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Abstract

A finite-dimensional discrete-time distribution controller is designed for a class of distributed parameter
systems with control inputs in and.or on the body. The systems are described by a partial differntial equation
of parabolic tvpe. The measured outputs of the system are assumed to be obtained through a finite number of
point sensors located in and, or on the system. The proposed controller is a combination of a low-spillover dis-
tribution observer and a linear state feedback law. Sufficient conditions are given for the existence of the out-
put regulation. A practical trade-off measure is also shown between the order of the controller and the sam-
pling interval. The low-spillover distribution observer is realized on the basis of an accurate modeling of the
system which is described in discrete time and contains a special feedforward pass. By using standard state
variable techniques in the finite-dimensional control theory, it becomes possible for system designers to con-
struct a state feedback distribution observer-regulator without troublesome preparations such as sensor alloca-

tion to avoid the observation spillover.
1. Introduction

It is natural to try to design a control system for distributed parameter system on the basis of a
reduced order model. Balas has given a modal control design method for the distibution control
system, using eigenfunction expansion of the system state to get the redﬁced order model?.
Kobayashi has dealt with a construction of finite-dimensional state observer in the same way for
parabolic distributed parameter systems”. Furthermore, Kobayashi showed a finite-dimensional
servomechanism with state observer for continuous-time parabolic systems“ and for discrete-time
ones”. However. they all assumed that no observation spillover was present.

For reducing the observation spillover due to the infinite-dimensional nature of distributed par-
meter systems, at least three ideas have been reported, but not the way of increasing the order of
system model. The first idea is to locate sensors at low spillover positions. The second is the re-
duction by using a lot of sensors to approximate distributed sensors. Both are reported by Balas?.
The third is the one proposed by Fujii and Hirai®. They added sensor infuence functions to the

usual basis for Galerkin approximation and then produced a new basis by Gramm-Schmidt's ortho-
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gonalization. The observation spillover problems have been overcome by the modeling in which the
Galerkin approximate solution is sought in terms of this new basis. The last method, however, fails
for boundary observation.

This paper solves the problems of spillover from a standpoint of an accurate system modeling.
The systems are described by a parabolic type partial differential equation. Calling upon the fact
that most of real distributed parmeter systems are controlled through their boundaries, we deal
with the systems which are driven by control inputs in and/or on it. In addition, for wide applica-
tion of the theory, the boundary inputs are assumed to act on the system through mixed-type
boundary condition. That is, this paper discusses the control pfoblem of following class of distri-

buted parameter systems.

Tt x) r F*T(tx) , & 3T x) w .
A _j,k2=1 52 3z, +,~§1bf ax, +cT(t, I)+i§Iﬂ(x)¢;(t) in D
with a boundary condition
M
a(&) Tt £)H(1 —a(£))Vy Tt S)Zi:E,Hgi(E)sl'i(t) on S
(1.1)

where D is a bounded open domain in Euclidean r-space R" with piecewise sufficiently smooth sur-
face S, T(t, x) is a scalar valued function of time t and the spatial coordinate vector 2= (2, X
x,) and represents the state of the process, t >0, scalar valued functions filw) (=1, ..., M) are all
Holder continuous everywhere the closure of D, control inputs ¢t (i=1, .., M) are also Holder
continuous in any time interval (0, to], £ €S, Vy denotes the projection of gradient to the outer
normal vector v on &, g(§ )ECZ(S), ¢ ) (i=M'+1, ..., M) has a continuity that d¢ (t)/dt is Hol-
der continuous in any time interval [0, to], and « (&), defined on S, belongs to C? and is further
assumed to be 0=« (£)=1. It would be obvious that a particular case of a (£)=1 corresponds to
the Dirichlet-type boundaray problem, and « (¢ )=0, the Neumann-type one.

It is possibe to formulate the distributed parameter system by time evolution equation in the Hil-
bert space H=L2(D) and then discuss its dynamics, as many workers do”. In this paper, however,
we restricted ourselves to the classical treatment on the distribu.ted parameter system, for the aim
of immediate applications.

Use of a digital computer is inevitable for realizations of distribution control. Whenever a digit-
al computer constitutes a part of a control system, the continuous signal must be discretized in
order to be digestible by the computer. Therefore the control design was developed iﬁ discrete-

time form. As the proposed reduced order model approximates a time evolution behaviour of the
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distributed parameter system in a good accuracy, not only the observation spillover but also the
control spillover can be neglected. By using standard ‘state variable methods, it became possible
for system designers to construct a state feedback distribution observer-regulator without diffi-
culty.

