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Some Extensional Constitutions of Integral

Yoshio Kinokuniya*

Abstract

As the a priori measure is an extension of the Lebesgue measure, the Lebesgue integral is
naturally extended by means of the a priori measure. Notions of ‘integral remainder’ and
‘integral density’ are introduced and discussed on some interesting cases.

1. Introduction

In the previous paper, the present author presented that collections of
sets may, in the empiricist pragmatism”, be assorted into two patterns, say,
summable”® and non-summable ones. Even if a family of disjoint sets (A,)
(¢eI, I being a simply ordered set of indices) in a euclidean space E is non-
summable, if

A=UA,, (1.1)

(A) is regarded as a partition of A, though A cannot be considered as the
limit of the sets A= U.<.A, (k€l). It is notable that, even if A, is non-
summable®), the aggregate A is considered as a determinate set since

(VpeE)(A.V.Ael)(peA).

Eventually, the right side of (1.1) gives either a summable union (or, briefly
a summation) or a non-summable union of A.
#A indicates the a priori measure (value) of a set A. If mA is the
Lebesgue measure of A, then
mA=mA.

Moreover, even if A is Lebesgue non-measurable, A can be #-measurable. In
the empiricist pragmatism, any determinate set X (.e., (VpeE)(peX. V.pg X))
is proved to be #-measurable, so that A of (1.1) may be taken as #-measurable
whenever all A, are determinate.

In our view, mA is claimed to be written in the from

A = el A),
when all points of A are regarded to be uniformly of the same size g In
case of (1.1), if I={1,2,---} and

Vi, kGI: %AJ?%A,C = D(Ai)/U(A/C) =1 (1. 2)
and if

R EA T B
* Le., #(Amn—A@n)UA@—Aw)A0, when #, A-—>co.
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424 Yoshio Kinokuniya

O<mA<co,
then it must be that

so that %Ay =0 and #(A—A,)>0 for any finite integer 2 Hence (4,) can-
not be summable®,

In this paper, we limit the functions being considered to be real-valued,
one-valued and to be bounded in its domain which is a bounded set in E
(therefore, of finite #-measure). U D is the domain of a function f(p), we
define such that

D, ={peD|f(p) < =}
for a real number x In this case, if
vpeD: —oo<aZ f(p)S=b< oo
and [=b—a,
we define as

()

D’ﬂ:D(a+2L;‘l>_D(a+%l) (k=1, 2’,,_’27;)’

1 = 5 (a+ i;;—z) 7D, and uJs, =3 <a+ —52—1) #wD, .
k=1 k=1 :
Then it is readily seen that
uSy=ndg = =S, _Z_IJ(D »

and moreover that

(=)
0§11J(,,)~IJ(”) = ‘25;,_ Z%D,c = El; mD—0 as n—>oo
so that
We define the integral
| Aerap (x4

to represent the value of (1.3). Such is the same way of definition with that
of the Lebesgue integral except that we use the a priori measure # instead of
the Lebesgu measure m. On the other hand, if we denote by E(f, D) the
(algebraic) expectation of f over D, we easily see that we may have

|,fe)dp=E(, D). (1.5)

*) An example of such a case is shown in 2).
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Some Extensional Constitutions of Integral 425

As #A has been extended beyond mA, the integral (1.4) is naturally
expected to be an extension beyound Lebesgue integrability. In the following,
we will present severs! results obtained through the researches of the integral.

2. Integral Remainder

When a family of disjoint sets (D,) (¢€l, being a simply ordered set of
indices) gives a partition of a set 4, if Dyy=U <D, we naturally have the
relation

[ o= rordp+{  ppap.
Q] (¥)
So it follows that
[ rovap=tm | sprap+r
(x)
where
R=1imSD  f)ap.
)

If the limitation
lim | o) dp (2.1)
®

is convergent, then R gives a unique value because, as proved in Sect. 1, f is
integrable over D, D, and D—D,, for every r€l. If the limitation (2.1) is
not convergent, then R cannot give a unique value. The process (2.1) is
called an inferior approximation of the integral in respect to (D,)(k€l) and
R is the integral remainder of the integral in respect to (D).

As (D,) is a partition of D, we have

D=UD,=UD,
but it is not asserted that
hm ?%(D'—D(,)) == O

when (D)) is not summable. Thus the integral remainder very often does not
vanish.

Let an additive function z(A) of a set A of real numbers be defined such
that

whenever #A=mB and
a(l,)=1

I, being the set {z]—co<x<<oo}. In this case, denoting by I, the interval
{x|—k<ax<k}, we have for every positive integer %

a{l)=0

(209)



426 Yoseio Kinokuniya

whereas a(l—I)=1.

