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Decompositional Study of Set Functions
and Sketch-integral

Yoshio Kinokuniya*

Abstract

When we aim to fix up any structural aspect on some events, there may be found several
theoretical noises obscuring our view. How to eleminate these noises is put forth as a problem
and some cases are, for this problem, solved in respective ways. The principle of trans-induction,
uniform decomposition of a set with respect to measure assignment and a device to make an in-
tegral of the form

7Y

definable are explained in some details.

1. Probabilistic Translation

To make sure of the existence of a set function z on condition that

(VP, Q€ M) (xp=mq)
& n(M)(=6ry)=1 (1.1)

is not easy, even though we restrict the object to a set in a euclidian space E of
finite dimension. In probabilism, we shall define this function by

(W)= Pr(Pe NC M), , (1.2)

so that (1.1) and (1. 2) may likely be taken as equivalent descriptions of the same
function z. But, by some investigation, we may find that (1.2) gives a more
practical and really wider extent of definability. In a strictly ultra case (1.2) is
explained to be wholly available, whereas (1. 1) therein unavoidably implies a part
in E to be inconsistent. On this observation, there may be put forth two cases
to make up theoretical noises about the existence of (), viz. :

1) For a certain subset ¥ of M, no value of

px=Pr(Pe N
can be found out;
ii) For a certain subset X, there is found more than one value possible to

be of py.
The case (i) may be wholly absorbed by the theory of measure, when we

*o0e E B 7 M
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226 Yoshio Kinokuniya

compel the relation
py=nu(N)

to be really available for any subset N of M. The case (ii) emerges when the
essential measure value of p; does not coincide with the limiting value of =(¥;)
in case N,— N as k—oco, i.e. in a strictly ultra case. In an ultra case the only
relation relatively demanded is that

MON, FDPa(NUF)=a(N)+z(F)—a(NNF). (1. 3)

So, the limiting value of z(;) is therein turned out to be possibly different from
the value =(V). This situation just makes the characteristic property of an ultra
function 7.

If two vaules might be assigned to the same subset NV, each reasoning on the
two assignments must give each construction to the set V. Then, if the two
values mean a contradiction, the corresponding two constructions must mean a
contradiction, too. However, in the above case, the difference between the measure

value #(WV) and the limiting value of 7(,) is not unavoidably thought to mean
a contradiction. In effect, if

NCcN,c--CN & UN,=N
and
lim 7(V,) = py#=n(NV),
it must be that
pa<a(N),
so that
dy=lim r(N—2N,) = n(N)—px>0.
Then, on writing as
(1V0) =lim (N— V) (1.4)

we may have the description
n(( 1N [) =0y.

What (JN() of (1.4) defines, is called an atmosphere of N w.r.t. the function z.
Thus, the noises (ii) is transmigrated and the meaning of ‘noise’ itself is thereby
thought to vanish. By some reflection, however, it may readily be seen that,
what essentially releases the ultra case from the noise is that, no other condition
is imposed on z than (1.2) and (1. 3).

If any empiricist assumption gives us a standpoint from which to regard some
theoretical noises to be deleted, it is called a reflective axiom or a reflection, in
the meaning that any argument to support the noises is by this axiom reflectively
rejected. When a reflection is put forth, it must be accompanied with some illus-

trating reasoning. As a result of the foregoing discussion, we may here put forth
the following reflection on z.
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Decompositional Study of Set Functions and Sketch-integral 227

Reflection 1.1. For any set of points in I, there exists a set function
(=m N)) (NS M) satisfying (1.2) and (1. 3).

2. On Trans-induction

Previously, the notion of #rans-induction was introduced and to some extent
elucidated by the present author'”. He is going to take up this notion again
toward a renovated version standing on the noise-theoretical viewpoint.

Principle of Trans-induction. F being a subset of the given set M, let
a descriptive relation plx, F') be tested between any element x of M—F and
Fviz. (Vxe M—F) (plx, F)Vp(zx, F))). Whenever there is a subset N of
M such that

(vze N)(p(z, N—{z})),

then does exist a supremum F of such subsets F' that

(Vxe F)(plx, F—{z})),

and this F can be considered as a simple-ordered set.

To tell the truth, this principle cannot be considered to be generally available.
In the way of accepting this principle, the following two noises may be pointed
out to be discussed :

(i) Any such supremum F' as above-mentioned does not exist ;

(i) F cannot be simple-ordered.

