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On Ky Fan’s Theorem and its Application
to the Free Vector Lattice

Kazuo Iwata*

Abstract

In this paper the author characterizes the linear dependency with positive coefficients in
a real linear space. Using this, he proves the countable decomposabilyty™* of free vector lattices.

Introduction. D. M. Topping’s expectation® that it appears highly likely
that free vector laitices are countably debomposable** has been already justified
by E. C. Weinberg® and I. Amemiya!® independently. Omne of the purposes of
this paper is to deal with Ky Fan’s theorems® (generalizations of Stiemke-
Carver**_Dines theorems, etc.) somewhat strictly in case of inner product, and
the other is to give another justification to the expectation above. We shall do
the former in § 1, and the latter in § 2 by the use of § 1 and by the aid of the
separability of 2

Here the author wishes to express his sincere thanks to Prof. I. Amemiya
(Tokyo Woman’s Christian College) and Prof. T. It6 (Wayne State Univ. Detroit)
for their helpful guidances, and to Asst. Prof. K. Honda (Muroran Inst, Tech.)
for his useful conversations.

§ 1. Linear Dependence with Positive Coefficients
in a Real Linear Space

Let R be a real linear space. Let R be a real inner product space since any
R can be given at least an inner product on it. Let us denote by (,) the fixed
inner product on R unless otherwise specified. Let a system of elements (not

*E OH — 5B
* A vector lattice is called countably decomposable if every positive orthogonal family is at
most countable. (l.c, 8), p. 423 & p. 425)
*#%  Carver's theorem: A necessary and sufficient condition that a given system of m linear

inequalities in n variables,
n
2 oaggxi+5:>0  (i=1,2,-,m)
J=1

be inconsistent (cf. Theorem 4, foot note, this paper.) is that there should exist a set of m~+1
constants, k, k, -+, km1, such that

.Zlkiair =0 and Zlk,,‘ey,‘f"km-l =0 (7‘ =12, 71)
iz

i=

where al least one of the K's being positive and non of them being negative. (2). p. 217)
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316 Kazuo Iwata

necessarily distinct) a,, a,, -+, @,€R(n=1) be given. let us define the properties
with respect to {a,: v=1,72, ---,n} as follows:

( P ): There exist p,>0 (v=1,2, .-, n) with
<a.z-, 2 ‘uva,>>0 (i=1,2, -, n);
(P.O): There exist p,>0 (v=1, 2, ---, n) with
<aé, i ;tya,>>0 ({=1,2,+-,n) and not all zero;

(P.N): Non-(P.O).

Furthermore let a system of real linear functionals fi, f, -, /», (n=1) on R
be given. In the above definitions, considering every x€R in places of f} n.a,
w>0 (v=1,2, -, n), we define analogously the properties (P), (P.O), and1 (P.N)
with respect to {f,: v=1,2, ---,n} too. Here we note that the property (P.N)
means that whenever there exist x€R with ;VL_] {f(x)}*>0, there exist 7, j always
such that f;(x)>0, f;(x)<0. Let us now den;te by A, a system {a,: a,€R, v=
1,2, -, n}, (n>=1).

Theorem 1. (Generalization of Stiemke-Dines Theorem)

A necessary and sufficient condition thai a given sysiem A, has the property

(P.N) is that there exist 2,>0 (v=1,2, ---, n) such that i} Aa,=0.
1

Proof. The sufficiency of the condition is evident. We shall prove the
necessity of the condition by the mathematical induction.

In case n=1, we should have @;=0, and it is clear. Next we suppose that
it is true for a positive integer n. If two distinct subsystems with z» members of
Ayi=la,: v=1,2, .-, n+1} have (P.N) together, we come to the conclusion at
once by the induction hypothesis (summing by two equalities). For the remaining
cases (#+ 1> 3) we assume that A, and {a, ay, -+, @, 1, @,.1} have (P.O). Here
if we have both :

(a.z, > p,au>>0 (1=1,2, -, 5, 7n-+1) and not all zero for #,>0,

vEn+1

<a,i, b /11%)20 (i==1,2, -+, s, n+1) and not all zero for p;>0,

vER

these immediately contradict the assumption. In the case n+1=2, we get the
same by the first hali. That is, it suffices to verify the case where there exist
>0 (v=1,2 -, n) and r(I1<r<n) such that