Hence we say n(A) has an wnvanishing atmosphere (Joo[) with respect to the
approximation sequence (I;) (£=1, 2, ---) by reason of the fact that

lim z(l.—I,) = 10

Thus, the cass of an unvanishing remainder may be observed as exactly similar
to that of an unvanishing atmosphere.
In case of (1.2), if there exists a real number 8 such that

B =1lim sup f(p) = lim inf £(p),

&k pedy k p€dy

we conclude that

| Sp)dp = ptim (A= A) = p-AL.

So, in regard to (1.5), we have

E(f,A)=8.

3. Principal Part
Let us define a subset D, of D by

D, ={peD|f(p) =z} .

Then the value x may be reckoned as a set-function of D,, so let this func-
tion be written as 2,(D,). Since

x:y-C.}"szDy)

2; is one-valued, and since f is bounded so is 4. Extensively, let us define

D(V) and Dla, b) by
D(V)={peDIf(p)eV} and Dla,b)={pla<fip)<b}

respectively. If @D{a, b)=0, the interval (a, b) is said to be involved in the
negligible part or, briefly, to be negligible.

Let us remove from the set of real numbers every interval (a, &) which is
negligible and for which there is no positive real number ¢ such that

mD{(a—e, b+e)=0.

The rest part left after this process of removal is called the principal part of
f and of 2 and is denoted by P(f). Let us denote as

(a, b)= {x|a<x<b}
and la, b)= {x]a§x<b} .
If an interval is either [a,b) or (a,b), then it is denoted as {a,b). If an
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Somn Extensional Constitutions of Integral 427

interval J is contained in P(f), then J is called a principal interval. It is
easily seen that the principal part P(f) is at most an enumerable union of
intervals or isolated singletons. :
When V={a, b) is a principal interval, then, for any a<c<d=<bh, {¢,d) is
also a principal interval and
#wD{c, d)>0
and it is obviously observed that

#D(V) = iD({a, &)+ #D([c, d))+#HD([d, b)) .

Therefore mD({a, x)) gives a strictly increasing function of x(€(a, b)). So it
must be continuous except for points of at most an enumerable set and its
inverse function also continuous wherever it is continuous. Let the discon-
tinuous points of ®D({a, x)) be x), x5, --+, and let us define as

wmD({a, x))=p, x = ¢y(p) = 2(Ds)

where x€V and p€(0, ®D(V)). Then it is readily seen that there correspond
intervals Ji, J,, --- of p to the points x;, a4, -+- such that

mJ, =mD,, (k=1,2, )
and if we define as
J(V)=(0, =D(V))
and JEV)=J(V)— UJy,

then ¢, is found to be continuous in J*(V). Thus we may have

[, @ A= ot dp+ Tl 6.1)

JH)

where [,=mD,, (k=1,2,---).

However, for the consistence of (3.1), it must be assumed that the union
UJ; is summable. The function ¢, is called the measure interpretation of 2.

4. Integral Density

If two functions f{(p) and ¢(p) are both bounded in the same doman D,
and if

o<| 17wlap|| atpldp<co, @)
f and ¢ are said to have integral densities of the same level, and if
[, 1reap/{ totp1ap =0 «.2)

f is said to have an intiegral densiuy of less level than that of ¢g. If the
supports of f and ¢ are D, and D, respectively, we may, by grace of (1.5),
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prove that (4.1) and (4. 2) coincide with the relations
0<#D;N DjmD,N D< oo (4. 1)
and #D,N D/mD,N D=0 4.2y

respectively on condition that both E(|f], D) and E{|g|, D) are positive.
The a priori measure A of a set A in E can, as stated in Sect. 1, be
written in the form

WA = pev(A). (4. 3)

So then, if the domain D is an enumerable set of points {xy, z, --}, we may
write the integral in the form

§,fprdp=15 Az,

so that
[ rerap|( ow)dp= T Azs 0t @4

If the two series are both convergent and . f{z:)=a and ] g(x,)=5, then
we may have the ratio of (4.4) to be equal to a/b. In this convergent case,
it should however be noted that

E(f, D)= E(g, D)=0.

Thus, in this case, it is observed that the ratio of the integral densities cannot
be simulated by

mD,N DjmD,ND. (4.5)
On the other hand, if f(z,)=1 for all £=1,2, --- and
g(x,)=0 when £k=1,2,45,7,8, -,
=1 when £=3,6,9, -,
then we may count as
E(f,D)y=1 and E(g9,D)=1/3,

so that the ratio of the left side of (4. 4) is counted as equal to 3. In this case
we observe that the ratio of the integral densities can again be simulated by
(4. 5) because

mD D, = v(Dy)[v(D,) = 3[L.
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