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On the stress analysis of the plates with

multi-crosswise ribs (Part 1)

Sumio G. Nomachi*, Kenichi G. Matsuoka™*
and Toshiyuki Ohshima™**

Abstract

Bending and horizontal deformation of a ribbed plate which is built up with many
thin rectangular plates as shown in Fig. 1, is considered here.

Making use of Displacement-Shear-Equations concerning folded plate theory, we can
express the equilibrium of shearing forces at the joint line where three or {four component
strips meet with one another, by simultaneous finite difference equations with respect to
five components of displacement, and an analytical method for solving those finite difference
equations by means of finite fourier transforms based on finite integration, is discussed.

As numerical examples, the presenting paper deals with the simply supported ribbed
plates subjected to lateral and horizontal loads.

1. Introduction

The structure on which we are going to study, is a plate stiffened in
two mutually perpendicular directions by a system of longitudinal and trans-
verse ribs connected with it.

x,4: Continuous numben

X,Y : discrete numben
FIQURVLD YIS

x (U,

Rlwd
Fig. 1. Two-way ribbed Plate
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172 Sumio G. Nomachi, Kenichi G. Matsuoka and Toshiyuki Ohshima

Let us call it the “Two-way ribbed plate.” The structure of this kind
has a good design efficiency, and is used for the steel plate deck construc-
tion of the bridge structure and a partial reinforcement of main girder, at
which the stiffening cable is anchored™*.

Besides then, it can be seen in composite construction bridges, well
suited for short and medium range spans, the concrete deck participates in
the stresses of the main girder to which it is bonded. .

Since the two-way ribbed plate is widely used, its stress behaviour has
been extensively investigated by many engineers and reseachers.

The reseaches so far made, can roughly be grouped in three categories.
The first one stands on the base emphasizing the nature of the grid work,
and the plate is replaced by the grid of perpendicularly intersecting T-beams,
which are composed by ribs and platets.

In such modelling, the shearing resistance of the plane stress in the
plate, which is supposed to have fairly effect for some cases, is neglected.
H. Homberg® and F. Leonhart” did much in this area.

The second one is the bending theory of the orthotropic plate. It is
natural that the two-way ribbed plate should be modeled by an orthogonal
anisotropic plate, which is defined as a plate which has different elastic
properties in two mutually perpendicular directions, in the plane of plate.
In this case, the characteristics of the ribs which have discrete properties,
may be averaged and the ribbed plate is replaced by a model of continuocus
media. M. T. Huber, S. P. Timoshenko and W. Cornelius are known as
outstanding reseachers in this field.

The third theory is something like the theory of “Schubfeld Theorie”
by H. Ebner® who established it on the assumption that the plate might
bear only the plane shear, and it is widely used for the design of the thin
walled frame work structure. Our discussion will stand from the idea of
the third category.

In the bridge structure, the two-way ribbed plate is often adapted as
the web plate or the flange plate, and the thickness of the plate is not so
thin that we can not neglect the normal stress in the plate any more.

Taking the effect of normal stress and of shearing stress in the plate
into account, we use “Displacement and Shear Equation” of the folded plate
theory. Considering this three plates of strip meet at a nodal line with
one another, around its nodal line we have an equation of equilibrium of
shear in which the displacements and their derivertives are included.

Integrating the equation successively, we can get the relations between
nodal displacements and nodal forces. Thus the fundemental finite difference
equations for the stress problem of the two-way ribbed plate is established,

and for solving the finite difference equations, “Finite Integration Transform”
is used.
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2. Basic formulas and symbolic notations

1) Displacement-Shear-Equations
The shearing forces are expressed with the displacements and the normal

stresses at the lower and upper sides of a folded plates element, by the

displacement-shear-equations”.

OAB
e x ﬂt ’W
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Fig. 2. Folded plate element
r N 1
T iplx) = 6 (204 MB) +”g (SAB_“SB/O ' (1 >
. N o1
T palx) = 3 (26g+ i) + Z (Szi—Suz) (2)
Where
= % R N=FEta
1 L. Gt 1 . —
’5 Gt('UA +'UB>: 7(”A_ulg)+z(sﬂ43”‘sl;/l) (3)

2) Finite Fourier Integration Transforms and their inverse formulars®

a) Let us introduce the symbolic notation
e . im
Si[f(x)] = g}lf(x)-sm P
7ol i
£ = & fla-cos o

which are coupled with

Jla)y= % :Z;:ll S; [ ¥a (x):’ sin f;f, z
2 » - (5)
Fl@) = & R £@)]-cos 7 2

where
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B[ (@)= [ @]+ 5 (— 1oy A0

r[ 1) = Fler@]+ 5 —ar s o)

i=0,1,n, =01, 2.
b) Related formulas

For convenience sake, let us difine the second difference and the modithfied
difference as follows,

