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On the Distributed Coupled-Line Digital Frequency Multipliers
— Part I. the Frequency Domain Behaviour

Iwata SAKAGAMI

Abstract

Functions of coupled-line type digital frequency multipliers are described from the aspect of frequency do-
main by using Fourier transforms. Discrete frequency components of both a train of periodical impulses and
that of pulses are firstly introduced. It has been shown that the proposed multipliers act as a kind of passive
filter, that is, certain discrete frequency components are eliminated and others are passed. Secondly, this paper
has proved that the attenuation of the transmitted components is minimized in the frequency characteristics of
coupled-line type multipliers. Lastly, referring to a train of Gaussian pulses, it has been demonstrated that the
proposed multipliers can function well under the network transfer functions based on TEM wave approxima-

tions.

. Introduction

The multiplication of pulse repetition frequencies in the microwave frequency bands distributed
coupled-line networks has been reported, and experiments have shown good agreement with the
predictions of network systhesis theory[l], [2]. In the process of network systhesis, it has been
convenient to treat a train of input pulses as a train of impulses. This is so that the principle of
the coupled-line type multipliers can be understood easily, and because the output responses from
arbitrary input waveforms can be obtained by the convolution integral(3].

The train of impulses possesses equi«amplitudé equi-spacing discrete frequency components over
— o0 < w <o but no problems crop up as far as the network transfer functions are concerned.
Expressed by the delay oprator z ! or the Richards variable t=jtan @ , the network transfer func-
tions have periodical frequency characteristics at all frequencies of —o0 < w < oo, Therefore, con-
ditions for the multiplication of the periodical impulses can be satisfied.

In general, the frequency characteristics in actual networks will show good agreement with
those of the network transfer functions at the first or second period. However, as the frequency in-
creases, the frequency characteristics stray from those of network transfer functions by the para-
sitc reactances at discontinuity interfaces or by conductor dielectric losses. Therefore, a pulse of
finite duration should be introduced in real inputs and real networks as discussed at following
sections.

The main topics here are: (i) discrete frequency components of periodical impulses, (ii) those of
periodical pulses of finite duration, (iii) behavior of the proposed multipliers in the frequency do-
main, (iv) verification on the minimum insertion loss of the transmitted discrete frequency compo-
nents, and (v) a train of Gaussian pulses.
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Il.  Frequency Components of a Train of Input Pulses

(i) Discrete frequency components of periodical impulses.

Fig.1(a) shows the constant-resistance n-section coupled-line network. Figs.1(b)(c) are the equiva-
lent circuits. They are similar to Figs.4(b)(c) in [2], differing in the position of b;. Fig.1 will be ex-
plained in section IV again. Refs.[1,2] have shown three kinds of multipliers with regard to
Fig.1(a). Figs. 2, 3 and 4 are the most simple input/output responses. They are realized by 1-
section and 2-section networks in Fig.1(a).

In general, a train of unipolar impulses and a train of bipolar impulses are represented by[4]

at (0= 38 (t—kT) (1a)

a7 (D=3 (=16 (t—kT) (1b)
The Fourier transforms of (1) are

Flat(0]=0* = 0(0—ka™) (2a)

Fla 0)=0” 3 oj(o—BtDel (20)

where @ V=27 /T. T is the impulse interval. Although the period of (1a) is T, that of (1b) is tre-
ated as 2T in this paper. When eqs.(1) are applied to port A; in Fig.1(a), T must be T=2m+1) 7,
where 7 is a time delay in the line length £ .

The transient responses will be over in several nanoseconds in distributed networks of micro-
wave frequency bands[5]. Therefore let eqs.(1) be incident impulse trains covering —oo<t< oo Ip
(1), it is assumed that a positive polarity impulse comes to port A; at t=0. Eqgs.(2) show that the
unit 1 +1 1 %1 impulse trains possess discrete frequency components of equi-amplitude @ © and
equi-spacing w +

(ii) Discrete frequency components of periodical unipolar pulses.