If we resort to the principle of transfinite induction, the supremum F' may
be concluded as existent. On the empiricist ground, however, we may not apply
the principle of transfinite induction beyond the 2nd class of ordinal numbers.
But, it may be thought still reasonable, if we regard its process as a formal ab-
stract mode and take it as a support of persisting in the existence of the supremem
F. This reasoning may give a tolerable ground for elimination of the noise (i).
While, as for (ii), it seems impossible to encounter any reasonable pretext to gen-
erally delete this noise. So, if it cannot be denied in any way that the supremum
F is simple-ordered, we say that the relation b is of a trans-inductive mode. In
fine, the principle of trans-induction is considered applicable when and only when
p is proved to be of a trans-inductive mode. It may hereupon be noted that the
principle of trans-induction can also be made well-established by the cut-process
on a logical stand point of view.

3. Uniformizations
Let f be a powdery set function in E, i.e.
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228 Yoshio Kinokuniya

(VPeE) (O<f(P)<® (nfinitesimal)),
and M be a set in E for which
FOI) = o
Then, for a given positive real number ¢, we may have a c-cut¥ M, of M w.r.t.

f, and then a c-cat M, of M—DM,, and so on, to reach a sequence of disjoint
subsets (M)} such that

FM) =) = - =c.
In this case, if f(M— UM,)>c, we may continue again the c-cut process. There-
fore, if the trans-induction is applicable, we have a disjoint family of sets
<M1>Z€A

A being a simple-ordered set, for which
(vaed) (f(BL)=c)

and
O<f(M—UM)<c

The trans-inductive mode of this process, i.e. that 4 can be simple-ordered, is
readily seen if we use the axiom of choice® for (M,),, and the fact that E can
be simple-ordered as a set of points.

In case f(M — U M,)+0, writing

RBR=M—-UM,,
R may, by means of the c-cut process, have its partition (R,) such that

On the other hand, extracting an enumerable sequence (M) from (M), let M,
be written as M,;. Then, using again the c-cut process, we may gain disjoint

7 177 ’ .
sets M, MY, My, M3y, M3, M, - such that:

MU M = My, and f(M) =5 f(B);

My UM U MG = My, ) =5 £(R) and £(M5) =4 f(B);

My UM UMY ~ Moy, () = f(R) and £(ME) = g F(R):

M UM, U MGG = Moy, F (M) = 2 e £ () and £ (MZ5) = 5 f(R)
E=1,2, ).

By means of this sequence, let a sequence of sets (¥;) be defined such that:

* In the empiricist theory of sets, the axiom of choice is thought to be independent of well-
ordering theorem.
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Decompositional Study of Set Functions and Sketch-integral 229

Ni=MyU R, ;
N, =My UM3UR,;
Ny = MU M3 U M3 U R;;
Ne=MiUMG UM UR; (k=3,4,-).
We then have:
SN =f(N) =+ =f(M) (=f(M)=---)=c,
N.N N;=void (k+))
and
UN.=(UM,)UR.
Therefore, if we designate a family of sets (F}) by

Ek:-N}c (k:l525"'>,
and

F,= M, when 252, 2, -+

>

then we have

M=UF,, (vi, ped) @#p > F.NF,=void)
and
(Vied) (f(F)=c).
Consequently we conclude :
Proposition 3.1  (Principle of Uniformization of the 1st Kind). If f is
a powdery set function and

S(M)= oo,

there is, for awy positive real number c, a partition (M), of M with a simple-
ordered indication A such that

(Vaed) (f(M)=c).

This uniformization is also called a cuz-uniformization. 1If, for any positive
‘real number ¢, the above-stated indication /A is always found to be enumerable,
‘then we say ‘M has a simple lumping structure w.at. f* or ‘M(f) is a simple
lumping set’.

If M is a non-enumerable infinite set of points in E, then applying the trans-
induction on the successive continuation of extracting an enumerable subset, we
may attain a partition (V;),, of M with a simple-ordered indication A, for which

M: {P/IZa sz> }
P, being a point in M(k=1,2, ).
Then, designating sets M, by

Mlc == U {Plk} >
€4
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230 Yoshio Kinokuniya

we may have
M,=M,= .

This relation will become perfect if we may have

(M) =n(M;) = -
n(M,) being the inversion number of M, i.e.

(M) = (M) = - (3.1)
m (M) being the a priori measure of M;. Besides, in case of M=E, the relation
(3.1) is realized by a partition composed of mutually homologous rectangles (M)
Therefore, in case of f= on Proposition 3.1, if we may transport the points of
M precisely into any rectangle of measure ¢, the indication 4 should be exhausted
within enumerability. Thus, we may put forth the following assertion.

Reflection 3.2  (Principle of Uniformization of the 2nd Kind). If M is
an infinite set of points in B, there is an enumerable partition (M) of M such that

(M) = w(My) = --- .

This uniformization is also called an inversional uniformization. In respect
to the above-stated partition (M), defining a function ¢ by

(V) = 2 mar, (NN ML)"
we have
(M) = oo

with @(M,;)=1 {for each k=1,2,---. Hence we have:
Proposition. 3.2 If M is an infinite set in E, there is a powdery set
Sunction ¢ for which

(M) = oo
and M(p) is found as a simple lumping set.