In Section 2, the distributed parameter system is transformed to the infinite-dimensional state
variable equations by modal expansion method. A discrete-time reduced order model for control
design is derived from the result, and simultaneously a practical trade-off measure between the
digital sampling inteval and the order of the reduced model is proposed in Section 3. In Section 4,
We construct an identity distribution state observer and discuss the estimation error. In Section 5,

a distribution regulator with state observer is given and its regularity is proved.
2. System Transformation to State Variable Equations

Let (ay;) be a (r Xr) matrix whose k-j compounent is ay in Eq. (1. 1). If (akj) iS a symmetric posi-

8)

tive definite matrix, then the system is transformed to the following canonical expression
Tt x) M .
T3 SATEx) teT 2+ E J@)g ) inD

M
a(E)TE E)T(A—a(E))Vu Tl &)= X g(5)g () onS (2. 1)

=
where A is a Laplacian; A =(82/axf, az/axi, az/axf).
Note that each quantity in Eq. (2. 1) is not same as that in Eq. (1. 1) any longer, although the same
expressions are used in both systems. The assumption that (a,) is a symmetric and positive defi-
nite matrix would be justified by many examples of real distributed parameter systems. Therefore,
we control the system described by a partial differential equation of Eq. (2. 1). The initial state of

the system is assumed to be given by
T(0, x)=Tx) in D. (1. 2)

Now, consider a self-adjoint partial differential operator A=A +c with homogeneous mixed-type

boundary condition. There exists a following sequence of eigenfunctions and eigenvalues”.

where

(1) c=2,>2,>.>2 > lima,=—®
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(2) the sequence of eigenfuncitions I ¢ A T=12 . m i=1, 2, ... | makes a complete ortho-
normal basis in LZ(D); m, represents the degeneracy of the eigenvalue A -

Here let us renumber the subscripts of the eigenfunctions such that $ (), ¢ ,(x). ... and associ-

ated eigenvalues A |, A, ... for the simple notation, and expand the system Eq. (2. 1) by eigen-

functions in order to get modal decomposition. This procedure gives the following infinite-

dimensional sate equations (see Appendix).

et)=Ae(t)+But) (2. 4)

T(t, x)=C(x)e(t) (2. 5)
where

e(ty="[e,(t), ey(t), ...]" (X 1); ei(O)ZJ‘DTa(x)Sé {x) dx
u®)=[¢ &), ¢y, .. ¢, MX1)

A=A e X0y A=2.0

i 17 4f

B, =Bl (o XM); For 15/=M", B;=

i

and for M'+1S/SM, B,=[ (4 (£)=Vo ¢ (&)) 9, S
Car=[¢ @), ¢5) ..] (1X)

3. Derivation of reduced order model

Let us suppose the system is sampled at every r seconds and the each control input ¢ (t) to

the system is given by the output of Oth order holder. Then, Egs. (2. 4) and (2. 5) are rewritten as

e(k+1)=Ae(k)+ Bu(k) (3. 1)
T(k, x)=C(x)e(k) (3. 2)

where k=0, 1, 2, ... :
Here, let us introduce following space decomposicn. This corresponds to the orthgonal vprojection
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decomposition of the Hilbert space 1% to invarint subspaces HP and HQ such as 12=HP+HQ‘

epllt 1)=A (k) + B,u(k) (3.3)
ook 1)=A (k) + B (k) (3. 4)
Tk, x)= Cplx)e (k) + CQ(.r)eQ(k) (3.5)

where N is chosen such that A >, . and

ep(k)=1Le,(k), eyfk), ... ey(k)]"

e (k)= [e[\?+l(k). CypolR), . 1"
t
B, | N
B= |- l Cx)=[Cyx). Cyx)]
By, - N-

Ap=lagl (NXN) a,=et7 o

1 iy
B,=1b,l (NXM); For 15/=M, b, =(et" =1 f,/4,

and for M'+15/SM, b =(e*" —1) f}(¢,»-Vv¢,»)g}.dS/xl

U

Cho)=[¢,@). ¢,@). ... ¢ @)].