Now let us consider a train of pulses vr, (t) [for instance, see Fig.5]. It is assumed that the con-
stituent single pulse v(t) is time-limitted and the duration is less than 2 7 in order that the pulses
not overlap at output port Az. Designating the Fourier transform of v(t) by V(w),

v =5 V(w)expljot)de (3a)

V(w)=]" V(texp(—jwt)dt (3b)

Let to be an arbitrary real number. As v(t) can be expressed as a linear combination of exp(ik w *
t) on interval (to, to+T), the linear combination of v, (t) holds on (— o0 <t< o),

oo

viet)=, = Vilko Mexp(jke 1), (—oo<t<oo) (4a)
1 -
Vilko )= T I_T/zv(t)exp( jkw Tt)dt (4b)
Using (3b), (4b) and an assumption that v(t) is zero on |t | >T/_2,
Vilko )=V(ko")/T (5)

Therefore (4a) and the Fouier transform are
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=S}

vTr(t)=%k:2_mv(kw+)exp(jkw+t), (—oo< <o) (6a)

Flunl=w" 3 V(ko®)d(o—ke™) (6)

Thus, the Fourier series expansion of periodic pulses can be obtained by using the Fourier trans-
form of single pulse v(t). It is seen that (6b) is given by the product of (2a) and V(w)

(iii) Discrete frequency components of periodical pulses.

Let us consider the periodical bipolar pulses [for instance, see Fig.6] When w(t) consists of posi-
tive single pulse v(t) and negative single pulse. —v(t—T),

w(t)=[v(t]—=v(t—T), (—to=t=2T—to) (7a)
0 . (1< —to, t>2T —tp)
W(w)=F[w(t)]=V(w){1—exp(—joT)} (7b)

Let a train of bipolar pulses consisting of w(t) be wr,(t), and the period be 2T. Similarily to (4a)
and (4b),

wi= = Wilko"/2)exp(jko '1/2),  (—eo<t<eo) (8a)
Wtk */2) =] W(texp(—jko* /2)at (8b)
At —ty — — o0, 2T—to =  in (8b),
Wi(ko */2)=W(ko */2)/2T, (9)
From (7b),
Wilko™/2)=| 0 (k:even number)
Vikw"/2)/T (k:odd number) (10)

Therefore wr.(t) and the Fourier trasform are written by

wi=% 3 Vi(2k+D) o /2lexpliZtD o * 2], (meo<t<e) (11a)

[ w+ w+
Flwr(t)]= w+k=2—oow (2k+21) B (2k+21)

Similarily to the results of (6b), the train of periodical bipolar pulses can be represented using the
Fourier transform V(®), and (11b) is equal to the product of (2b) and V(w).

fofw | (11b)

IIl. Behavior of the Coupled-Line Type Multipliers in the Frequency Domain

(i) The case of faster unipolar pulses of time interval 2 T being output from input unipolar
pulses of time interval 2(n+1) 7.

The examples of this case (i) are given by Fig.10 in [1], Figs.2(a)(b)and Figs.3(a)(b).

The network transfer function of Fig.1(a) is written as [1][2]

n n '
I'n(z)= Zoqkz”k/{l-i- lekz_k} (12)
k= k=
where 2z~ !=exp(—2jw 7).
The condinions for the faster unipolar output impulses and output amplitude Sq were described

in (22) of [1]. Using the same notations as in [2],
Q=0q1=. . .= qn, (13a)
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Sd:qO/“+k§1pk} (13b)

Let the numerator of (12) be fy(z ). From (13a),
fz(2_1)=qo (1+z27 '+, . AzTm)
Here (1—z " Vf2(z ) =qol1—2" "V} holds. Using @ = /(n+1) t, the transmission zeros
and their angular frequencies are given by
zne=explj27k/(n+1)} =exp|2j(kw*) r | (14a)
@, =kw™" (14b)
where k#m(n+1); km: integer.
Comparing (14b) with (2a) and (6b), it is seen that discrete frequency components of input unipo-
lar impulse trains (or pulse trains) correspond to network transmission zeros, except for the case
of k=m(n+1). Therefore, the penetration of input impulse trains (or pulse trains) arises at k=m(n
+1). From (14b) and T=2(n+1) 7, the transmitted angular frequency components can be given
by
=mn/tT. (15)
(15) is equ1va1ent to z=1. One period of (12) corresponds to one turn on the unit c1rcule of z-
plane, that the insertion loss at (15) is constant.
Fa(z™) [ ,=1=(n+1)sd (16)
Referring to (2a), as the amplitude is @ T, the amplitude of transmitted frequency components is
given by

@ (n+1)S4=7Sy/ © (17)
By (15) and (17), the discrete output responses in the frequency domain can be written as
S 3 8 (w—"") (18)

This equation also represents the Fourier transform of an output unipolar impulse train of time in-
terval 2 ©

Fig.7 shows the transmitted frequency characteristics of Fig.9 in [1]. The center frequency f,
was 192[MHz]. About 4 periods of the frequency characteristics are photographed. According to
I1(ii), because @ ¥ =2« fo, the discrete frequency components of the input unipolar pulse train
which was given by Fig.10(a) in [1] are located just at frequencies of the maximum and minlmum
attenuation. The discrete frequency components at the maximum attenuation are rejected, and
those of minimum are transmitted to the output port along with network insertion losses. In this
way, the resultant output pulse train become twice as fast as input one.

