計算結果の値を記載しているが,計算方法には触れていない。)