(aw i ‘U,,CZ,>>O (Zzl’ 2’ Ty r) ’
1

(316)



On Ky Fan’s Theorem and its Application to the Free Vector Lattice 317

(a'i’ i: #uav>:0 (7::7'+ 1> ) n) s
1

with
<an+l’ i: #yau> = - CY<0 .
1

Then, setting Y pa, =z, let us determine & >0 such that
1
<§iai+a7z+17 x>:0 (Z: 17 27 Tty 7"),
{a, =0 (i=r+1, -, n).
Now suppose that # members :

Eiai__i'—an—‘»-l (Z: 1) 27 e 7‘) ‘

a; (i:r—i—l,--»,n) [ (1)
have (P.O). Then, by definition, there exists

Yy = Z n(&a+a,..)+ ZI na, with 2,>0 (b=12,-n)
1 r+1

for which
(E'iai—l_an"rb ?/>>0 (7':17 27 R 7") s
(az;, ¥)=0 (i=r+1, -, n,

and not all zero. Here putting (@,.,, ¥)=5, if =0, that is obviously contradictory
to the assumption. If <0, then it follows

(Siaiy y>> ( nfla >>O <Z:17 29 ) T)
and so

(z, y) = (Z? ra, y>>0 ,

a contradiction to (z, y)=0. Therefore we have 8>0.
We have

Sia;+a, ., % > <E¢a¢, %y)—l—a’

o<(e
o oo
<§Zaz,‘8y—'—x) (=12, 1),
O<<ai, %y—l’—x) (i=r+1, -, n),

and not all zero. While we have

O = <an—} 1s %_y_l—x) .
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318 ‘ Kazuo Iwata

These mean that A,,; has (P.O) and hence contradictory to the assumption.
Therefore 7 members of (i) should have (P.N). Therefore there exist r,>0 (v=
1,2, .-, n) such that

Z Tv(Evay+an»{—l>+ Z T,a, = 0 .
1 r+1

This completes the proof.
Here in this proof, replacing i ra, and i} n(éa,+a,.)+ 2 na by mere
1 1 71
r€R and mere y€R respectively and using f as 830, we get the following result
due to Ky Fan*.

Theorem 1. A necessary and sufficient condition that a given system
{(fo: v=L1,2,---,n), (n=1) has the property (P.N) is that there exist 1,>0 (v=
1,2, ---, n) such that izyfy =0.

1

Lemma 1. A, has (P) if and only if any (proper or improper, non-void)

subsystem of A, has (P.O).

Proof. For the “if” part we proceed by the induction on n. In case n=1,
it is trivial. Suppose that it is true for a positive integer xn. '
By the assumption, there exist §>0 (v=1,2, .-+, 7, n+1) and 4, with
n+1

n+1
(ax.} Z E»au>>o <i:17 25 Tt n3n+1>? <Cl.50, Z Suay>>0'
1 1

While by the induction hypothesis, there exist
7,>0 (v=1,2, -+, 50—1,4,+1, -, n+1) with

<ai, 5 W,)>o (=12, -y dg—1, iyt 1, -y nt 1)

e
vFL,

Hence, choosing ¢>0 so small that

} <a'i‘,a € Z Tuau>

g,

n+l
<<ai05 Z S»au> >
1
and putting

n+1 n+1

f>;. ga,te ) pa = }1] ma,

&L,

we obtain ¢,>0 (v=1,2, ---, 7, n+1) with
7 +1
(%3 > /J,a,>>0 (1=1,2, -, m,n+1).
1

The converse follows immediately from Theorem 1.

Definition 1. If A, has not (P), by Lemma 1 and Theorem 1, there exists
in A, the largest subsystem which has (P.N). We call it the maximum (P.N)
system of A,. And we denote it as A} ={a,:v=12 -+, m} without loss of

* 6), Part 1. Corollary 4.
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On Ky Fan’s Theorem and its Application to the Free Vector Lattice 319

generality. If A, has (P), the maximum (P.N) system of A, is empty.

Lemma 2. Let ALO0<m<n) be the maximum (P.N) system of A,, where
Ay=0. Then there exist 2,>0 (v=1,2,---,m) and p,>0 (v=1,2,---,n) such that

<a'i> Zn:/”’yav>:0 (Z:17 25 Y m)a
1
<ai9 i#,ap>>0 (Z:m_I_l’ ,?’l)
1

The converse is also true.