£f(x)=fla+1)=2f(z)+flz—1)
4 f(x) = flz+1)—flz—1)

Applying the above formulas to the sine and cosine transforms, we have
S| #f@)] = —sin 7 (=17 fm—rO)—Desi[ 7] (6)

- )
$i[4 (@) = = 2-si0 R ()] (7)

ol ££@)| = (- 10 4f =)= 2£O-D, R{F@|  (8)

laf@| == (=11 a£0-1-4£0)

in

+<1 + cos 7){(—1)¢f(n)—f(0)}+2.sin %-Sz-[f(x)] (9)

where

D, = 2(1—cos —Z£>
n

3. Analysis of two-way ribbed plate

The four sides of the ribbed plate are parallel to the coordinate axis
x and y, whose positive directions are given by the arrowhead, as shown
in Fig. 1.

And the three components of displacements in x, ¥ and z directions
are denoted by #, v and w.

And also let the letter 7" be the shear flow and the letter .S, the normal
forces per unit length.

1) Equilibrium of shearing forces at the nodal line in the x direction

The three shearing forces and the outside surface traction along the
nodal line parallel to the x axis on which the deck plate is intersected by
the rib plate, is expressed by
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Ty yal@)+ Tyylx)+ T¥(z) =P<x)

(10)
which together with Egs. (1), (2) and (3) yields
N, Ny N, N, No .
3 I3 2- uy+ 5 uy+1+ 6 uY - 6 Uy
Gt Gtz Gt Gy,
—<2 7o hoz ) uy+72— (uY+1 + uY—l) -+ # uy
Gt . . .
57 (Oy11—0r-1) + Gty = p() (11)
where
M)z Et()z hox > Nm':EtlzZ -
2) Equilibrium of shearing forces in the y-direction
Similarly in the y direction,
L NG, N, N, .
[Zg/ -+ 60J] 2Vt Z(\; U1+ 6 Dy 1+-6‘OL%‘ZX
5 Gt | Gy, Gt Gt Gt,
—(2 W +-7-lo° >vX+ 7 Vrnt Ut h°‘” U5
Y
Gt . . .
5 (uX+1—uX—l> =+ Gtoy Wx :P<?/> (12)
where
ov . .
'é:?yg, M)y:-EtOyhOy) Ny:_Etﬁl.
3) Boundary conditions of the rib plate in the x and y directions
Ne ..  Noo . o G
Ty, = *3-0" uif—i——g—uY—Gt%wy—i- A 2 (14— 1) (13)
0z
Ny, .. Ny, . Gt,
Tz, z_?)(’*—"v}—k 6°" Dy— Gty W+ hoz,y (vx—v%) (14)

4) Equilibrium of shearing forces at the node x, y in the z direction

Look at the rib element, from Eq. (3) we have at once

Gto:c hOzwm.Y = GtOm(um.Y— u;Y) + (SIY_ S:Y)

GtOyhwaXy = Gt0y<va~v}y>+(§XJ_§§Zy> (16>

in which S(x)zSS(:c)-dx, and it is supposed to be a shearing force inside
of the rib, so we can write it as

'§(x> = CX.X+1_(PX.X+1_pr.X+1> (17)
where
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Fig. 3. Geometry of two-way ribbed System

Cx x.1=resultant shearing force acting on the boundary

p o8]
Pyyn= SX P(x) dx

Integrating Egs. (15) and (16) by x and %, on the assumption that «
and v respectively may be linear with respect to x and y, we find that

A
Gty ho dxwyy = Gty, {uxy togy— Uy + u§z+.1y)} ‘2L

+vCx xi1° 21“(YPX.X+1\3‘ _ij}xﬂ\é‘)

(18)
Gloohoe dsxWs1.y = Gtm{uxy ey — (i + ufm.y>} %
+Crx1t A —(Prxalb =Py 2 ) (19)
Gay hoy dyw sy = Gty {vxy + Vx i — (VT 0k, >}12-
+xCy.yi1 o~ (Lr.rally — Ly ralf) (20)