4. Regularity-wise Decomposition

In the following, we will show a development of the idea of Lebesgue de-
composition. When f is a powdery set function, though it is restricted as

O<f(P)<B,

the retio of mass-values of two points P, Q

SPIFQ)

may possibly vary and especially the values

*  As for the definition of a function 73 (N), vid. Reflection 1. 1.
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0 or o
are not essentially therefrom excepted. If we classify points by the relation
0/ (PUf(Q)< o0
it is the classification based on ‘relative regularity’. On this classification, let the
classes be written in signs %(:E I), then, if ¢, k€T and ¢+, it must be either
(VPeE) (VQEE) (F(PIFQ)=0)
or

(VPeE) (vQeE) (FIP)f(Q) =),

So, the indication I may be made simple-ordered by the stipulation that

PeE, QcE & FIPFIQ) =0 < i<x
and (4. 1)
PeE, OcE & FIPYFO)=co D o5

On the above-stated construction, I is called f-indication and ((€ I) an f-index.
Lemma 4. 1. When f is powdery set function and 0<f(N)<oo, there
exists, for any positive real number ¢<1, a point Pe N such that

SP)Yn(N)>f(N) (1—¢) (or <f(N) (1+¢)).

n(N) being the inversion number of N.
Demostration. If there is no such point, it must be that

(VPe N) (f(P)n(N)< (V) (1—¢) (or =f(N) (L+¢)),
so that, on summing it for all points (say, P) of N, we may have

S n(N)<u(NV)f(N) (1—¢) (or Zn(V)f(NV) (1+¢)).
Hence

SN F(N) (1—e) (or =f(N) (1+¢)),
which cannot be true when
0<f{N)<0 .

Now, we take up a case in which, for a certain f-index

()
0<f(MNE)
and
0<f(M)< 0
Writing herein as
G ®
M=MNE,
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let U be defined by

Yoshio Kinokuniya

(x)

U=UM. (4. 2)
>

Then, if f(U)>0, we have

0<AO)<Sf(M)< 0,

so that we may, for any 0<e<1, have

FOI) (1—¢)

0<F(@) T+e) =%

Let such a number ¢ be fixed and let £ be defined by

(¢)
o SO0 (1=
FO) (17e) -
Then, by grace of Lemma 4.1, there are two points PE_Z% and Qe U such that
(e)

S (P)n(M)

e . 4.
FQu@) ~* w9

So, according to (4.1)

so that

and (4. 2), we readily see that (4.3) implies the relation
oo SP) _ 1)

FQ " i

/(U (3 = 0.

As for the case f(U)=0,

Pe M b F(P)n(D)<F(D).

So, for a point P of Lemma 4.1, we have

nO) _ f(P)n(U)

hence

Consequently we habe
Proposition 4. 2.
for a certain f-index

then, for the set U=

(¢)

n(U)m(M)=0.

When f is a powdery set function, if 0<f(M)<oo and

()
J(M)>0,
UM, it must be that

2(OYr(M) = 0. (4. 4)
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Decompositional Study of Set Functions and Sketch-integral 233

(4. 4) suggests to our intuition the relation

Pr(Pe U)/Pr(Pe M) —0 .

On looking back the above-stated investigation there will be pointed out two fun-
damental conceptions, viz.

S P)f(Q) and wt(F)/n(M).

which cannot always be empirically evident, but generally of abstract and formal
use except in the case in a space comprizing only a finite number of points. When
m(M)=0 and FC M, the equivalence

WF)n(M)=ny(F)
may furnish our theory with a useful medium. As for £(P)/f(Q) or f(P)/g(Q),

some critical facts will be explained in the next section.

5. Cribble-sketch

It is not an easy event that a set function may stand on the relation
, fP)=T1%- (5.1)
7» being point applications given to make up a powdery application ¥(M) in the
form

F M) =67,. 5.2)

PeM

To be exact, the notion of 7, is, as it is, to be abstracted depending on the total
concept 7(M) by the relation (5.2). Hence, 7, cannot always be a unique con-
crete assignment to be simply contradistinguished from any other assignment.
Moreover, even when we take up an apriori measure #% in place of 7, the difficulty
in practically constructing the relation (5. 1) does not diminish.