Ref.[2] has shown two other functions:

(i) The case of faster bipolar pulses of time interval 2 being output from input unipolar

pulses of time interval 2(n+1) ¢ .

The input and output relations in Figs.2(a)(c) of this paper and Figs.8(a)(b) of [2] are the exam-
ples of this case(ii).

The realization conditions and the output amplitude S, were given in (14) of [2].

Q= —q1=qz=...=—q, ' (19a)

S:=qo/ 11+ 2 (=DpJ | (19b)

n:odd number
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Further explanations of this case will be omitted.

(iii) The case of faster bipolar pulses of time interval 2 7 being output from input bipolar

pulses of time interval 2(n+1) 7.

Figs.8(b)(c) in [2] and Fig.4 of this paper are the example of this case (iii).

The frequency domain behaviours will be described below, although the discussions are similar
to cases of (i) and (ii).

The realization conditions and the output :implitude S, were given in (22) of [2].

Q= —q1=qz=...=q, (19a)

sp=qo/il+él(—1)“pk} (19b)

n:even number
As the numerator of (12) is given by f2(z ') =qo(1—z '+z ?—.. . +z™ "),
(142 Dz ") =qol1+2z~ """} holds. Therefore the transmission zeros and the anglar frequen-
cies are

zk=exp{j(2k+n+1)n/(n+1)}=exp{2j-%4;“)lz”- (20a)

0 =2k+n+1)w*/2 (20b)
k**m(n+1); km: integer
Comparing (20b) with (2b) and (11b), it will be understood that the discrete frequency components
of input bipolar impulse trains (or pulse trains) coincide with network transmission zeros, except
for the case of k=m(n+1). Therefore, the peneration occurs at k=m(n+1). The transmitted
angular frequency components can be given by

w=02m+1)7/27 (21)
(21) corresponds to z=—1, and the insertion loss at (21) is
Iz | ,=—1=(n+1)Sp ' (22)
Since the amplitude of (2b) is @,
o (n+1)S,=7S,/ (23)
Thus, the discrete output responses in the frequency domain can be written by
2 2m+1
TS S b fe—2milT (24)
T m=— 00 2 T

(24) represents the Fourier transform of an output bipolar impulse train of time interval 2 7.

Fig.8 shows thoeretical frequency characteristics of 2-section coupled line digital frequency tri-
plers. The solid curve and the chain curve indicate the cases of (i) and (iii), respectively. In the
case of chain curve, the input bipolar impulse train possesses the normalized discrete frequency
components 1/3, 1, 5/3 in the first period of 0=f/f,<2. The frequency components 1/3 and 5/3
are rejected by the network, and the frequency components f/fo=1 transmits to output port. The
transmitted frequency components are =1, =3, £5, .. . at all frequency bands, and these compo-
nents will form a three times faster impulse train than input.

The reader may wonder whether the distributed line networks could not satisfy the specified
frequency characteristics at all frequencies, since the network transfer functions are based on the
TEM wave approximations, and moreover the train of impulses is not an actual one. However, this
question is answered in the light of (2), (6b) and (11b). In the case of a pulse train whose consti-
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tuent pulses have finite duration, the amplitudes of discrete frequency components are determined
by w +V( w). In general, the Fourier transform V() of single pulse v(t) converges to zero as the
frequency increases. Therefore if the energy of input pulse trains concentrates on the region of the
specified frequency characteristics being satisfied, the proposed multipliers function well [See last
section VI].

IV. The Non-Negative Constant

In this section, the non-negative constant will be taken up in preparation for discussion of the
minimum instraction loss in the next section. The non-negative constant is occasionally used in the
synthesis of cascaded transmission line networks[6],[7]. The phasical nature will be clarified.

Let us start at different derivations of network transfer functions from (3) and (4) in [2]. The re-
flection and transmission coefficients of the network shown in Fig.1(a) are defind as

T(z7") =bo/ao (25a)

To(z7 ") =cy /a0 (25b)

(25a) is the same as network transfer function from port A; to port As.

