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On a Three Dimensional Stress Analysis of an
Annular Cylindrical Body Subjected by
Non-axisymmetrical Loading

Sumio G. Nomachi and Kenichi G. Matsuoka

Abstract
The three dimensional stress problem written in the cylindrical co-ordinate system is
solved using the finite Fourier-Hanke! transform method. The boundary conditions are so
given as to produce anti-symmetrical stress distribution with respect to a diameter. The
detail discussion is focused on the case when a thick hollow cylinder is subjected by a
partially distributed load acting in the radial direction with the numerical results.

1. Introduction

Though the recent progress of the electric digital computer makes it
possible for us to handle the three dimensional stress problems by means
of “Finite Element Method” or “Finite Difference Method”, etc., many prob-
lems still remain untouched in the field of the three dimensional elasticity.

It is because that the convergency of F. E. M. seems to be uncertain,
and the capacity of the computer still is not large enough for the thorough
treatment of the three dimensional stress state. The analytical solutions so
far presented, seems to be confined to the case of infinite, semi-infinite
elastic body and the thick plate.

In this paper, the nonaxial stress problem of a hollow cylinder is dealt
with, by means of the Finite Fourier-Hankel transform. Specifically, the

paper considers the case when the thich hollow cylinder is subjected by
bending.

2. The Fundamental Differential Eguation

Let o, 6, and o, be the normal stresses in the 7, @ and 2 directions,

and 7,4 7, and 7, be the corresponding shearing stresses respectivery, the
equilibrium of forces are expressed by
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Denoting the components of displacement in the 7, § and z directions
by u, v and w, the Hook’s law is written as {ollows

[ du ]
‘5,1 [22+2 2 2 ara
U v
oy | = A 20+ 2 A 74—*@ (2)
g, A A 2n+2 S
L oz
o 2 1 )
o0 or r
Tra Py P
o |=p| O 5 Tl Y (3)
T : w
zr a a
2% 0 o

where p, 1 are the Lamé’s elastic constants.

3. Finite Fourier-Hankel Transformation
and Their Inversion Formulas

a) Fourier Transforms

If f(x) satisfies Dirichlet’s conditions in the interval (0, @) and if its
finite Fourier transforms in that range are defined to be

8] 1) =\ s sin 25 ade,

af @)= | fla) cos 25 ade,

where n=1,2, -,
then at any point of (0, a) at which the function f{x) is continuous

fla) =2 5 5] r@]sin 25 <,
fla)=2{ 5 ] ) cos 2 ar| o]

b) Hankel Transforms

If f(x) satisfies Dirichlet’s conditions in the interval (a, &) and i its
finite Hankel transforms in that range are defined to be

| fw)| = | A et e de,
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then at any point of (a, b) at which the function f(x) is continuous

PP ETS A
flay = 5 | |
Slx) = bzuz_vaz,, x”_IS:f(x)x dx_‘_%g:l ]I)—l[f< )] H,,_éngzl‘) ,

where
Hy(g;x) = J;(&2) Y. (&a)—J,(&a) Y,(E: ),
j:V_]-a Y, v+1 ’

2 2 2
@%z' = {H»+1($¢b)} — <‘Z}"> {Hu+1($z' a)}
and &; is a root of transcendental equation

H,(&6)=0.

4. Solution by Means of Finite
Fourier-Hankel Transform

A method of solution was presented before, wew ill
focus the discussion on the case when the hollow cylinder
is of antiaxial stresss tate. The hollow cylinder of which
inner radius, outer radius and depth are denoted by
b(=a)), a{=a,) and ¢, respectively. Multiplying Eq. (1) by

I— {cos v X(r, 2) sinvf-X(r, 2) cos 8- X(r, z)}
where
ve=———= (v @=21) m=24, -,

and integrating by parts, with the aid of Egs. (2) and (3), we have the
Fourier transformations with respect to ¢ as follows;

S Ko,u,dA, = § [Ku 4 X ﬂh]bdz
AB 0 @

n Sb K, O [w]+ X- sz]c dr (4)
al 0
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Introducing A,,., B,,. as

rm1ﬁr 1'Hawq
B..]7l1 1]l s

and substituting then into Eq. (4), we find that

b o
S K{,u;dAazg [Kz’uuﬁ-%X-G{v] dz+S [Kg,)ou[w]ﬂtx.o;p] dr (5)
Ag @ 0

b
@

e
0

The 1st and 2nd rows of K, ¢, and ¢, are replaced by the addition and
subtraction with the 1st and 2nd rows of K,, #, and o, respectively.

Then substituting sin Nz-H,,,(§#) for X in the 1st row of Eq. (5),
sin Nz-H,_,{&;7) for X in the 2nd row, and cos Nz-H,(&7) for X in the
3rd row, we finally have the equations for the Fourier-Hankel transforms
of A,.. B,. and w, as follows;

(164
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nx
N=—, n=12,--
c

Solving Eq. (6) simultaneously, the inversion formulas lead to the com-
pornents of displacement in the following forms:
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D,.., E;. in Eq. (7) can be determined so as to satisfy .the boundary
conditions. The stresses will be found by substituting Eq. (7) into Egs. (2)
and (3).

5. Numerical Example

When the thick hollow cylinder, with the supports at the points z=0
and z=c, is subjected by the load with the variation of cosf, which locally
distributes over the central part of the span. The boundary conditions are
expressed by

(1)
which yields

(ii)

from which a,,;=08..=0.

0,=0, u=v=0, for 2=0, 2=,
Tm-:Ef@ZEfi:O.

G,=Tp=1,=0, for r=a,

(1) tp=r..=0, for r=0,
and
_ {qucost cf2—cy<z>cl2—c
o o )2—c>z, c2+a<z,

from which
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| U, ; elementary beam theory
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Fig. 3 shows how the radial dis-

0’. Ty ; elementary beam theory

2,
placement at the middle plane of the  #Z | by =1.25
. Ll‘ﬁ I
cylinder varys, and the figure also has cu/y =0.078125
the variation of deflection calculated by ‘

157 v =0.25
the elementary beam theory. The var- ;
iations of the ratio between the outside
and inside displacements w, for z=c¢/2 1.0
and =0, and the deflection of beam, {
are shown in Figs. 4 and 5. 5L

The distributions of ¢, and ¢,, for 0.51.02.0 4.0 8.0
z=c/2 and §=0, are shown in Fig. 6.
Figs. 7 and 8 show the variation of the
ratio betweed the outside ¢,, for 2=¢/2 and §=0, and the maximum fiber
stress due to the beam theory.

The distributions of the shearing stress for »=0 are shown in Fig. 9.
The value of 7,, for =0, 8=r/2 and r=a, is shown in Figs. 10 and 11,
as the multiple with the maximum shearing stress due to elementary theory.

We find that the result, for ¢/2b=1, quite differ {from that of the ele-
mentary theory. And in the particular case when b/a =1.25, the results
also fairy differs from that obtained by the beam theory, except for the
deflection. It shoud be noted that the shearing stress always takes larger
values than that of the elementary theory, because of the stres concentration
around the inside hole.

Fig. 11,

6. Final Remark

By making use of thé finite Fourier-Hankel transform, the antiaxial
symmetrical stress state concerning the thick hollow cylinder of finite length
is expressed by the function involving the boundary values in it, so that we
can easily handle the boundary conditions. The series of the function has
good convergency. Hence, we may say that the method quite fit solving
such the problem as this; we need not use the similtaneous equations by
large array and not to take a long run of digital computer. The solution
can widels apply to the other boundary conditions.

(Received May 21, 1973).
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