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Several Further Extension Criteria

Kazuo IwaTA

Abstract

Influenced by Agnew-Morse 6), by modifying the recent work 29), the author furnishes several
further extension criteria.

Introduction. As abstracted above, the present investigation is continued from
the short note 29), etc. That is, in a word, in this paper, by means of the earlier [19),
Lemmas 1-4], various extension theorems such as of the Hahn-Banach, Krein's, Agnew-
Morse’s etc. are simultaneously generalized.

For such a sake, to tell the truth, the problems with which we are concerned here
amount to somewhat general setting (nevertheless the conclusions are not so com-
plicated). Besides, this time, some pairs of our results are given to overlap each other
respectively (see e.g. Theorem 1 and its Corollary 3). The reason is that the problems
of an Abelian semigroup of linear transformations are treated more circumstantially
than those of a semigroup of linear transformations.

For reference, it may safely be said that the present results are self-contained
except the Zorn's lemma. Partly for this reason, it appears to me that the viewpoint
[19), Lemmas 1-4] is somewhat suited to deal with these materials.

Preliminaries. Let E(+{0})denote a linear space over the real field R. Let
L denote a product linear space £ X R or topological product £ X R (R being endowed
with the usual topology) We need

DEFINITION 1. If on £ there is defined a binary relation “<” satisfying all postu-
lates in [19), Def. 1, c)] excepting perhaps 2) and 4), E is called a preordered linear
space with respect to “”. Convex cone C={c=0} is called the associated cone with
Preovdered linear topological space may be analogized.

@ ”»

< .

DEFINITION 2. a) Let.g be a gauge function on a subspace KCE. By § is meant
a gague function on K with g(y)=¢(—v) (v=K).

The set {(y, 7) : vEK, q(v)<p}CL, where g is a gauge function on K, is
briefly termed the “epigraph” of g. With this terminology :

b) Let f be a linear form on a subspace MCE. B/, stands for the epigraph of 7.

¢) C, is the epigraph of gauge function ¢ on K.

d) Cyc is the quasi-epigraph of gauge function ¢ with respect to C © Cee={(y,
n)  there exists ¢& C such that y+ c€ K with g(y+c¢)< »}. In this way, Cge={(¥,
) : there exists c& C such that y+c&€ K with g(y+c)<n}, ie, Cae={{y,7) :
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794 Kazuo Iwara

there exists ¢& C such that —y— cE K with g{ —y—¢)< p} ={(— v, 7 ): there exists
c& C such that y—ce K with g(y—c)< 5}

e) Cqes is the quasi-epigraph of gauge function g with respect to C and & (for
<, see Theorem 1 below) : Cqce={( y, 7). there exist ¢c€C and Ty, T, ", ThE &
(m is finite) such that y+cE K and—q(E Tulyv+c))<n}. Especially Coenn= Cac,
where [ is the identity map of £ to E.

Besides, for convenience, let the notations and terminology employed in 19), 23),
27), 28), and 29) be available.

Statement of the results. Slight modifications of the preceding [29), Theorem 1]
yield the following which includes the Agnew-Morse type extension theorems' etc.

THEOREM 1. Let E be a preovdered linear space with an associated cone C.  Let
K be a linear subspace of E, q a gauge function on K. Let M be a linear subspace of
E, f a linear form on M. Suppose that & is a semigroup of linear transformations on
E such that (WK)C K and g( T(y))< q(y) (& K) forall TES. In ovder that

(1.0) there exists an FE E* extending f and satisfying
(b) F(¥)<qly+c) whenever y+ cE€ K for cEC,
() F(TWw)=F(y) forallye K and T & &,
one of the following two conditions is necessary and sufficient :

(1.1)  There exists a tols. (L, #) such that
@) BrUCqeceT(L, #)",
i) (L, )" is absorbing at (0,1) for L.

(1.2)  There exists a convex absorbing set U in E such that By \J Cqce U (U x{1})
is positively independent in [, .

PrROOF. We treat the cyclic scheme (1. O):>(1 2)=(1. 1)=(. O) (1. O):>(1 2):
Hypothesis entails that F'(y )<F(y)+F(c)A-2‘.F( Tuly+c))= F(ZTu(y+c))

<5 q(Z Tu(y+c)) for y+cEK, yEE, c€C, TEZ, whereby CqceC Brfollows.
Hence BF U Cye is positively independent in L, whence one has U={xEE . F(x)
<1} as required. For (1.2)=>(1. 1), appeal to [27), Rem. 2] and {19), Lemma 1]. (1.1)
=(1.0) : Likewise as in the case of [27), Th. 1 (if” part)], anyway one obtains an
FIEE* such that extending f and satisfying Fl(y)g%i—q(gm] Tu(y+c)) (y+c
EK,y€E, cEC, TuE & m s finite). This impl ies (b) of (1. 0) is clear. For (¢), there-
with, in the light of Agnew-Morse [6), Lemma 2. 011" it follows that Fi( y—T())<
%261( T(y=TWN+THy—TWN++T™y—T(y )))—7”—61( T(y)—T™(y))
<L) +a(=) (y&€K, TEZL, m=1,2,++). This implies that Fi(y—T(»))
<0, and F\(y — T(y))=0 (replacing v with —y) which complete the proof.

