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Abstract

Supervised and nonsupervised algorithms have been developed for adaptive pattern classifi-
cation, respectively. These algorithms, however, have been studied under somewhat restrictive
conditions on the probability structure, and, moreover, have some difficult problems in the appli-
cations to practical pattern classification systems.

This paper describes a unified algorithm which combines these two algorithms to remove
these problems.

1. Introduction

The problem of pattern recognition has recently obtained great attention and
many approaches have been proposed for pattern recognition. In many of their
approaches pattern classification may be viewed as a problem in statistical classi-
fication. In general, however, we have little or no a priori information about
the probability structure of patterns. Consequently, adaptive procedures would be
required for learning the unknown probability structure.

Supervised and nonsupervised algorithms have been developed for adaptive
pattern classification, respectively. These algorithms, however, have been studied
under somewhat restrictive conditions on the probability structure. Furthermore,
under general conditions, supervised algorithms would require a large number of
training patterns for optimal classification. On the other hand, nonsupervised
algorithms have a serious disadvantage concerning the rate of convergence.
Therefore, there would have some difficult problems in the applications of these
algorithms to practical pattern classification systems.

This paper describes a unified algorithm which combines these two algorithms
to remove the above problems.

2. A Unified Algorithm

It is generally assumed that each pattern may be represented by an -
dimensional vector. In this paper, however, for ease of notation we consider
each pattern represented by a scalar. We deal with the more general cases where
a probability density and an a priori probability associated with each pattern class
are all unknown, where no assumption need be made about the forms of the
probability densities, and where they may be sufficiently overlapping. '

Let there be M possible classes w;, w,, , wy. A probability density p(x|w,)
and an a priori probability of occurrence P, are associated with each pattern
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class. We assume here that each probability density p(z|e;) can be approximated
by a finite series of known orthogonal functions:

plrlw,) = jgll a;045(x) (1)

where the ¢;;(x) are known orthogonal functions and the a,; are unknown
coefficients.

In this algorithm, we first make use of a supervised algorithm. The super-
vised algorithm is as follows:

According to practical situations, an appropriate training period is to be
determined. The supervised algorithm will adjust the unknown coefficients a,;
using a proper set of training patterns. As a measure of the approximation, we
take a quadratic measure. TFurthermore, the normalization condition must be
setisfied for p(x|w;). Consequently, we have the following Lagrangian:

L1¢=§X{p(x|a)i)—f>(xlwz} dz—2, {z adi—1)  foralli  (2)

where 1, are Lagrange multipliers, d;;= S‘Ygo” Vdx.
Therefore, optimal coefficients a; can be obtamed by minimizing L,;. Then,
we set the gradient of L,;, equal to zero, that is,

Plu=V Ux{f’ (‘”{“’J—?(xlwﬁ}zdxﬁz{gaﬁdw—l}]:o for all i
(3)

Consequently, by solving Eq. (3) the optimal coefficients «j; may be given by

Ny Ny
ai; =E® {goz.j(x)} + {l- ;}E“) {gow(x)} d.”} dﬁ/gldgj for all ¢ and j
(4)
where E® { } denotes the average over the population of pattern class :.

Let a,;(k) be the estimates of the unknown coefficients a;; at the A-th step
of training process. According to Eq. (4) the reasonable estimates of the ay; at
the k-th step may be represented by

Ng 7 Ng
as®) = T goteint [1= Z{Zoutaldon |do| T

for all 7 and j (5)

where 7, denotes the number of training patterns belonging to pattern class ¢
until the %-th step.

For the a priori probabilities, let 7,,(£) be the estimate of the a priori pro-
bability of pattern class 7 at the A-th step. Then, the reasonable estimates for
the unknown a priori probabilities might be

Da,(R) = 1, /R for all ¢ (6)

After a finite number of adjustments of the coefficients a,;, during the pre-
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determined training period, it does not necessarily follow that the estimates for
the coefficients «;; have converged enough to the values of the optimal coefficients
a};. Therefore, the supervised algorithm need be followed by some nonsupervised
algorithm to continue the adjustment process.

The nonsupervised algorithm in this unified algorithm is as follows:

By using Eq. (1) the over- all probability density of patterns can be approxi-
mated as

M
b(@)= X, Pu, P(x|w)
M iy
= & ﬁwijglaw%f(x) (7)

where $,, denotes the estimate of the a priori probability of pattern class .

We again take a quadratic measure. Furthermore, we must have the fol-
lowing constraints so that we may identify reasonably each probability density
and each a priori probability:

Ng N
§ Z aijsoij(x)dx = Zi: aijd/;j =1 fOr all i < 8 )
Xj=1 i=1
o o~
P (9)

Therefore, we have the following Lagrangian:

L - L{p(a:)fb(x)}zdxﬂ-gzi{:éa“dw~1} +‘u{§}lﬁw£—1} (10)

where A, and g are Lagrange multipliers.

Consequently, in order to obtain the optimal coefficients a; and the optimal
estimates ;, of the a priori probabilities, we set the gradient of L, equal to zero,
that is,

VL~ VUX {p (@)~ b)) dz+ 5 {:éaﬁd”—q —I—y{éﬁmi—l}] —0

(11)

Evidently, Eq. (11) are not linear equations of the unknown parameters. We
make use of gradient method to solve Eq. (11). With the use of gradient method
to solve Eq. (11). With the use of digital computer we can obtain comparatively
easily the reasonable estimates of the unknown parameters. Furthermore, we
can obtain definitely the optimal parameters of each pattern class as the numbes
of observed patterns approaches infinity.

In this unified algorithm, maximume-likelihood criterion is used for optimal
classification of observed patterns. If, for any observed pattern x

Po, P(x|0) = P, plx]wy) for all j, j#¢ (12)
the pattern x may be assigned to pattern class 7. If in Eq. (12) the sign of
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equality holds, it is assigned to the pattern class with the smallest index.

3. Conclusion

We proposed a unified algorithm for adaptive pattern classification. This
algorithm works under more general conditions and has some advantages for
practical applications. Furthermore, it can follow slow changes in the probability
structure of pattern classes.
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