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On Three-dimensional Stress Distribution due to

Displacement of a Cylindrical Inclusion

Kenichi G. MaTsuoka and Sumio G. NoMACHI"

Abstract

An interaction between the finite elastic body and the cylindrical inclusion is handled by
solving a three-dimensional stress problem written in the cylindrical coordinate system.

The problem is analyzed by means of finite Fourier-Hankel transforms, on the assumption
that the elastic body is very thick cylinder and the solid core as the inclusion keéps its sectional
area unchanged duping the interaction.

The numerical calculations were carried on for the cases with the various ratio between
outer and inner radii, as well as the different ratio between elastic moduli of the outer body
and the inclusion

1. General expression of displacement

Three-dimensional stress problems were solve by means of finite Fourier-
Hankel transforms”®, and as an application of it, the correct solution concerning
the bending of the thick hollow cylinder, has been obtained by the outhors with
the expressions of the displacements®, and replacements of sine for cosine and
cosine for sine, into these expressions yield another set
of displacements.

Thus obtained displacements will be taken for the
problem now considered. The origin of coordinate is
placed as shown in Fig. 1, in which a and & denote the
inner and outer radii, and ¢ denotes the height of the
cylinder. Let u, v and w be the displacement components
in the 7,0 and =z directions. The boundary conditions >
satisfying that the shearing stress vanishes and w is zero

for 2=0 and ¢, give the displacement vector as follows: Fig. 1.
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which may correspond to the bending behaviour of the beam on the elastic
subgrade as well that of the pile struck into the earth.

2. The formulas of stress components

The stress components are related to the displacement components by the
well-known Hooke’s law :
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where ¢, : the normal stress in the 7 direction
gs: the normal stress in the @ direction
g,: the normal stress in the z direction
7,0 the shearing stress around the z axis
75, ¢ the shearing stress around the 7 axis
.. : the shearing stress around the # axis

The egs. (1)~(b), through the eqgs. (6)~(11), lead to the stress components
as followes :
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3. Boundary conditions

As previously discribed, the periodic boundary condition is taken for z=0
and z==c¢, so what we need now is to find the condition on the interface
between the elastic body and the inclusion, and the condition on the surface
of the outer radius r=b.

To simplify the further discussion, the condition is assumed that z and w
are zero as well as 7, vanishes on the outer surface:

u=0 for r==0b 5 . Aunl = Bunl (20>
w=r1,,=0 for r=5, o Ca=0and a,, =0 (21)

On the interface 7==qa, the shearing stress vanishes, the radial displacement

is continuous, and the radial stress occurs to hold an equilibrium state with

the beam action by the inclusion, so that the boundary conditions are written
as follows:

7,,=0 for r=a, S =0 (22)

7, =0 for r=a, : (23)
4 27

Bl - | o.a cos oan, (24)

which is transformed into

Fig. 2.
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where u,: the displacement of the center of the inclusion,
E,: the elastic modulus of the inclusion, 7: the moment of inartia.

Because the inclusion keeps its initial section during strained, the surface
of the inclusion displaces by

Uy =ty COS B, Vg = —uysinf , (25)
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which are identical with the radial displacement on the inner surface of the
elastic body.

So that
2 © oo
Uy = — 22 2 6Cn(Aet Bo) cos Nz cos vf (26)
p=0 n=0

and the cosine transformation of # is found as

Uy = % i ¢, C,[u,] cos Nz cos 8. 27
n=0
Equating the egs. (26) and (27), we have
C, [uo] == Am2+ BynZ (28)
and y=1.

This means that the displacements and stresses on this case, correspond to
the egs. (1)~(5) and (13)~(19) with v=1.
Hence, the right side of eq. (24) becomes

af"an [0,] cos 8.0 = ap, ., (29)
0 .

in which v=1,
The inclusion also takes the periodic boundary condition in the z direction
as the outer body does. The shearing stress appears for =0 and z=c.
Denoting the resultant of the prescribed shearing stress by P, we finally get

EIN*{ Ay + Buo)— e = {1+ (=17} P (30)
The mathematical definition requires the following equations :
A dper = —z— i ¢, A, cos Ng (31)
7=0
2 o
Ayzr)r=u = ? Z C»A»7L2 cos Nz (32)
n=0
2 o
szr)-r:b = 7 Z Cqunl cos NZ (33)
n=0 .
B = %‘ > ¢,B.pa cos Ne (34)

il
>

7

in which B,,, comes with (v—1) and the egs. (33) and (34) vanish in case of v—1.

As a result, the unknown constants B,.1, B Aum, A, and C,,, are to be
determined and this can be done by the boundary conditions (20), (23), (30), (31)
and (32). -

4. Numerical examples

The numerical calculation was carried on for many cases varying the ratio
bla, the ratio c/a, and the different ratio between the elastic moduli of the outer

(58)
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body and the inclusion. Poisson’s ratio of the elastic body is taken as 0.25.

The distributions of the radial displacement « and the radial stress ¢, in
the 2 direction for #=0, with various value of b/a are shown in Fig. 3 from
which we fined that the shapes of the displacement curve are quite similar,
while the magnitudes are quite different one another. The ratio ¢, and « takes
approximately a constant value for each ratio b/a.

The connection of the maximum value of u and ¢, with the ratio d/a is
illustrated as in Fig. 4, which shows that ¢, decreases down to a constant value
as bja increases, while the value of u increases with the increment of b/a.
The ratio ¢/u,, therefore, tends to zero for &/a—> oco.

The subgrade coefficient which is conventionally used in the theory of the
beam on elastic subgrade, is effected not only by the elastic property of the
subgrade, but also the size ratio between the subgrade and the beam.

The distributions of # and ¢, with the variation of the ratio between the
elastic body and the inclusion, are drawn in Fig. 5, which shows that the inclu-
sion has the smaller elastic modulus, the distribution has the more prompt
variation in the z direction. So that the value of ¢,/ widely changes.

Letting the elastic modulus of the inclusion be constant and varying the
modulus of the outer body, we can find the maximum values of « and o, as
shown in Fig. 6.

Fig. 7 show the relation of ¢,/ with the variation of b/a and F,/E respec-
tively. We see that ¢,/u takes almost the constant value with the variation of
EJE, while it gradually decreases as &/a increases. Though ¢,/u tends to zero
for b—o0, the rate of decrement is very small.

Fig. 8 shows the distribution of # and ¢, in the 2z direction, with the vari-
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ation of c/a. Fig. 9 shows the isochromatic line concerning ¢,, which promply
decreases when 7/a increases.

6. Closing remarks

The effect of the displacement of the cylindrical inclusion on the stress
distribution in the elastic body is studied by treating the chick elastic cylinder
with the co-centered cylindrical inclusion which behaves as a beam. In this
manner, we write the problem in the cylindrical co-ordinate system, which can
be conveniently handled by means of finite Fourier-Hankel transforms.

Carring on the various numerical calculation, we come to the conclusion:

a) the interaction between the elastic body and the inclusion, depends not
only on the both elastic properties but also on the size ratio between them,

b) ¢,/u, which coincides with the subgrade coefficient, approximately takes
a constant value for a larger b/a and 2z/a<(3.0 in spite of any value of E,/E.

The numerical results can not lead us to a theoretical judgement, on
whether the coeventional theory of beam on elastic subgrade stands for the
elastic theory or not. We however, can say the beam on elastic subgrade can
practically go for the engineering use.

The calculation was carried on by FACOM 230-60 of the computer center
on the campus of Hokkaido University.

(Received May. 27, 1974)
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