Proof. In case either m=n or m=0, it is trivial by Theorem 1 and Lemma
1. In the remaining cases, the first formula is clear. And since A, has (P.O),
there exist #,>0 (v=1, 2, ---, #) with

<aa~, i y,a,) =0 (=1,2, -, m),
1

<az‘> Zn:#yap>>0 (Z:m+1” n)
1

and not all zero. Therefore we can complete the proof by means of Lemma 1.
The converse is evident.
By Lemma 1, we have:

Theorem 2. (Generalization of Carver-Dines Therem)

A necessary and sufficient condition that a given system A, has not property
(P) is that there exist 2,20 (v=1,2,---,n) such that anzvau:O, where at least one
of the Xs being positive. y

Definition 2. Let us call a system A, linearly dependent with positive

coefficients, if A, satisfies the necessary condition of Theorem 2.
As a result including Theorems 1, and 2 we have:

Theorem 3. (On Tucker's Theorem*)
Trwo systems :

1) hay+ha+-+2,a,=0, 1,20 (v=1,2, -, m);
5 <a1, x)>0

) 4

1 (@, 2)=0;

possess solutions 2, v=1,2, ---, n) and x such that

(a, )+ 2,>0
1ii) :

| (2, 212,50

* 5), L.c. Theorem 1.
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320 Kazuo Iwata

Proof. If A, has (P), take suitable = f_} wa, 1,>0 (v=12,---,n) and 1,=0
i

(v=1,2,--,n). I A, has (P.O) but not (P), take x and 2, (v=1,2,---,m) just as
in Lemma 2 and take 2,=0 (v=m+1,---,n). If A, has (P.N), take suitable 2,>0
(v=1,2, .-, n) and x=0.

Next let us deal with the non-homogeneous cases.

Theorem 4. A necessary and sufficient condition that the following two
systems of inequalities :

| [l @20 | -
where we interpret at least one is positive ;
an)

; al) y + (251 > O
where we mean as usual ;
[ a?n y + a’t > 0

k3
are both inconsistent™ is that there exist 3,>0 (v=0,1,2,---,n) such that 3 2,a,=0
1

and 20‘!‘ i /2,,6(,, =0.
1

Poof. To prove the necessity of the condition we think of a linear space
ROV Taking

ReVie©, 1)=2b,,

(5_11, o) = by,

(@., a,) =b,;

we consider the system B={b,: v=0,1, ---, z}. Suppose B has (P.0), then there
exist £,>0 (=0, 1, ---, n) with

(6o Zub)20 (=01, )
and not all zero. Now if
(bo, é /xubu>>0,
then we have
0+ i}yy o, >0

and

<az‘7 Zﬂyau>+aiiﬂua’u>o (l:17 27 ) 7l>,
0 0

* {ag, x)Facz0 ((=1,2,--,m) is said to be inconsisient, if the system has not solution z in R,
otherwise it is said to be conmsistent.

In this paper, unless otherwise specified, inequality signs>>and>are used as usual.

(320)



On Ky Fan’s Theorem and its Application to the Free Vector Lattice 321

where a,=0, a,=1.
This yields that (ii) is consistent. Otherwise, since

<b03 Zn: /’lvbv> = 0’ and so Zﬂ:#uav:O .

Hence
(ai> iﬂzav)+0>0 <1:13 29 Tt n)a
0

where not all zero.

Therefore (i) is consistent, and so B should have (P.N). Thus we have proved
the necessity by Theorem 1. For the converse, it is clear that (i) is inconsistent.
If (ii) is consistent under our assumptions, we have

Ala, y)+2a,20 (=12, 7)),

hence

<ZR,a,, y)-l— S Aa,>=0, and so 2 4a,=0.
1 1 1

This is contradictory to ﬁzyaxo.
Corollary 1*. A necessary and sufficient condition that a system
I ({zl, x)+a; =0
[ (c:z,l, x)+a,=0
is consistent is that Zi,']mg}() holds for any A,>0 (v=1,2, -, m) such that

k3
A?ZVau:O, where A}, is the maximum (P.N) systemm of A,.
And whenever the system is consistent, there exist solutions such thar x=
>ma, with 1,>0 (v=1,2, -, n).
1