t By this the author means Agnew-Morse [6), Lemma 2. 01] and Cotlar-Cignoli [24), [T, §2.1.5].
it Cf. also Larsen [22), Sec. 4. 3].
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COROLLARY 1. Let in particular K = E (in such case, in what follows, q is written
by p) tn Theorem 1. Then (1.2) ts reduced to
(1.2 BsUCpcs is positively independent in L .

ProoF. For the sufficiency, since CyceD Cq, one can take U={yEE . p(y)<
1} for (1.2).

In practice, conditions (1. 1), (1. 2), (1. 2) seem to be applicable. In fact, in view
of this, if we are concerned with Agnew-Morse [6), Lemma 2.01], our proof ' (that of
the “if” part of Corollary 2) runs as follows. This proof seems to somewhat simplify
the original. Before starting, we put the following lemma which is also needed in our
subsequent discussion.

LemMmA. Let C, K, q, & be as in Theovem 1. There holds
X M N
( ) %4<§1hi(afl(y1+Cl))>+7b~q(jglhj(az(yz+Cz))>
1 uy o, ,
>W4<§:1(hjhi(a’1(y1+61))+hihj(a'z(yz-f—Cz)))),

where h;, W;EF ; yi+c1, v+ C:EK ; ¢1, c2EC.

ProoF. This is easily read in the proof of [6), Lemma 2.01] or in the proof of [22),
Theorem 4.3.1].

COROLLARY 2. Let in particular K=EFE, C={0}, and f be invariant" in Theorem
1. Then (1. Q) is reduced to

(1.0Y (Agnew-Morse-Klee type condition™ ) There exists an FyE E* extending f
and satisfying both Fy(x)< p(x) (x€EE) and Fi(hihs(x))=Fi(hahi(x))
(hi,h. e ; x€E).

PROOF. Necessity of the condition is easily obtained. (Sufficiency) To begin
with, let x + @iy1 + @2y:=0 (a1,@2>0) for (x,E)EBy; (v1,71), (¥2,72) € Cpcy, Where

N
%Zﬁ (%hi(yl))< 71, %p( Zlh}(yz)) <y for by, ;& . Then, inview of the lemma
=1 Jj=
and the hypothesis, it follows that

£+ it o> F)+T 3 B (@t @) =f () +f(—x)=0.

To this end, generalize (*) by the induction. Therewith (1.2) follows which com-
pletes the proof.
Now, as prefaced before, if & is Abelian, Theorem 1 is specified as follows.

T But, for the fact Fi(gig:(x))=Fi(g:g:(x)) (g1,2: S H; x €E), we owe to them.
11 C is called invariant if T(c)EC for all c€C, TE & ;and a functional f on M is called invari-
ant if M is invariant and £(T(x))=f(x) whenever x&€M, TE ¥.
+11 This condition is introduced by referring to [6), Lemma 2.01] and [8), (2. 2) Theorem)].
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COROLLARY 3. Let tn particular & be an Abelian semigroup of linear transfor-
mations on £ in Theorem 1. Then (1.0) of Theorem 1 becomes equivalent to each of
the following conditions.

(1.3)  There exists a convex absorbing set U in E such that &+ 7 +1>0 whenever
x+v+u=0 for (x,&)EBys, (¥, 1) E Coce, uc U.

(1. 4" There exists a convex absorbing set V in E such that f(x)+7+1>0 when-
ever x =v—y for x&M, (v, 7)E Coce, vE V.

(1.5) (Anger-Lembcke type condition) There exists a convex absorbing set V in
E such that the set {f(x)+iq(2 Tu(y)): xEM, yEK, x+vE V +C,
T.EF, m is finite} 1s bounded below.

PrOOF. Now that & is commutative, by the lemma, Cqcy proves to be a convex
cone in L. Therefore the proof of (1.2)e(1. 3) parallels that of (4. 3)e(4. 4) of [29),
Th. 4]. Equating V to — U and U.to — V, (1. 3)o(1. 4) is easily verified. (1.4)=
(L.5): Let x+yE V4, say, x+y=v+cfor xEaM, yvEK, c&C,ve V. Thenin

m
view of x =9 —(y — ¢), it follows that f(x)+#5>—1 for iQ(; T(v)) (=8)<7,
Le Jf{x)+8= —1. (1.49<(1.5): Let the lower bound in question be —1 {(without
loss of generality). Let x =v—y for xEM, (y, 7)E Cqce (. €., there are cE(, n,

S.E & such as %q(éSu(y—{—c)) (=8)<p),ve V. Then in view of x +(v+¢)
1
€ V+C, it follows that f(x)+60>—1 implying f(x)+7+1>0.