In Figs.1(b)(c), the ag, by, a1, by, . . ., a, by, c¢ are the power waves|[8]. The r,; and to; (i=1,2, . .
., n+1) are defined in the same way as in [1,2] and represent the reflection transmission coeffi-
cients'at the ith interface. Paying attention to the ap, by, am+1, by +1 at the (m+ 1) —section in
Fig.1(b) or (c),

rzﬁlam 1 1 r'e,m-i-lz_1 Zﬁl/zam+l
—1/2 = —1
z bm tem+1 |Tem+1 2 bm+1
Therefore the relation of a;, by, a,, by, is given by
rz V2, 1 n 1 femZ | z~1/2an
e =— {11 -1 (26)
z (n 1)/Zbl m=2 |Tem z bn

where £’ =(testes . . . ten).
On ay, by, ay, by at first section,

FZ—(n+1)/2a0 1 1 relzwl Z—n/Za1
Z—(n+1)/2b0 = rol -1 Z~(n—1)/zbl

At the place of conductance g1,
P o—1/2
z a

o] Ve, 1
bn te,n+1 Ten+1

These conditions lead (26) to

.Z—(n+1)/2ao z_l/zce \ 1 Yeml_l 1
Z—(n+l)/2b0] — ,,El [rem 1 ] [re,n+1 ] (27)
where Y2 =(telte2 N te_n+1).
Calculating the matrices inside the {} , the resultant elements f;(z ') and fo(z 1) are n-th order

polinomials of z~! whose coefficient of each term is composed of products and sums of r,,(m=1,2,
....n). Therefore, (27) can be rewritten as

Z—(n+1)/2a0 Z_l/ZCe f1(2_1) (
g~ (D2 |Gy 28)

From (25) and (28),
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Tz D=6(:z""/f(z") (29a)

Tolz )=z V¥/1,(z7") (29b)
In Fig.1(b), regarding the even mode cascaded transmission-line(EMCTL) between 1 —1; and (n+
1)—(n+1); as a black-box, ag, bp and ¢ respectively represent the incident, reflected and trans-
mitted power waves of the black-box. As the conductance g; is not inculded and the EMCTL is
lossless, | ag | 2= | bg | 24+ | ¢y | 2 Therefore, from (25) and (29),

1z H* (27 ) =2z DE* (271 = p? (30)

* . complex conjugate
In this way, it has been demonstrated that the non-negative constant stated in [6],[7] is given by
the square of the product of the transmission coefficient at the discontinuity interface of each unit
element.

V. The Minimum Insertion Losss

According to three capabilities as digital frequency multipliers, the numerators of (29a) are
given by
(1) f2(2*1>=(10(1+271+‘ Az
(i) f(z7 D =qo(l—z '+...—2 ")
n:odd number
(i) 2z )=qo(1—z '+, 4z ")
n:even number
Values of the above-mentioned three equations are respectively equal to
f2(z71) | ,=+1=qo(n+1) (31)
at z=1, —1, —1. Here q9=r.;, and 0<r.; <1 holds as r.; represents a reflection coefficient at
the discontinuity interface 1 —1; in Fig.1(b). Taking the triangle inequality to the three numer-

ators,

lqo(l+z "4z 7%+ ... +z ™) |

Sqo(1+ | z7" [+ ...+ [z ])=qo(n+1) (32)
Dividing (30) by fi(z )i *(z7")

C.z O * () =1— %0z Hu* Y (33)

(31) indicates a maxmum value. Also f;(z ')f;*(z ') reaches a maxmum due to (30). As a result,
(33) gives the value which is the closest to 1. Represented by —10log I'y(z™ )T, *(z71), the atte-
nuation of the discrete transmitted frequency components is the minimum in the frequency charac-
teristics of the proposed coupled-line type multipliers

VI. Discrete Frequency Components of a Train of Gaussian Pulses

Let v(t) described in IL(ii) be a Gaussian pulse. Then, the Fourier transform of v(t) is also Gaus-
sian, and (3) can be given by

v(t)=|m}l/4expl-(ﬁ)zf (34a)
V)=l y g Vsl = (5 )" (34b)

where At and A& @ are called effective duration and effective bandwidth. It is known that more
than 99.7% of total energy is included in the range of |t | <3Ator | @ | <3A w. In the case
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of a Gaussian pulse, from the uncertainty relation [9],[10] (See Appendix),
At Aw=0.5 ) (35)
Because of

[* 1 1 7ae=1,

.the total energy of (34) is 1.

