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Some Advancements in the

Structural Theory of Integrals
Yoshio Kinockuniya*

Abstract

To establish an epistemo-geometrical interpretation of the integration process to be based on the a priori
measure, we meet some difficulties. Especially, an important classical theorem does not hold in this theory of
integrals. However, through some renovations, relations are found in refreshed fashions.

0. Introduction

When we look into a euclidean space (of finite dimension) £, it is found requisite that
the arrangement of its points is forced to have its geometrical form to conform to the
coordinate system thereto given. So, we may specifically associate the points themselves of
E with their forms. Moreover, sizes of the points are accordingly considered to be associated
with them. For instance, if we adopt the polar coordinate system, the size of a point must
accordingly be considered to be the larger as its distance from the origin increases. We
denote by [p] the spatial occupation of a point p in E associated with its gemetrical form
and size such as abstracted in the above and posit such that

o= [D], 0.1)

7 being the a priori measure. Then, y, will be taken as an abstract measure of a point p.
Using uy, for a set A in £ we may have the integral expression of MA in the form

WA= fp re= ap 0.2)

However, there is an important criticism on this construction. For instance, if A is a closed
circular disk, for a boundary point p of A, it may be considered natural that

o] N A=-Llp]. 03)

So then, in the integration of (0.2), to such a p -4-u, will rather be taken to be assigned instead
of up However, to avoid such a complexity, we will find it better if we apply instead of (0.2)
the expression

MA=v(A) u 0.4)
on condition that all the points of £ are assumed to be of the same size measured as x. In this

relation y(A) is called the fnversion number of A in respect to u.
If U (p)is a neighborhood of p, in case of a circular disk A, we may, with regard to the
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582 Yoshio Kinokuniya

formula (0.3), have

ﬁU@Wm;#%%%gélﬁUw)

Thus, if the diameter of U (p) tends to zero, the right hand tends to

%mﬁwm,

which will give a duplicate version of (0.3). Incidentally,if we take u, in the relation (0.2) as
a primitive summand simply corresponding to the spatial position of p which is not directly
connected with any limiting process as lim #mU(p), then the preference of -4y, may not

necessarily be claimed, because the relation (0.2) then, instead of the construction

mlplNA _ 1
i p) 2,

simply suggest that the density of the points of A at the point p is equal to -5-. However, if
we particularly insist on this version, the definition (0.1) is thereby to meet a contradiction.
So, we shall henceforth rencunce the expression (0.3). We may thus eventually regard the
formulas (0.2) and (0.4) are telling the same meaning in case u,=y for every point in £,

A similar thing to the above-stated correlation is observed on the limiting process of a
function / (x) of a real variable x. By G. Cantor was adopted the conventional version that

1=0.999---
This is considered as based on the admission that

1=1-0. (0.5)
However, the mere formula (0.5) apparently meets a contradiction when we have

(1) = f(1—0) . 0.6)

In this context, we may regard (0.5) is, as it were, a static expression about the point 1
whereas (0.6) is a sort of kinetic relation between the values of f (x). So, also in the above-
stated case, we may regard [p] is the static notion of the point-occupation whereas
lim U (p) '
is the kinetic notion of the practical limit.
The integral

[ ripyap 07)
is primarily defined as the limit of the summation
ko k—1 k
S afpe APl <r(< k)

k

for n— oo, and thus we have the relation
[ 5 (av=E(f,)mA,

E(fA) being the mathematical expectation of the values of f over a set A. (0.7) may be

referred as an integral by the Lebesgue process. But, since # 1s a generalized extension of the
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2, Stieltjes Construction
Since we may write

fo(pMp:fmf(p)up: f(p)7mlp],

peAd

we denote this integral by m (£ A4), and since

H(A)= [ n(p)p,

regarding H as a measure to be applied instead of %, we may possibly have an integral of
Stieltjes type

H(7 A= [ FH).
In effect, we can define this integral by the following Lebesgue-Stieltjes process :

H(F \A)=lmS - H (A (2.1)

|

with k

Am,k):{pe A‘ 2_721 <f(p)< an

We decompose % in the form

h(p)=he (P)=hey (D),
where iy and %, are defined such that
by (p)=h(p) and i (p)=0 when 2 (p) = 0

and ey (P)=0and h, (p)=—h (p) when 2 (p)< Q.
Then H (fA) may correspondingly be decomposed as
H (fA)=Hs, (f,A)—H (f,A). 2.2

Since (in the bounded case) both of the limitations

. k .