ExXAMPLE 1 (Analogue of the Banach limit). Let £ be the partially ordered
linear space m X m endowed with the pointwise order, where s is the bounded
sequence space with zero element §. Let K be the linear subspace m x {8}, and let
g(y)=limp, for y=((71, 92, =+), (8))E K. Letting M be the linear subspace ¢ X
{8}, where ¢ is the convergent sequence space, let f(x)=lim & for x =((&,&,"),
(0))eM. Andlet ¥ ={T": T is the shift such that T(z)=((az, as, =), (B2, Bs,
o)) for z=(a1, @z, as, ), (B, B, B3, ))EE, n=1,2,--+}. Then in view of (1. 3)
we obtain an ['e E* satisfying (1. 0).

PrOOF. For short, sup{ai, @, *-, B1, Bz, -~} (resp. inf thereof) is written by supz
(resp. infz) for z=((as, az, **), (B, B2, - ))EE, besides ¢(v) (vEK), f(x)(xE
M) are written by limy, limx respectively. Taking U={uE E : supu<1}, let x+
v+u=0 for (x, £)= By, (v, 71)E Coce, u=S U. To this end, we have

1 >sup(—x—y)
> —inf(x+y)—infc (where c€EE", y+cEK)

T Cf. Remark 2 below.
it Cf [26), Theorem 3.4].
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>—inf(x+y+c¢)z—lim(x+(v+c))
= —limx —lim(y+¢)> — & —Tm (3 Tuly+))
>—&—7.
ExAMPLE 2. In Example 1, let #be replaced by &' ={T : T(z)=(r1, 72, ),
(51, Oz, )), where z= ((a1, a2, ), (,81,32, --+)) for which (7’1, 72, ), (81, Oe, =)
are resp. some (depending on 7") subsequences of (a1, @z, *-*), (B1, Bz, =++)} (. e, &

(D) is not Abelian). Then, notwithstanding (1. 3) remains true, (1. 0) fails to follow.
This is made out by the fact that (1. 2) is impossible (Cqc/ itself is positively dependent).

COROLLARY 4. If K=E in Corollary 3, the condition (1.3) (accordingly, so are
also (1. 1), (1.2), (1. 4), (1.5)) s reduced to

1.3y flx)< —}ﬁp(gﬁ Tu(x+c)) holds, where xEM, cEC, ToE £ m is
finite.
PrROOF. Now that Cpee is a convex cone in L, in effect (1. 3)’ proves to be equiva-

lent to (1. 2). (Naturally, the alternative direct proof can be made.)
As an application

COROLLARY 5. Letting in particular K=E; f, p both invariant, f(x)<p(x)
(xeM), and p(—c)<0 (cE C) in Corollary 3, Cotlar-Cignoli [24), 1II, §2.1.5] «a
Jortiori follows.

ProOF. By hypothesis, it follows that f(x)g%p(% Tu(x)) —%p(i Tu(—c))

<%p(%Tﬂ(x)+ﬁTp(c)) ziz)(ﬁ Tu(x+c)) (xEM, cEC, TEZ) (f the
invariance of C is assumed, it is immediate from f(x) <p(x+c¢) (xEM, cEC))
which completes the proof.

For reference, the following is easily seen.

COROLLARY 6. Suppose that F is a set of linear transformations of E into E. Taking
k
Z={I}, C={XTw:: T:.€7,y:€E, k is finite}, Corollary 4 coincides with Klee
[8), (2. 1) Lemma).

Returning to the subject, we add the following remarks.

REMARK 1. In Corollary 3, invariances of C and f are not assumed. But the
linearity of K thereof can not be dropped (of course, if #¥={J}, any proper pointed
convex cone K may be applicable), i. e., otherwise none of (1. 1)-(1.5) necessarily
implies (1. 0). To see this, let £ be the [, space with /; norm |-, and let C={0}.
Let KCFE be the pointed convex cone generated by g =(—1, — 9T --+) and let
gv)=|yl (vEK). Let MCE be the linear subspace generated by {g} and let
Flaa)=—2a. Andlet Z={T": T((&, &, &5, )= (£s, &, ) for (&, &, &,
- )EE, n=1,2,-}. This answers the question, i. e., this satisfies (1. 3) but not 1.0)

(175)
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(c) (a priori).

