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Abstract

Geometric programming provides a powerful tool for solving algebraic nonlinear programming subject to
linear and nonlinear constraints, but it is rather difficult to apply the methiod to a general optimizing problem.
In this paper, a penalty term in the transformed objective function in process of the calculation by SUMT is
approximated with a single-term posynomial and makes it possible to apply geometric programming to a
general minimization problem. This paper also explains the three numerical examples and the approaches to
the optimum points are shown in the figures.

1. Introduction

Geometric programming was discovered first by Zener early in the 1960’s and after that
developed by Zener, Duffin and Peterson. This method provides a powerful tool for solving
algebraic nonlinear programming problems subject to linear and nonlinear constraints, and in
recent years the application of this method is studied in mainly Chemical and Civil
Engineering fields.

Geometric programming displays its ability especially, when the objective function and
the constraints are all posynomials and the number of degrees of difficulty is small. Once
some of the coefficients in the polynomials are negative or, even if all the coefficients are
positive, the number of degrees of difficulty are relatively great, it will be difficult to apply
efficiently geometric programming to such problems. Then, to overcome this difficulty, A.
B. Templeman proposed to approximate a general fuction with a single-term posynomial®,
and C. Beightler and D. T. Phillips explained in their book the technique of reducing a
plynomial to a posynomial by condensation®. The former paper dealt with the problem of
minimum weight design of truss structures. But, in the case of minimum weight design of
truss bridges, the number of terms in the objective fuction is equal to that of the design
variables. So, even if each constraint is approximated with a single-term posynomial, the
number of degrees of difficulty may be still equal to that of constraints—1 and it is seemed
to be hard to use the method to such problems. Until now, the problems were solved
principally by Sequential Linear Programming (SLP) or Sequential Unconstrained Mini-
mization Technique (SUMT). But some disadvantages of each technique were pointed out.
The former technique requires much memory capacity of a computer, while the latter
technique, although the possibility of converging into a global optimum point is improved,
requires long computing time in optimizing a transformed objective fuction. Then this
paper deals with the application of geometric programming into the optimization of the
transformed objective function. In the method proposed here, the penalty term in the
transformed objective function is approximated with a single-term posynomial, and by
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applying geometric programming to this function it is possible to get the approximate opti-
mum value by only one iteration, so far as the point is in the feasible region.

In this paper the constraints are to be general polynomials and the objective function to
be a posynomial, in which the number of terms is equal to that of the design variables.

2. Posynomial Approximation of Transformed Objective Function
A general optimization problem is defined as follows,

minimize
n n
— aik

f=ze L7, (1)
in which

ci>0;1=1"--- n,

x>0 k=1 n, (2)
subject to

giz0; j=1eer m,
In equation (1) x, (k=...n) are design variables and e;, (i=1..n, k=1...n) are arbitrary real
numbers.
The primary constrained minimization problem defined above is transformed into a
sequence of unconstrained minimization problems. The function is as follows,

F:iE:ICi kl;[x;‘i’kwLle(gj)’”; ; I=1-L, (3)

in which, ¥, is a response factor and £ is an arbitrary positive real number.
If x,P(k=1...n) are feasible values of the variables, the second term in the equation (3) is
approximated with a single-term posynomial as follows,

7 2 (2)7= o [L 28, (4)
in which n "
Cn+1— 7/1{ g (1))‘5} ]‘:—I (xil))—anﬂk, ( 5 )
Un+1r=— —T&&—‘ Zm( )(1)(g(1)) (B+1) . s b=l n.

After all, the primary problem defined by equations (1), (2) is transformed into a problem
of optimizing a posynomial with zero degrees of difficulty as follows,

air (7)

:3

1

3. Minimization of An Unconstrained Posynomial
From equation (7) the minimization problem of an unconstrained posynomial is defined
as follows,

minimize i

',:j:

I
-
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in which .
c:i>0; i=1-- n+1,
x>0 ; k=1 n,
@i ; arbitrary real numbers =1+ no=1--- n+1

The number of degrees of difficulty of equation (7) is equal to zero, so applying geometric
programming to it, the design variables x are obtained easily as follows.
First, the normality and orthogonality conditions are

n+1
Zh=1 (8)
n+1

ainh;=0; =1 n, (9)

in which A; (i=1..n+1) are dual variables. Matrix expression of equations (8), (9) is as
follows,

1 1 ceeeeeen 1 1 A
ailr Qzpcccetttt Un1 On+11 Az
iz Qez ettt Qn2 Qn+i2 -
A : (10)
Qin Q2pt"ttctrt” Qnn Qn+in I Anta 0

The equation (10) is divided into next two equations.

A+ 2n:=1, (11)
AA + BAn+:1=0, (12)
in which

[:[1 J EXREETRTRRR AT 1] , (13>
B:[an+ll Qn+12°°"°"00 " an+1n]T , (14)
A :[/11 Agrerereres /ln]T , (15)

Q11 @yttt a1

A Q1a Qaz= roree (nsz
(16)

Qin Qans-erres Onn

The dual variable A,.; corresponding to the penalty term is obtained by substituting
equation (12) into equation (11),

. 1
/171+1“1_]A—1B (17>
By substituting equation (17) into equation (12) the dual variables are obtained as follows,
. __A'B
ASTICMAB (18)
Knowing the dual variables A, the design variables are
=105 f=T00n n, (19)
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in which
X=(4"1)TS, (20)
log A, —log ¢: +log z

— |
. log A, log. c: tlog z (21)

>

log A,.—log c,tlog z

o :ff(%)A (22)