11m22—nH<+>(A(n,k>) and hmZ*ZZETHH(A(n,k))
are easily ascertained to be convergent, the relation (2.1) is found adoptable as a definition,
provided that % and f are both bounded in A.

Now, having regard to the composition (2.2), let us assume that % (p) > 0 everywhere in
A. Then, for each A,» we have

H(A(n,k)) >Oy (2 3)
hence _ .
¢ %H(A(n,k))gvszH(A(n,k))
Then, by the definition of A, we have
kF—1 _ k—1
g HAw)= [ Fotnpydp< [ 7 (o)np)ap
and

k _ Rk
/,:l(n,k) f(p)h(p)gj;(n’k) 2n h(p>dp— 2n H(A(n,k)),
so that, interpolating these relations in (2.3), we have

k

-1 k
o7 H(Am,k)K-L(n’k)f(p)a’p<2—nH(A<n,k;).
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Thus, from the definition (2.1), we conclude the following theorem.
Theorem D. If WA+ oo and if one-valued functions f and h ave both bounded in A, then
we have

H(f ,A)=F(h,A)= [ 7 (p)h(p)dp.

By the way, if A is a subset of an open set G and at almost every point of A has the
determinate density 4 (p) and if 7 (p) is bounded in G, it is notable that we may then have
the relation

m(fA) = H(LG)
on extension of 4 (p) such that 2 (p)=0 when p&¢ A. In addition, this case can be regarded
as the one.where it is almost everywhere in G observed that 2*(p) = h(p).

3. Relative Expectance
We define Ey (f,A) as
Ex(f,A)=H (f,A)/H (A)
on condition A (A) =# 0, and refer to it as the expectation of f in A with respect to H or the
H-expectation of fin A.If the value f#(p) defined as
Fd(p)=lim E.(f,U (p))
where the neighborhood U (p) of p is let to tend to the singleton {p} , does not vary with the
choice of the tending behavior of U (p) except for the condition that the diameter of U (p)
tends to zero, then we say f is stromgly expectant in vespect of H and refer to f4" as the relative
expectance of f to H or the H-expectance of f.
When f and % are functions bounded in an open set G, if f is strongly expectant in
respect of H almost everywhere in G and yet if 2 is strongly expectant almost everywhere
in G, then we may, at almost everv point p of G, have

H(f,U(p)) HALUWMD)  HUWD) _ pap oy g
U (p) HUGW) —~ mUp TR D).

lim = lim

Therefore, the function /- 4 is found to be strongly expectant almost everywhere in G,
because, by Theorem D, H (f,U (p) )= # (f- h,U (p) ). This being so, by virtue of the
relation (1.1), we then have the relation

H(f,6)=(c) [ fa(p)n(p)dp

G, being the largest subdomain of G where f (p) & (p) is Tound to be strongly expectant.
If we take up an application (or a general additive function of a set) y instead of an
integral H (A)=m (h,A)in (2.1), we may define a general integral by the Iebesgue process

W= [ Fp)re (3.1)
with “

ro=7lpl.
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Lebesgue measure #, the integral (0.7) is sometimes found to meet unexpected critical
conditions which have never been met in case of m.

1. Strong Expectance

When the integral is produced by the Lebesgue process in respect of the a priori measure
#, the following well-known theorem? does not generally hold :

If ® is the indefinite integral of a bounded measurable function ¢, then o5 (X)=¢@ (x) at
almost every point x, when s means the strong derivative® of ©.

In this therem ‘measurable’ means ‘Lebesgue measurable’ whereas we intend to mean
‘M measurable’. Inconsistency of this theorem can be shown by the following counter-
example : If A is a subset of an interval / and has everywhere in / constant density A (%0,
and < 1) and if ¢ (x) is the characteristic function of A (that is,=1 for x€ A and=0
otherwise), then denoting by 7, the set {ye ] y<x} we have

@(x):c+f1x@(y)dyzc+/l - idx
{c being an arbitrary constant) so that
Px)=A+¢@(x) for every point x of I.