4

Gty hoy dywgy = Gtoy{vXY+ Vry 1—(O%r 1+ ‘UfY.Y)} D)
+XCY.Y—1‘22*(XPY.Y~1133_‘XF?.Y—ﬂéz) (21)
The equilibrium of shearing forces around the cylindrical section cen-
tering the node x, y, yields the equation oncerning € as follows :

yCx 51— YCOx x1F xCr.y-1—xCr.y 1= PXY (22>
in which all of ¢ can be eliminated by Egs. (18), (19), (20) and (21), and
we come to the expression
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Gty h Gty h
0/21 0z 2 XY+ 07/ M0y M40y AY Wey
Gt, Gt,
- 2% (ﬁ'xux.y_ﬁxu§zy)—' 209 (AY“(JXY—AY‘UfW>
1 P
= xr+ 5 P (YPXXJIO IPXYLI +YPXA 110“‘ YXA\ )
1 D 2 D 2 3] 2 Pe 2 ‘
+ ”22- (X-EY.Y—H]OZ _XEY.Y+1102 =+ XEYAquoz'“XEY.YﬁlloZ) (Z3>
By applying the procedures described in Appendix to Egs. (11), (12), (13)
and (14), we can transform them into the equations as follows
(An+240) Buxy+ A Lodytiyy + A bttty
- (Bn + 2312) Uxyy -+ Bl2 A%{ Uxy “+ Blg ufyy
=+ ClZAXA'Y Uy + Crpdxwyy = P, (24)
Apdotizy+ Ap Lytigy+ Buuiy + Bptigy — Cpdrwey = P, (25)
- (Asl A%way -+ Asz A%’wxﬁ + C31 <AXUXY”“5XU,ZYY)
-+ Csz (AY‘UXY‘“AYU?Y) = P (26)
ASI Agf'vfi'y + Asz A%;‘UXY + B51 Vsy+ Bsz Vxy— C51 Aywzy = £ (27)
<A21 + 2A22> By vy + As A?X"%/"”XY + Ay b5 vy
+ (le + 2322) Uy -+ B L Vxy + By Vv
+ sz dydytzy+ Czs Ay Wy = P (28)
Table 1. Coefficient of Eq. (24), (25), (26), (27) and (28)
Ay
' J
¢ 1 2 3
2 [N:r Now
L W3 e i(N Gt/h) i(_z\@,_, Gzozzl_>
-;_L (2 ,gt, Gtos > 6 A1 A2 6 3 o
6 ]'LOx
_Z_{_IYL Noy.
) 213 6 L(Me, Gl L (R Giple)
“ __]_2( g_ Gto,y) 6\ Ag AL 6\ 22 Yoy
6 1 hoy
3 Glowhos Gloy hoy
}q Z‘Z -
4 Noz Gty Noz | Gtoe 2y .
34 6h0x 641 6h0x
5 Noy  Gtoy 2 Noy | Gloy A -
32 670y 622 6hoy
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Table 1. Continue
Bij
3
i 1 2 ' 3
Gt . G Gty | Gtow la
! a2 GG 7 T
Gt | Gty > Gty Gtoy 22
2 22 (2 21 + }L()g/ 21 h()f(/
5 — — | —
4 . Gt()x Zf} Gt()ac A o
Aoz how
5 Gtoy A2 Grox 44 | L
‘: - hOy }10_7/ !
Cij
( J
‘ ' 1 2 [ 3
1 Gt Gton
- 4 2
{
Gt Gtox
2 - 1 2
3 Groz Gioy
2 2 -
GtOx
4 =k _ _
! Gtoy
5| g — -
which are the fundermental difference equations for this case. Using for-

mulas (6), (7), (8) and (9), we can perform finite fourier integration transform
to these equations.

When we take the condition that the deflections and the stress com-
ponents are zero along the four edges, the boundary values in the equations
vanish, and they become

“(Au + 2A12> D, R.,8S; [uXY] + Alz D, D, RS, [uXY]
— Ay D, R, 8;{uxy] +(Bu+2By) B, S;[uxy]
—B D¢ R, S,, [uXY] +B; R, S, [uer]

—4Cy;-sin —%— sin _7%11'_ S, B [vzv] +2C; sin —ﬂ% 8,8 [wxy] = P, (29)
—AuD, R, 8;|5r)—ApD,, R, S;[uxy] + By R, 8;[uiy]
+ B42 Rm Sz [uxy] - 2C41 Sin Ln} Sm Sz [wa] = ﬁz (30)
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(Am D, + Ay Dz) S, 8 [wxy]—2C;, - sin 77:1‘ <Rm Silwxy] — R, 8; [%@Y])

—9C,sin S Blo] 8, Ruloin] ) = Py (31)
— A Dy 8, R[] — A D 8, By [vxy] + B 8, B, [Vir]
+ B 8, By [v1] —2C5; - sin "Z]Zi 8, Ss[wyy] = 134 (32)