In calculating equation (20) A~ was obtained previously in equation (17) and is constant
through the iteration.
The iteration of the method proposed here proceeds as follows :
1. Start with an initial XV and set m, n, ¢, e and B.
Compute A
Set 1=0.
Set 1=1+1, 7, and xV=x.
Compute Cnyy, ansix(k=1...n) by equations (5), (6).
Set B by equation (14).
Compute A by equations (17), (18).
If A;is negative, modify x*’ and repeat from step 5.
Compute x by equations (19), (21) and (22).
10. Repeat from step 4 until the design variables are thought to be converged.
In step 8, in what direction the initial design variables x*’ are to be modified may be a

WO 00~ O U s WD

difficult problem, but it is seemed to be a better way to do it in the direction of loosening the
constraints.
Special case having the objective function as follows is considered next,

f= )3 cixd, (23)
i=1
In this case A~! is simplified as follows,
1 0 eeeeeneer 0
1] 0 T 0
i L
A= . aE (24)
0 0 1

Substituting equation (24) into equations (17), (18) and (19), A and x are obtained as
follows,

An+1id =1

S L
n
a’—j;lanm (25>
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d
Apsy ==, (26)
d— 2} an+i;
i=1
L.z \4
iZ .
Xi:<7> ;2=10eene n. (27)

4. Numerical Examples
Three numerical examples are solved by the method above mentioned. In these
examples the constraints are identical and as follows,

&1=4.5x,—x3+6x,—13.5=0 (28)
g=x1+2x5—6x,+2=0 (29)
g=x:20 (30)
gi=x2—x,=0 (31)

In the feasible region formed by above constraints, as shown in under figures, two
optimum points are found and one of them is thought to be a local eptimum point.
In these examples 8 and 7y, are as follows,

8=1.0,
vi=y1/10 5 [=2-o ,
r=1.0,
and in 4—1 and 4-—2,
x.=0.

4—1 Example 1
The objective function is as follows,

f=xt+cxd (32)

Refering to equations (27), (28) and (29), the problems in the case of d=1,2 and ¢=0.1, 0.5,
0.8 were calculated respectively. The results are in Tables 1 —1~2—3 and the approaches to
the optimum point are shown in Figures 1—1~2—3. The dot-dash-lines in these figures are
corresponding with the objective functions.
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Table 1-1 d=1.0, ¢c=0.1 Table 2-1 d=2.0, ¢c=0.1
initial T Initial
value x1 X2 f value *1 *2 f
(4.0,4.0) 1.0160 2.7433 1.2903 (4.0,4.0) 1.1056 2.3476 1.7735
(5.0,0.5) 1.0149 2.7513 1.2900 (5.0,0.5) 1.0700 2.4667 1.7533
(2.0,3.0) 1.0208 2.7386 1.2947 (2.0,3.0) 1.0739 2.4364 1.7468
(3.0,1.0) 1.0183 2.7359 1.2919 (3.0,1,0) 1.0966 2.3628 1.7608
Table 1-2 d=1.0, c=0.5 Table 2-2 d=2.0, ¢c=0.5
initial initial
value * *2 f value *1 X2 f
(4.0,4.0) 1.1050 2.3593 2.2846 (4.0,4.0) 1.1039 2.3380 3.9518
(5.0,0.5) 1.1055 2.3605 2.2858 (5.0,0.5) 1.1106 2.3498 3.9944
(2.0,3.0) 1.0996 2.3488 2.2740 (2.0,3.0) 1.1149 2.3551 4.0162
(3.0,1.0) 1.9276 0.9593 2.4072 (3.0,1.0) 1.0986 2.3415 3.9483
Table 1-3 d=1.0, ¢=0.8 Table 2-3 d=2.0, ¢=0.8
md | w || R IR I
(4.0,4.0) 1.1056 2.3455 2.9820 (4.0,4.0) 1.1057 2.3405 5.6050
(5.0,0.5) 1.1208 2.3780 3.0232 (5.0,0.5) 2.0160 0.8818 4.6862
(2.0,3.0) 1.1126 2.3477 2.9908 (2.0,3.0) 1.0979 2.3377 5.5771
(3.0,1.0) 2.3730 0.5257 2.7936 (3.0,1.0) 1.9283 0.9584 4.4533
Xy X1
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X3 X1

3
Fig. 1-3 d=1.0, ¢=0.8

4—2 Example 2
The objective function is as follows,
f=x1/x:+cx? (33)

The problems in the case of c=0.1, 1.0 were calculated respectively. The approaches to
the optimum point are shown in Figure 3—1 and 3—2.



676 Hiroyuki Sugimoto
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Fig. 3—1 c¢=0.1 Fig. 3—2 c¢=1.0

4—3 Example 3
The objective function is as follows,
f=x1x2+0.1x3 . (34)

The function defined above, as shown in Figure 4—1, is not related to the value of the
design variable x, and approaches to zero, if the design variable x, do so. Applying the
method proposed here to such a function, it happens to be frequently that the values of A are
negative and that it is difficult to find the direction in which the design variables are to be
modified. So, in this paper, the objective function is approximated with a linear function as
follows successfully,

=)+ (2P +0.228)x;. (35)

The approaches to the optimum point in the case of x,=0.5, 1.0 and 1.5 respectively are

shown in Figures 4—1~4—3.
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5. Conclusions And Comments

1. Approximating a pénalty term in the transformed objective function with a single-term
posynomial, it is possible to apply geometric programming to the general minimization
problems efficiently.

2 . If the initial values are selected properly, the convergence is good as shown in the figures
above. And it is noticeable that, in spite of being a global optimum point in a very narrow
region in the case of x,=1.0 in Example 3, the design variables approaches to the point very
smoothly, when the initial design variables are (5, 2) and (4, 2).

3 . Hereafter, by solving more concrete problems, it is intended to make a comparison of the
computing time and accuracy of the method proposed here, SLP and SUMT by direct
search method or DFP.

(Received May. 19, 1978)
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