Proof. Necessity is evident. For the converse, we consider the system
B={b,: v=0,1,---,n) just as in the case of Theorem 4. We at first see that B
should have (P.O) by Theorem 1 and assumption. Suppose there exists a (P.N)
system which contains &,=(0,1). Let the maximum (P.N) system of B be Bj=
{bg, by, -, by}, (m=1). Then by Lemma 2, there exist ,>0 (v=10, 1, ---, m) and
£,>0 (v=0,1, ---, n) such that

/20"‘ %ZVCZUZO 5
1

<b¢, (z?; &, &0t ;Ea» —0 (=01, m),

* @), Le. Part I, Theorem I & Part 111, Theorem 14.
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322 Kazuo Iwata

(b (Zoa, 6+ Rea))>0  G=mtl ).
1 1
Hence, by the second half
&t D600
and

<a¢, ﬁa@:o (i=1,2, -, m),
(ai, i}&av>>0 (i=m+1, -, n).

Applying Lemma 2, that is a contradiction to the assumption.
Therefore there exist £,>0 (v=0,1, ---, #) with both

<bo> (Zl: [’tuaw MO—I— ; {"vau>>>0 s

<bi, (ﬁ na., th+ Zn: yya»)>>0 (i=1,2,--,n).
1 1

The rest of the proof follows at once from this.

Theorem 5. (Generalization of Carver’'s Theorem)
A necessary and sufficient condition that a given system of n linear ine-
qualities
I (al, .$C>+(X1>0
| (@ @)+ a0

is inconsistent is that there exist 2,>0 (v=0,1, .-, n) such that 3, i,a,=0 and
1
2+ 2 Aa,=0, where at least one of the A, (v=1,2, ---, n) being positive.

Proof. Taking B as well as in case of Theorem 4, we see that some
subsystems of B should have (P.N). This is the necessity of the condition.
Sufficiency of the condition is evident.

In the sequel, applying Theorem 3 to the case:

RPV'3(0,1), (a,a), *+, (@ ) ;
we get the following.
Teorem 6. Two systems:
j hay+ba,+++2,a,=0
| Zot e+ dpas+ -+ Ay, =0 , A=0 (vb=0,1,--,7);
§=0
i) { (@, ©)+a§20

i)

(&}'Z) x) + a7z€>o ;

(329)



On Ky Fan’s Theorem and its Application to the Free Vector Lattice 323

possess solutions A, (v=0,1, ---, n), x, and & such that

E+2>0
i) { (@ D)+ é+4 >0

(@, T)+a,6+2,>0.
(We omit the proof.)

We can also describe Theorems 2, 3, 4, 5, 6, and Corollary 1 (except for the
latter proposition) as the ones®™ with respect to linear functionals £, (v=1,2,---,7)
on R. (We call them Theorems 2', 3/, 4/, 5/, 6', and Corollary 1’ respectively.)
We can prove them by means of (P), (P.O), and (P.N) with respect to linear
functionals. In particular Theorems 4/, 5, 6, and Corollary 1’ are done by the
uses of linear functionals f,@a, (v=0,1, ---,n) on RPV* defined as f,Pa,(X)=
Sl +a,& for X=(x, &le RBV™.

We deal with the cases of inner product in the sequel.

Corollary 2. Let a system A,=la,: a.¢R, v=1,2, -, n} be given. A
necessary and sufficient condition that min{a,: v=1,2,---, 0} >0 under some total
order which orders all elements of a real linear space R as a vector lattice®* is
that there exist p,>0 (v=1,2, ---, n) such that

<ai> ixuvav>>0 (Z:]'? 2) R n)'
vl

Proof. The necessity follows from Theorem 2. The sufficiency follows from
Corollary 3 in § 2.

Now if we are concerned with the linear independency of »# members of R,
we have obviously by Theorem 2 :

Corollary 3. Given a system A,, it is linearly independent if and only if
every system {6,a,: v=1,2,---,n} has (P), where each 6, (v=1,2,---,n) stands for
1 or —1 individually.