When 7 (p) is a one-valued real-valued function of a variable point p in a finite dimen-
sional euclidean space E, by the capital letter of f we indicate the integral which is a set
function such that

F)= [ rpa,

A being an arbitrary subset of the domain of /. Then the derivation of / is closely related
to the expectation of 7, because

FUP)=E(£,U(p))- mU(p).
If the value of

lim%g((—‘z))—) =limE(f,U(p))

is uniquely determined whenever the diameter of the neighborhood U () of the point p tends
to zero, then f is said to be strongly expectant at the point p and is indicated such that

FHp)=ImE(f,U(p)).
As it is, this f* (p) may be regarded as the strong derivative of F (A), though we emphasize
its relation to f (p) itself and refer to f* as the (stromng) expectance of f at the point p.
Now let us assume f (p) is strongly expectant almost everywhere in a bounded open set
G In E. For the sake of simplicity, we take £ as of two dimensions and provided with
rectangular coordinates. We draw x-lines y=k/2% v-lines x=k/2" (k=0, £2,--- ; n=0, 1,

if exists, / being intervals which contain p and tend to p.

I)
il
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2,---) and denote by G, the remained part of G after the removal of all these x- and y-lines
from G. Then it is easily seen that MG,=MG.

Since f is strongly expectant everywhere in G and therefore in G,, for almost every
point p of G, and for any given positive real number ¢ there must be found an open square
cell @ (p) which satisfies the following conditions :

(i) @ (p) is enclosed by four lines out of the above-stated x- and y-lines for the
same 7 ,

(i) pe QPIEG;
(i) |F(Q(p)—r*(p)- mQ(p)|<e - mQ(p).

If G: is the remained part of G, after the removal of all points at which f is not strongly
expectant, then evidently %G, =mG,=mG and the family of the cells @ (p) (pe G, and n=
1,2, --- if possible, 1. e., on restriction that at least one @ (p) exists for ») obviously gives an
open covering of G. Thus, by virtue of the Lindelof theorem?, there must be an enumerable
covering (€ (p,) ) (k=12,---) of G,.

Now, about the cells @ (pn) (k=1, 2,---), it may be easily seen that if @ (p,;) +# Q (p) we
have

QUPNINQ(pr)=2. V. Qp;)E Q(pr). V. Q(pr) S Qp;).

So we may eventually suppose that the sequence (Q(p.) ) satisfy the condition that if 2 + J
then

QLN Q(pu)= 4.

Thus we consequently have the relation :

|F(G) =2 (b)) mQpil <eZmQ(px)
=¢- MG
=¢-mG.
Then, letting ¢ tend to zero, we have

F( G)Zlime*(pk)ﬁQ(Pk). ’
The right side of this relation may be regarded as a kind of integral. So we denote it by

(e) . r*(p)dp

and refer to it as an integral by the covering process. Then we have
= * 1.1
F(G)=(c) [, F*(p)ap. (.)

However, on the above-stated discourse, it should be noted that the integral by the
covering process on the right side of (1.1) cannot always be constituted if the domain of
integration G is not given as an open set.
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In this case too, the set A will be decomposed into two parts, A, where y, > 0and A,
where v, < 0. But the most important point is that we may possibly have
YA + 0
even when @ A=0. Thus the value of y (f,4) may possibly not vanish even when #A=0.
The relative expectance f,* of a function f to the application y will analogously be
defined by the formula

) . U(p))
* :hm ’}/(fy
§249)) YU (p)
It should, among other things, be noted that, even when f has at almost every point of an open
set G the y-expectance to vanish, we may possibly have

y (f,G) = 0.

4. Incompetence of a General System of Neighborhoods
In constructing an integration of any sort so far discoursed, a general system of neigh-
borhoods may not always be found adoptable, because it may possibly be incompetent to
restrict our eyes toward the specific sightviewing around a single point. Particularly, we may,
in a euclidean space £, have a system of neighborhoods which may not make £ separable.
That is, if N is a general system of neighborhoods, for some two points p and g there may
possibly exist two sequences (U,) and (V) (k=1, 2, ---) from N such that
NU={p} and N Vi={q},
but, for every £=1, 2, ---, we have
UNVes# &.
In effect, on defining B (p, p) as
B(p. o)={xl |x—pl <o}
indicating by | x—p | the distance between the points x and p, if we construct a system of
neighborhoods (U (p,0) ) (0 > 0, pe E) such that

Ulpo)=DB(p,p) forp*q
Ulg,0)=B(q,0)UB(poto 0)

where ¢ and p, are different fixed points and po+p means the point (xo; +p, Xoz, =", Xon)
when po=(%o1, Xoz2,"**,Xon), then we have

U Ulpe)={p}
gOU(q,p):{q}.

However, for any positive real numbers p and p’, we identically have

Ulq,0)N U(po,0’)* 2.
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and

and
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