— (A21 + 2A22> DS, R, [vXY] +AuD; D, S, 8, [vxr]
— A23 Dz‘ S, R, [‘Ufw] + (Bm + 2322) S, B, ['UYY]
—B,D,. S, I, ["UXY] + B8, R, [7);1/]

—4C-sin 7 sin T Ry S [tee] + 2C5 sin - 8, Si[wal = Py (33)

which can be written in

K U=pP (34)
where
K=[a; a, ag ay  ag | U=( R, 8 [uw] P = Fl
Ay Ay Ay Ay Ay E,S, [ufYY] P 2
s Az Az Az Axp |- 8., 8 {wxy] P 3
An Ay Quz Ay Qg 8, R, [‘UXY] . 13 4
L1 sz sz A5 Qss | S B3 [Vsr) J P 5
Eti, | Etphy Gluk
a = — 2 T TS ) (1—cos TF

_El_tlg Gt/?l i Gtogc/h Gt21 ( EZ'“
-+ 3< 7 + 7 )( —cos )( —COos \) T —2 % 1—cos k>

_ GtOxjiL__};( Etﬂmh% GtOzzl 1 o
=7 " 3 2 cos 2.
. mx mr ir
s = Gly,- sin T, = 0, az=— Gt sin T sin —— 7

Gtox/zl _2< Eh»()z t()m _ Gtole ><1 mm >

A =g, An =" "p - 34 6he J\" 0

Ay = — Gy, 8in 7_/71277: y Au=ax=0, ay=a;, ap=ax

e —Z[Gt;h“ <1_ coe T>+ Gt(z,zhoj (1_ o8 1}:)]

gy = — Glg,sin Z—Z— ,  as = Gty,sin %r » aw=ap=0, as=ay
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Gty 2y (Eto_,,hoz, Gty ke > ( 1 — cos i7r>

Gu =" 3% 650y %
_ Gty 2, Ety, hyy | Gloyds ir
Qs = . — 3 % + Foy 1—cos 7

sy = s,  Qsp = g5, g = A3z, Asu = Ay

_ Eth | Ety,hy, Gtoy,b)( i >
a55——2( 7 + 34 6hoy | 1—cos 7

3 Z.
—1—‘2“( Et21_+ Gedy <1—cos ﬁz—)(1——003 E)— Gloy 2o —2 Gt (1— cos X
3 n k 11

")

A2 A oy
And stresses are obtained as follows,

N O’C ]\me

Ny,
S [thy] = S [AXqu]’\" 6/2 S [Axux{y]

Gy h
6/010,51 (2 8 lex vl + 8 [t vl —2- 83 [ir] — Sil e, y]>

Gty [ . i . .
- 20 <Sz [t es 1v]— 8 [wxy]> - %" S (e ] (35)

(123 2ot

—+

:{( 2)_21\1 M@}sugu”n@tm( -si[uayhsi[ufﬂ.w])
— G o D) (2 St S )
S sin T Bl s~ Bl |+ 25 (81w~ Silawr] ) (36)
N‘”’ 8, [0%] = N‘”J 8 [Arvi] + N‘”’ L S [4y 0]
G (2 S o S i) =2 Sulwin] — Sulvir]
e (NN Pl PR S OV (37)
(ECSNIS AP
:{( ~—D6—> IZ + Z } m[AYva]+%ﬁ<2-sm[v;y]+Sm[v§z.y+1]>
G 4t;;;y D) (2 Sulo) + ol

Gt .
——5 -sin— = (_Rm[ux ra1)— L [%tY])

3Gty { ..
4 : (Sm [wX. Y+1] - Sm [wXY]>

(38)
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4. Numerical examples

In order to illustrate the numerical results obtained by the method
presented in this paper, some simple cases are taken.

(XIG®E K¥/en?> 0% p=1%3 oX (x10%E K8 /o )
6.0— e - 6.9
\ /

1.0 ~
2.0 <

-~ t.0
3.0+
4.0
$.0 — 20
6.0—

TN

~

]

{ X10°E ¥a/em )

~—_

ay

s\‘
Fig. 4.

p=1%

¢ and ¢2 Diagraw

4

0.0—-—r
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3.0 -
4 -
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7.0 -
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\

\

/

>

N

/

r/‘

]

Fig. 5.

[/

-\‘r—-""‘

//

g3 (XIG°E KT /epp )

—0.0

~ 2.0

¢y and ¢f Diagraw (E=34800kg/cm?, v=0)
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(x16% em) p=tka
0.0

1.0

\\ -

/4

—
Fig. 6. o Diagraw
The computation was carried on by FACOM 230-60 in HOKKAIDO
university which is an electric digital computor with 80 K core memories.