REMARK 2. Shifting the courses, there are two alternative ways to settle Corollary
3. One is concerned with the course (1. 0)<(1. 4), and the other is so with (1. 0)e(1. 5)
(to the purpose, (1. 2)<(1. 1) holds directly).

SKETCH OF THE PROOF OF (1. 0)<(1. 4). Since (1. 4) is rephrased by

(L. 4)* there exists a convex absorbing set V is E such that — f(x)+ & <1 when-
ever (x, &')=(v,0)—(y,7) for (%, EYEM X R, (v, 7)E Cqce, vE V,

under L with Cycg, observe o (M X R)* defined by ¢(x, £)=—f(x)+&. Ne-
cessity) Via (1. 4)*, the “only if” part of the Bauer-Namioka theorem! answers the
purpose. (Sufficiency) Let (x, E’):(%, 8)—(y,7) for (x,EYEMXR, (y, 7)<
Cacz, vEV, |8]< l Then in view of (2x, 268" —=28)=(v,0)—(2y,279), (2y,29)e
Cacy, it follows that — f(2x)+2&"—28 <1 vielding — f(x)+£&'<1. Therewith the
“if” part of the theorem cited (cf. Cycy® ) leads up to the conclusion.

PROOF OF (1. 0)&(1.5). By use of the new gauge § defined" by
i) =inf{Lg(BTu)) : TuE £ m s finite} (yEK),

the assertion (1)<(9) of Anger-Lembcke [26), Theorem 3. 4] answers the purpose. Indeed
the said conditions (1) and (9) with respect to ¢ are respectively equivalent to (1. 0)""
and (1. 5).

REMARK 3. Replacing E, FEE™*, U, etc. by preordered linear topological space
E, FEE’, 0-neighbourhood U, etc. respectively, we can state and prove the topolo-
gical version of Theorem 1 (we call this Theorem 2 corresponding to [29), Th. 2]). The
details are omitted.

We close this note with the following criterion. Non-Abelian version, non- topolo-
gical version etc. thereof may be realized without difficulty.

CRITERION. Let E be a linear topological space. Let I, ] be disjoint index sets
with A=1U J#0. For each AE A, let Cibe a pointed convex cone in E, K, a linear
subspace of E, and q, a gauge function on K,. Let M be a linear subspace of E, f a
linear form on M. Suppose that & is an Abelian semigroup of linear transformations
on E such that T(K:)C Ky and u( T(y)<qu(y) (vERK)for adl TEZL, A€ A. In
order that

(4.0) there exists an FEE’ extending f and satisfying all of
@ —qgdy—c)<F(y) whenever y—cEK,(cEC;) for i1,

T By this we here quote [16), (V, 5. 4)].
Tt K being a subspace of E, the gauge § is well-defined.
111 For this we owe to Cotlar-Cignoli [24), 111, 1. 2].
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(b) F(y)<gdy+c) whenever y+c<K; (cEC;) for j< ],
(c) FY( T(y))zF(y)fordllyE}g/{ﬁ, TEZ,

one of the following five conditions is necessary and sufficient, where §,(y)=inf {;}Z—cp
(2 Tu(v)) : TuE & m is fiuite) (yE K, for each A€ A.

(4.1) Replace ha(ASTU J) by GA(AE A) in (4.2) of [29), Th. 4],

(4.2) Replace so in (4.3) op. cit.

(4.3) Replace so in (4. 4) op. cit.

(4. 8)* (Bauer-Namioka type condition) There exists a convex 0-neighbourhood V
n'E such that — f(x)+ & <1 whenever (x, £')=(v, 0)— 2 N( — Yy, )
Vel n

=2 (o, m) for (x, EYEMX R, (~yv, 1)E Caver, (VEINN), (v,
1)ECoew (WEJNN), vEV, where N in any finite subset of /.

(4.5) (Anger—Lembcke type conditiont) There exists a convex O-neighbourhood V
n E such that the set { f(x)+ ZNq‘,,(yU) P x&EM, N is any finite subset of

A, wEK (VEN), x—3 "y, +3 p.EV+X C) is bounded
below. velnN veJaN veEN

PrOOF. In fact, the sets Céc, (=Cac.) (i€1), Corc; (FEJ) coincide with
Caiciz, Cascse Tespectively. So that the proofs of (4. 0)=(4. 2)=(4. 1)=(4. 0) and of
(4. 2)o(4. 4. 4)* (4. 5) are given mutatis mutandis from those of Theorem 1 and
Corollary 3*(cf. the proof of [29), Th. 4]).

To prove (4. 0)e(4. 4) directly, we employ the generated convex cone :

ol )1 coes).

and apply the Bauer-Namiocka theorem.
The analogue of Anger-Lembcke [26), Theorem 6. 3] also proves (4. 0)&(4. 5).

(Received May 18, 1978)
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