For instance, let I' be the Cantor set dwelling in the interval M=(0,1). Then
I' is thought as the limiting set of the following decreasing sequence of sets:

1 2

1 2 1 2 7 8
F2:<0, ?>U<?, §>U<§, ?>U<?, 1);

In this sequence, the k-th set is composed as a sum of 2% disjoint intervals having
the uniform length 1/3% ILet these intervals be called component intervals. And,
writing as

a = log, 2 (=log 2/log3) ,

(233)



234 Yoshio Kinokuniya

let us assign to each component intervals of I", the uniform value

(1/3%)F
and designate it as ¢,, so that we may have
o, L = 25(1/3%) = (2/37) = (2/2) =1 (5.3)

l.e.
0,17, =1 for all 2=1,2,---.
Now, letting the component intervals of I', be written in signs

O (@ 2%

Alcy Aka ) Ak5

we may construe (5. 3) in the form

% ()
kak = Z (mA]c)a (5. 4)

d=1

where #% is an a priori measure so that

[€))
wd,=1/3%.

In that we may then take it as

)
lim 7 d, = dt (te 1),

it seems presumable that the relation (5.4) has its limiting state to be expressed
in the form

S(dir=1. (5.5)

tel’
By some inspection, however, it is proved that the formula (5.5) is not yet well-

) (.0 (4,2
formed. In effect, if we divide 4, into two intervals 4, and 4, of equal length,
we may take the assignment

(J) (7,1) (7,2) (7,1)
okAIc = O'/CA/C‘l“O'/CAk = ZO'/CA/C

so that, if we aim to approach to the element (d%)*, it shall be counted such as

(4,1) 1 1 \e 1
20,4, = 2(— —) — oy

hence
0Ty =24, dy = 2. (5.6)
Then, by analogy to the case of (5.5), it may be conjectured that
CSldtr =lim e, Iy = 2"*<£1 ..

el
This shows that the value of & (d)* cannot be simply conjectured to be a unique
er
one. In the following will be introduced a device which is named ‘cribble sketching’

(234)



Decompositional Study of Ste Functions and Sketch-integral 235

and is expected to construct a precise approach toward the form of integration
S7r%.
Starting with a partition
o
= (U E=1,2,
of the space E, let each '(ﬁk be divided into #, disjoint subsets, then the reunion

of these subsets for all £=1,2, --- will give a finer partition of E. Let this second
partition be arranged and denoted as

(2)

(2)
Y= (Ulc)/c=1,2,~- .

(2) @
Then, there are, for each £, 7, sets U, Uy, such that

W n, (2)
Uk =U U"j. .
7=1 [
. - . (2) - - - - . - .
By succession of similar methods, each U, is divided into 7, disjoint subsets by
which the third partition
@G

) 2 = <Uk)lc=1,2,»--
(m)
is constituted, ---, and each U, is then again divided into 7, subsets by which
the (m -+ 1)-th partition
(m+1) (m+1)

= (Ifk)/c:m,-u

is constituted. Thus we have a sequence of partitions (of E)

(m)

= (Lo

Besides, we will hereto assign the stipulation
(n)

lim (Max (diameter of U,))=0. (5.7)

n k

When (5.7) is satisfied by the system of ((%,C), L is called a cribble foundation or

n (n)
simply a foundation, each (U>,C a k-th cell (n=1,2, ) and 8 the n-th cribble of
the system. '
When & is a foundation in E, defining such that

(n)

{n
NI = {&: MN U,+~void)

and
(n) ()
My = 2, Uy,
(n)
KEN(M)
we readily have
&) (2
Mo Mo - .

So, there exists the limiting set

(235)
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(%)
MQ = Ms
and
MC M.
M, is called the Q-sketch of M or the cribble sketch of M irt. & When My
and Ny are L-sketches of M and N respectively and

MyN Ny =void ,
then M and N are said to be L-disjoinz. If
. M=M,
M is called a 8-set.

When P is an isolated point of M, by virtue of (5.7) is found, for any real
number >0, an integer N, such that

(vn) (e>N) (UuaP P U, {Q: |Q—P|<e})

|Q—P| meaning the distance between Q and P. Therefore, if ¢ is sufficiently
small, we have

#>N, b (1Q: |Q—P|<e}— U My = void .
Consequently :
Proposition 5.1. Let M be the closure of M and Mg the f-sketch of
M, then we have
MC M,C M.

The quantity d(M, N)=inf |Q—P|(QeN, Pe M) is the distance between
sets M and N. When d(M, N)>0, M is said to be distant from N. By Pro-
position 5.1 it is then directly seen that:

Corollary 5.1. (M s distant from N) <] (Mg is distant from Ng).

The measure defined by
(n)

7(Myg) = lim 37 (1 (U))"

n—oo K

is called the sketch-integral of M ir.t. £, ¥ being a foundation in E. About
this measure, the computations in (5. 3) through (5. 6) shows that the relation

7 (My,) =1 (Myg,)
does not always be realized even if
M = Mgl == .Z’Igz .

So, in the calculus of sketch-integral, the foundation £ should not be changed by
another one among the procedures belonging to the same course of computation.

Mathematical Seminar in the Muroran Inst. Tech., Hokkaido (Received Apr. 26, 1967)
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