CPU time occupied in a cycle of stress calculation and its output was only
20 seconds for each cases.

a) Simply supported two-way ribbed plate subjected to a lateral
concentrated load at the center of plate
E=34800 kg/cm®, v=0.0, £=0.3 cm, &,=£,=0.5cm, 4=24=10cm, A,
=hy,=6cm, n=8, k=6, P=1kg.
b) Simply supported two-way ribbed plate subjected to surface
tractions parallel to xy plane
E=34800 kg/cm? v=0.0, t=0.3cm, %,=%,=05cm, 4=21=10cm, hy,
=hy,=6cm, n=8, k=6, P,=1kg/cm.

(X 10FE K¥/en

4.0

a0 (% 1T5E “Y/ent >
—}.0

2.0 ox I

o.x x

1.0 , b

0.0 —0.0
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\
T
%

[

/w"‘"

Fig. 7. o3 and ¢} Diagraw
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&
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(xlog%em
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0.0 o
+2.0

Fig. 9. o Diagraw

5. Remarks

The solutions of the ribbed plate we have discussed here is analytical
method of solving the finite difference equations. The actual system can be
reduced to the discrete model starting with the Displacement-shear equation
of a folded plate element. Thus obtained equation is easily solved by means
of “Finite Integration Transform”.
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The numerical results will be checked by the experimental one. And
the method used in this discussion will be extended to analysis of sandwitch
ribbed plate, trussed plate and as such.

The stiffness matrix for the prescribed numerical computation may be
said up to bxnxk one when we follow the way of usual folded plated
theory, whereas the method mentioned above needs only 5 x5 matrix.
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Appendix

To find the discrete relation of the differential equation, a method of
the successive integration by S. G. Nomachi will be introduced.

Suppose the interval of two adjacent point be small enough to assume
that a part of linear variation takes a most important one in that reign
and the higher order term is neglected in comparison with it.

To make further discussion simple, let us begin with the equation ;

Kuy+ G1 Uy + Gz wy == P(x) (39)

We take as approximate values of external surface tractions distribute along
the line of intersection in the x direction as
=z

Pla)= P15 o P () (0)

The Eq. (39) is rewritten in

(184)
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Kiiy+ G, uXY(l "‘£> +G, Uxy 1Y<”£>
11 /Zl

+G2wY—PXY<1—%>—Px+,1y<%> =0 (41)

Integrating it with respect to x, and regulating the integral constant as
to satisfy the condition for =0, and taking that the value on the left side
of a certain point should be equal to the one on the right side of it, into
account, we have

2

. y x x
Kay+ Gy 1—2_21 +Grux oy 2—21 +Gywy

e x?
_RYY<$*§Z‘>_PX+.1Y<_ZZ> = Kityy + Gywixy (42)
And substituting
wylx)= wX,Y<1_%>+wX+1,Y<Tx1> (43)

into Eq. (42), and integrating again from =0 to x=2, we find that

A2 A2 . A
Kotz v—tizy)+ G1?1uxy + G1fl Uxi1yT (72_21‘ (way+ Wri1.y)

: Z i ,
—<ny'§1"+Px+].y‘6L>:<Kuxy+G2wxy) 21 (44)

Putting 4 for x in (42), and multiplying it by 4, we have

22 12
(Kttgir.v+Gowxzir y) A+ Gzé (txy+2xs v) “—21“ (Pry+ Priivy)

= (Ktxy+ Gowxy) & (45)

And substitution of the left side of Eq. (45) into the right side of Eq. (44)
becomes

2 e A
K<ux+1.y’“ux.Y)_“gl“Glux.Y“?lG1ux+1.Y+ sz(wx.Y“"wxﬂ.Y)
e P .
+"6'1‘PX.Y"‘—31“PX+1.Y == (K”X+1.Y+ GZwX—H.Y) A (46)

Vo rH 2
K(”X.Y—uxle>_v61—Gl uxgl.y__gl‘(iux.y‘*“ G, 71 (Wx-1.y+Wxy)

A 2 .
+h6LPX_1.y+?1PXy=(KuX.y+G2wx.y) 21 (47)

Then subtracting Eq. (47) from Eq. (44), the pequired difference equation is

obtained as follows./
2 2% 2 2 21 % 2 2
K&z v+ G @A.xuxy + G ey + ”Z_Gzﬁxwxy = _6"'AXPXY+ EPgy (48)
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