Many works neglected ¢y in Egs. (3. 4) and made a reduced order model of the system. In the
following discussions, we call the finite-dimensional approximation of this type “truncated modal
approximation (TMA)". In our reduced order modeling of the system, we utilize the residual modes,
and produce an accurate model of the system in order to overcome the spillover problems.

Throught out following discussions, “ . “,_;» means L*norm on D. “ . ||”,, and ” . ||,,_,)gi\e N-

. . N . 2 . ~ . .
dimensional ILuclidean and 17 vector norms, respectively. The norm of matrixes which map  vec-
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tor in normed X-space to one in normed Y-space is the one induced from the vector norm. That is

lally=suptllaell,/llell.
€inX

If X=Y, then the subscript of matrix norm is omitted.
Lemma 3. 1 For any given e, there exist r and N such that ”AQ||< €.

Proof Consider the Reileigh quotient'”, then one gets

0<e£ Ag AQeQ/eZ) e Sexp(24 N+1 T)-

This means  0<[[Ag egllo/ll eollug Sexp(A vy 7).
From the definition of the norm, one obtains

lagl=exp(a vy 7).

Either the increasing r with N fixed or the increment of N with r fixed results in monotonous

decreasing of “AQ”. It is obuious that such N and ¢ exist. []

Consider the following system;

ep(k+1)=A (k) +Bpu(k)

T'(k, x£)=Cplx)epk) + Col@)Bgu(k—1).
Theorm 3. 1 For any gien ¢, there exist N and ¢ such that

Tk, 2)=T'(k, 2)ll 2< e for all k
Proof Calculate “T(k, x)—T'(k, x)HLz directly, then

Tk, 2) =Tk, 1)l 2= I C y)e ) — Col@)Bgutk— V)l 2

= “AQeQ(k_ I)HPQ

Sllagll llegte—1)ll
For bounded inputs, there exists finite I" such that ||eQ(k)||PQ§ r.
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Hence
17k, 2)=T (k. )| =] AIT  for all .

Using Lemma 3. 1, it can be shown that for any given ¢, N and r exist such that ||T(k,.r)—
T'(k, x)|l,.< . O]

From Theorem ‘3. 1, we can conclude that Eqgs. (3. 6) and (3. 7) approximate the system be-
haviour in some accuracy and the degree of accuracy can be improved by choosing appropriate N
and r.

Next, supposing that the system is stable, we will express Eq. (3. 7) in the first N-dimensional
vector space. The steady state distribution of the system can be calculated if a constant boundary

input U is known:
T(°, x)=C (x)U..
While, denoting (NXN) unit matrix by I, Egs. (3. 6) and (3. 7) yield
(o0, 2)=Cylx) (I,—A,) By, +Co@)Bu,
Hence
Col@)By=Cy(x)—Cpix) [,—A,) " 'B,.

Consequently, we obtain the relation:

ep(k+1)=A e (k) +Bu(k) (3. 8)

T'(kx)=Cpx)epk)+ | Cylx) = Cpl@) (I,— A ) 'Bplu(k—1) (3.9)

This is the reduced order model that we propose. The steady state output of the model, as a mat-
ter of course, completely coincides with the true one if time-invariant input is applied. For practic-
al appliations, it would be enough to choose N and 7 such that A N+1 T = —5, because all re-
sidual modes e, damp faster than exp(A ., ) during the sampling interval 7. In case of omitting

the second term in Eq. (3. 9), the resultant output error is estimated as
Tk, )= T' (k)| =T for all .

Therefore our reduced order model gives ||AQ|| times smaller output error than the usual TMA

. 2
model in a sense of L°-norm.
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4. Distribution state observer

In this section -we construct a distribution state observer. The distribution state T(k, x) of the

system is measured by L point sensors which are located at positions ,, x,, ..., #_ in and/or on the

system. Then, the observation vector Y(k) is Y(k)ERL, and represented as

Y(k)=Pe (k) + Qe (k)

(4.1)

where P is a (L XN) matrix with i-j component ¢ (r,), and Q, a (L X o0) matrix with i-j component

A

Supposition 4.1  The finite-dimensional subsystem (4, P) is observable.

This supposition would be easily checked!'" 2. Therefore, we assume the system is observable.