By means of Corollary 3 we get at once the Gram’s theorem (using the
Laplace’s expansion). Using the Gram’s theorem we note here:

Note 1. Given a system A,(n>2) whose n—1 members a, ay, -+, a,_, are
linearly independent, letting ‘

(al, a1> ......... (ab an>
b” (a 2 —15 Cl1> ..... (anflv an)
al --------------- a7], l

and

Theorems 2/, 5/, and Corollary 1’ are due to Ky Fan: 6), Part 1.
#%  (Cf. Proof of Lemma 3 in §2.
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324 Kazuo Iwata

/7"\
(ab a1> = Aay, an) (ab an—l)
A;,: (U=1,2,“‘,n"“1),

<an71’al)...<an»han)...<an7hanil>
we have :
A, has not (P) if and only if b,=0 and 4,<0 (v=1,2,---,n—1),
A, has (P.N) if and only if b,=0 and 4,<0 (v=1,2,--,n—1).
As a special case:

Note 2. For a system A,(nz=2), with the notations:

(@, @) (ay, @)
(awl, a1> ...... (akb an)
By=| @y eeeeeeeees a, (b=1,2, -, 7),
(aw 1 al) """ (av+1’ an)
(am al) ...... (am an)

the following conditions are equivalent.

1): a,ay -+ a, are linearly independent.
2): by, by, -+, b, are linearly independent.
(8): by, by, -, b, have (P).

§ 2. Countable Decomposability of
Free Vector Lattices

Here we deal with this problem from the standpoint and with the notations
of 8)* except that we write A() for A if necessary.
Let A be a real linear space in § 2.

Lemma 1. A #ypical element ZeFVL(ER) has the form :
Z=aX+pY

being

*

D. M. Topping gave in his 8) p. 418 as follows:

Let MM be any cardinal number and let S be a set of cardinality I, we construct the real
vector space A of dimension I having S as basis. Let A;({€]) denote the totality of totally
ordered A as a vector lattice. We form the direct product V=17 As;. Under the co-ordinate-

i€l
wise ordering, V is a vector lattice. We denote D the subset of V such that

VoD = {{zs}: m=x, i€l, z€ A} .

We let FVL(IR) denote the distributive sublattice of V generated by D. Then his Theorem
6: FVL(E) is the free vector lattice on IN genarators.
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X= ﬁ({xﬂ}*‘ + -+ {x,m}+> , x4
w=1
q

Y= Q({le}+++{yvn}+>> yvaA 5

where a, B are real numbers and
[z for x=0

b} = o Jor x<0 in V.

Proof. Let L be the totality of elements in above forms. We have obviously
FVL®)>DL. In the right hand side of &Z,+§,7Z,, distinguishing the terms with
positive coefficients from the others, we have the linearlity of L. For the lattice,
in cases where a8>=0 for aX+BYeL, we have obviously (aX+8Y)"€L. In case
where >0 and <0, since we have

(@X+8Y) =aX—(aX (—B)Y),

here aXn(—p)Y constitues the same form as Y, we have (@X~+pY) € L. Thus
L is a lattice.
From Schwarz’s inequality (Gram’s theorem), we have easily :

Lemma 2. Let A be an inner product space. 1If

(z.a)
|

(x,a)>0 and |la—t||< Jor a,z,t€ A,

then
0<(z, 6)<2(x, a).

Lemma 3. Let a total order* as a vector lattice jor an inner product space
A be given. Then another (in general) total order for A with respect to 0+t€ A
can be introduced by

Jor (x—y, )=0, let the ordering between x and y be just as before
Jor (x—y, >0, let x>y ;
Sor (x—y ,0)<<0, let z<y.

Proof. Because the definition just mentioned satisfies the following order
relations. 1) reflexivity, 2) asymmetry, 3) transitivity, 4) comparableness, 5) a=0
and x>0 together imply ax>0, 6) x>y implies x+z>y+=2.

For brevity, we call this total order for A a total order for t

Theovem. Fuvery free vector lattice FVL(R) is countably decomposable.