Now we estimate the distribution state T(k.x) by using usual identity observer:
epl+ 1)=A &, k) +Bu(k) +K(Y(R)— Y (k) )
where K is a gain matrix. Y(k) represents an estimated output vector which is given by
Y(k)="Pe,(k)+ QBgu(k—1)
The estimated distribution state f(k,x) is
(4.4) T(k, 2)=C(x)e,(k) + Cox)Byu(k—1).
Theorem 4.1 For any given ¢, there exist N and t such that

lim Tk, )= Tk, 2)ll 2= &

in the system Egs. (4. 1), (4. 2), (4. 3) and (4. 4).
Proof Consider the L%-norm of |IT(kx)—T(kx)||L2, then

17k, )= Tk, 2|},

=llept)—epilly, +114 gt — DIl

2

=[|a,—KPl*le,0)=e, O,
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" 21"”AP—KP”klle"P(O)—eP(O)”HP“KQ“HQHP“AQ“
1—|la,—KP||

2
&l HQHP

+]lA, 031+ ,
N (1|4, —KPl|y’

. (4. 5)

From Supposition 4. 1, one can set observer gain matrix K such that Ap—KP is stable (for exam-
ple, by using popular pole allocation technique). The first two terms in Eq. (4. 5) approach to zero
as k increases. The third term can be smaller than arbitraily given e ? with appropreate N and r

from Lemma 3. 1. Therefore,
lim [ 7¢ez) =Tk, 2) o= e . O]

This identity observer estimates the distribution state T(k, x) in any accuracy. With a time-
invariant input, the observer gives true estimation as time increases. It is also shown, without dif-
ficulty, that the estimation error is always smaller than that of the TMA model, because of the fac-

tor [[AylI* in the third term of Eq. (4.5).

5. Distribution state regulator

We construct a state feedback distribution regulator with the obserser discussed in the previous

section. The control scheme is given by

e(k+1)=Ae(k)—BFé,(k) (5.1)
eplkt 1)=A 8, (k) —BF e (k) +K(Y(k)— Y (k) (5.2)
Y(k)=Pé,(k)—QBFé,(k—1) (5.3)

T(kx)=C(x)e(k)
where F is a gain matrix which satisfies

P Bl I 2 Nl 2 A, —B,F kPl <1 (5.4)

TP Z lla P+ KRN g IBol IFI 2 llagl'<i £ lla,~BF—kP' ™ (5.5)

Suppose that desired output distribution T,(x) is a steady state solution of Eq. (2. 1), and consid-
er the error system of T,(x) — T(k, x). Then, the regulator problem is transformed to a stability

problem around a null-distribution O(x). Assuming that Egs. (5. 1), (5. 2) and (5. 3) describe the
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error system, we prove the stability. In this section, we omit subscripts of norms for a simple

notation.

Lemma 5. 1 If U(k) represents a state vector: U(k +1)=AU(k)+ V(k), then the following inequal-
ity holds:

L llueli= 2 Al Huoli+ X [[velt.
k=0 = k=0

Proof Considering that

k—1 .
Uk)=A*U(0)+ §0A”“"1V(i),

e
D8
o

[es) o k=1 )
lumli=luoll = [alf+ 2 [Ia vl
k=0 k=0i=0
o © k—1 )
=lvoll  Iallf+ = 2 alflvie—i—1ll
k=0 k=0i=0
=lvoll E S+ Z Al I|V<k—z—1)ll
=lluo)l Z Iallf+ Z Al Z A" v
k=0 =0 i=0 i=0

= L A" Hluoll+ Z lvellicO
k=0 k=0

Theorem 5.1 If the conditions (5. 4) and (5.6) hold, and (A}, Byp) is controllable, an output T(kx)
of the system (5.1), (5. 2) and (5.3) always converges to a null-distribution.
Proof From Eqgs. (5.1), (5. 2) and (5. 3), and from Lemma 5.1, we have

Zolles®lI= Z 1141 ey )+ 1,0 IF 2 [lz el (5.6)
Zea®l= Z Al lleq@)ll+ 1B, IFI £ llepe (5.7)
L lpll= £ |4, =B, —kPIlleuoll + Ikl I!PIIZIIeP Al

k=0

HIKIIQINIAI E leowol (5.8)
The substuition of Eq. (5. 6) to Eq. (5.8) and the condition of (5. 4) yield

L lepwli=y +6 Z legell (5.9)
= k=0

k=0
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where . _
Higo Ol + IKIIPI e E 141" 5 14, —B,F—KP|
L= (K IPIIBNIEN 2 4l 2 14, —B,F—KP]*
IKI QN gl £ [14,—BF —KP]*
8 =

L= I P B I A, £ 14, —B,F —KPI

Substitute Eq. (5.9) into Eq. (5.7), then one obtains an inequality:
=6 1Bl IFILE [lAgl*t = Hleg@lI=Hlleq()lI+y Bl IFI 2 llagll (5.10)
Here, from the condition of (5. 5).