Proof. At first we will prove the fact “iff O <ZVO for Zc¢ FVL(IN), there
exist 0 #ac AM) and >0 such that Z>0 by every total order for t satisfyving
la—t| <e; where a, norm, and ¢ altogether are the ones derived from the given

* It is true that a real linear space A has at least a total order as a vector lattice.  Hereafter

we simply say of it “total order for A”.
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inner product on A(IRY’. To prove this, let us represent ZeFVL(IMM) by means
of Lemma 1 and call it expression (i). Here, since we can do the cases where
a>0 and >0 more simply rather than the case where a>0 and <0, we handle
the latter case. Besides we may assume a=1 and = —~1 without loss of gen-
erality. We fix a total order T (7-coordinate) for which Z(7)>0. Although
the terms {x,,}* for which z,,(T)<0, vanish at this 7, we use the same expres-
sion (i) for the sake of simplicity. We assume

Y(T)={yu} (T)+ - +{yu} (T).
Then we may think that there exists 7(0<r<n) such that
y1v<0 (1):1, 27"') 7"),
Y>>0 (=r+l e m).
(-‘1‘11‘1" ot i) = Y+ T YL) =2 >0,
(“xpl_‘" +x1)m)m<y17'+l+ s yln) = zp>0 3
xy[l>0 (V:1’29"'5P; 1{’5:132)”'77/}/07

at this 7. Therefore, by Corollary 2 in § 1, under the given inner product on
AN, there exists ac A(MM) such that

(=Y, @)>0 (v= 7,
(Y1, @)>0 (”_7"‘1 » 1)
(z., >>0 =12, ',P%
(x,,, a)> (v=1,2, -, p; p=1,2,---,m).

Now putting ey, & &, &, and ¢ as follows respectively by the derived norm:

mln{< Nzi, l}: e >0, min{—(ﬁ;;ai)}:sz>0,

min{ifz )}:eg>0, min{%"al}ze4>0,

v v

min {e,; e, &, &} =¢;

we obtain the fact above mentioned by Lemmas 2 and 3.

Now suppose that for a certain FVL(IN) there exist uncountable number of
mutually orthogonal positive elements. Here, if necessary, we extract Z (rel’)
out of them so as to I' satisfies &O<F < &. The total number of members
which take part in expression (1) of each Z.(rel") is not more than &. Therefore
letting Sy(S,=S) be the union of corresponding generators whose linear combina-
tion expresses each member above, we have S;<{.

Then taking Z ¢ FVL(S,) (reI") just as the forms Z € FVL() (7€) respec-
tively, we can conclude at first that Z/(¥€i”) constitutes a positive orthogonal
family in FVL(S,) by virtue of Theorem 2 and Corollary 2 in § 1.

Next, introducing an inner product onto A(S,) by the uses of Hamel bases
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On Ky Fan’s Theorem and its Application to the Free Vector Lattice 327

for both I (or its suitable inner product subspace) and A(S,) we can make an
A(S,) to be separable by the derived norm, and so we get the countability of
mutually disjoint open sets (non-void) in A(S,). Let us now observe the positive
orthogonal family Z/(reI’) from the viewpoint of total order for the just introduced
inner product. Then, since Theorem 2 and Corollary 2 in §1 and the fact above
proved hold good for any inner product, we see that the mutually orthogonal
positive elements Z/(y€I") must be at most countable, a contradiction. This com-
pletes the proof.

Note 1. Here we shall show that there exist actually countably infinite
number of mutually orthogonal positive elements in FVL(R,).

Taking
ARz, =01, —n+1/2,0,0, -}, (n=1,2,--);
ARy, =(—1,7,0,0, ), (n=1,2, -+);
we consider
Z,=1{x,}" ~{y.)" € FVL(K) n=1,2,-).
Then, by Corollary 2 in §1, we have Z,>0 (n=1,2,---) if and only if there
exist (@, B )€ A(R0) respectively such that

(s (@0r oy ) = a1, +1/28,>0

and

(ym (am 18717 B )) =0 +n‘8n>0 5

that is n—1/2<a,/B,<n (n=1,2,---). Accordingly we see also Z,nZ, =0 (n#m)
by the same grounds. IHere in addition, as Theorem 2 in §1 says, iz holds that
Ly Yus and x,, n<m) are linearly dependent with positive coefficients :

{2(?’}1—72)—1}])”*1"2(771"7’1) YntLm =0 .
Of course, the above is ananlogously true in FVL (2).

Note 2. In case M=n (finite), any total order for A(R) can be given as
a general lexicographical order which depends wpon a regular matriz (exceping
the uniqueness) of order n.

(Received May. 19, 1970)
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