1= 3 1Bl 171 E Jla >0

Thereby, it is concluded that k§OIIeQ(k)I|<oo‘ . (5:11)

The result (5. 11) means that ||eQ(k)|| approaches to zero as k increases. He'P(k)” also converges to
zero from Eq. (5. 9), and then ”eP(k)“ does from Eq. (5. 6). Thus, one gets Theorem 5.1. []

Theorem 5.1 guarantees the output regulation of our distribution controller. Next we appreciate
sufficient conditions (5. 4) and (5. 5). The inequality (5. 4) is a sufficient condition in order that
the controllable and observable subsystem (A, By, K) is stable. Therefore, this condition can be
easily realized by means of appropreate techniques in the finite-dimensinonal linear control theory.
The second condition (5. 5) appears in connection with the control of residual mode eqo(k) by finite-

dimensional controller. Recalling that ||AQ|| has been set very small (nearly equal zero) and
% fla =1
Z lagl

it is not so difficut to set the observer gain matrix K and the regulator gain matrix F to satisfy the

condition (5. 5). Thus, the system Eqgs. (5. 1), (5. 2) and (5. 3) works as a distribution regulator.
6. Concluding Remarks

A low-spillover reduced order model was proposed for parabolic distributed parameter system,
and a practical trade-off measure was given between the order of the approximate model and the

sampling interval. The reduction of observation spillover made the constrains on the number of
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sensors and on sensor positions in the control system almost free. As the result, it became possible
for system desigenrs to realize a state feeaback distribution observer-regulator without difficulty
by using basic techniques in the finite-dinensional multi-input multi-output linear control theory.
For the proposed distribution regulator, sufficient conditions were given in order ‘to guarantee the
output regulation‘of the control system.

This low-spillover reduced order model would be available for the control design of ser-

vomechanisms for distributed parameter 'systems of the parabolic type.
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APPENDIX: Derivation of Infinite-dimensional State Equations
Let us introduce functions defined by W, (t, x)=exp(4 )¢ (@), (n=1, 2, ..), It is easily shown

that these functions satisfy the equations:

AW (t.x)
—————=AW,(tx) inD, (A 1)
at
a(§ Wt E)+1—a(&)) VuW,(tE)=0 onS. (A. 2)

Then

d aT W,
EIDT(LI) W, (¢, x)dx= J‘D—af W.dx+ J‘DTWl‘-dx

y .

=J'D1AT+cT+A_Elfi(x)¢i(t)}Wndx—_[DTlA W, +cW, ldx
After simple manipulations and using well known Green's formula'®, we have

M : .

:'[Diglljg(x)%(t)wndxﬂsf W.Vy T—TVy W, ldS
Thus, we obtain an useful equation for the system interpretation

w . IT—aW” + Wy, -1V, W +n§1'|' |

Ldx ol 3 dx J WYy TVy W 1dS 2 Dfl(x)Wnd:c ¢, (A. 3)

By the way, following relations hold everywhere on the surface, and at any time;
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M
aT+(1—a)VvT= L g4,
i=M'+1

aW,+(1+a)Vy W,=0

Then,
1 a l1—a
= % = M
T VVT VVWM Z glsbl -—Wﬂ Z l"b!
Wn VIJ Wn =M i=M+1
1
T P
( v Wn_wn)i=M,+1gi¢i
Thus,
M
TVy W,—W,Vy T=(Vy T=(Vy Wn—Wn),_Ai;Hgi% (A. 4)
After 'expanding both to system distributions such as
Tt,2)= L ey @), f0= L fug @) (A.5)

substute them into. Eq. (A. 3) together with Eq. (A. 4). Now, we execute the integrations, and obtain

infinite-dimensional state variable equations (2. 4)and (2. 5) for the distributed parameter system.
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