The Fourier series expansion and its Fourier transform to a train of Gaussian pulses can be
obtained by substituting (34) into (6) or (11). As seen from (34), the Gaussion pulse could not be
called a time-limited pulse waveform in a strict sense. However, assuming both the edges of the
waveform represented by (34) reach zero, so that no overlap occurs with adjacent pulses, we can
acknowledge following equations with respect to (6a) and (11a):

T/2
29,
[ 7, vme(®) 7a=1

T/2
J. [ wre(t) | %dt=1
-T/2

The energy spectra of input pulse trains are given by multiplying the periods by the mean power
of periodical pulses. Therefore:
(a) in the case of a train of unipolar Gaussian pulses

~/2 [ee]
Ta o, S opl—(ko'/8w)/21=1 (36a)
(b) in the case of a train of bipolar Gaussian pulses
(e o)
# S expl—1(2k+1) 0 /28 w]2/2]=1 (36b)
W k=—oo

However, (36b) is obtained by multiplying the half-period T by the mean power. The energy spec-
tra are also discrete and given by each term of the left sides of (36) [See Fig.9(b) and Fig.10(b),
where negative components are omitted)|.

In Fig.8(a) of[2], the pulse width generated by P. G. was arround 1.1nsec. Assuming a train of
Gaussian pulses with period T=5.2nsec, fundamental frequency f*=192MHz and pulse width 3
At=0.55nsec, as shown in Fig.5, almost all the energy (99.63%) of the Gaussian pulse train con-
centrates within 3 Af. Here, 3 Af=1.3GHz gue to (35). Figs.9(a)(b) indicate the frequency charac-
teristics of the test circuit A of [2], and the energy spectrum of Fig.5. In Fig.9(b), fO indicates the
direct current(DC) component and f1=f", £2=2f", . . hold. For the design of proposed multipliers,
it is desirable that the frequency characteristics are satisfied in the region of 0 —1.3GHz. As seen
from Fig.1 in [2], test circuit A is a directional coupler, which cuts off the DC component complete-
ly. The frequency components 2, f4,. . . in Fig.9(b) are rejected, and others f1,3, . . transmit to
output port Ay, In this way, output pulses can be formed twice as fast as input.

Similar arguments are valid in test circuit B in [2]. Figs.10(a)(b) show the frequency characteris-
tics of test circuit B, and the energy spectrum of Fig.6, respectively. As seen from (36b), the DC
component is not included in the train of bipolar pulses. Comparing both figures, it is understand-
able that f1,£3,f4,...are rejected and {2 15,... penetrate to output port B,. Higher frequencies than {5
can safely be neglected. According to the consideration from the frequency domain, it can be said
that most of the waveform in Fig.8(c) of [2] comes from the transmitted discrete frequency compo-
nent f2. The pulse width being shortened, the frequency domain spectra spread to higher bands.
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As a result, the continuous waveform in Fig.8(c) of [2] is separated into single pulses.

Referring back to Fig.8, the frequency characteristics have two different peak values in a
period: for a chain line, one is at f/f,=1, and the other is at {/f,=0 (or =2.0). The same. thing
can be said in Fig.10(a). The verification in section V ensures that attenuation of the transmitted
components is a minimum even if the frequency characteristics have different peak values within a
period.

VIl. Conclusions

A train of periodical impulses consists of equi-amplitude equi-spacing discrete frequency compo-
nents. On the other hand, in case of a train of periodical pulses, it possesses the same discrete fre-
quency components as that of impulses, but the amplitudes are different and are given by the
Fourier transform of the constituent single pulse waveform. Therefore, generally, as the frequency
is increased, the amplitudes are close to zero. Regarding the input pulses generated by the pulse
generator as Gaussian pulses of duration 1.1nsec, the frequency band where almost all the energy
of the train of Gaussian pulses concentrates is 0—1.3GHz. This fact means that the distributed
coupled-line networks can be used as digital frequency multipliers even if the specified frequency
characteristics are damaged in the higher frequency region.

In section III, functions of coupled-line type multipliers have been explained, and it has been
shown that a coupled-line type multiplier works as a kind of a passive filter which eliminates cer-
tain discrete frequency components and transmits other components to the output port. As a re-
sult, the transmitted components from a train of output pulses with a higher repetition frequency
than the input one in the time domain.

In section IV and V, it has been proved that attenuation of the transmitted components is the
minimum.

The proposed multipliers have the dratback of lowering amplitude level and need amplitude
amplifiers for actual use. Or, a train of higher amplitude level pulses should be input in advance in
order to have necessary output level. However, it could be said that the multiplication by passive
elememts only would be worthy of note.

In part II, which will be presented in the near future, energy ratio at a specified frequency and
computer output Simulation will be demonstrated with respect to Cosine half wave inputs.

Appendix[9]
The Definition of At and A w

Under the condition of .[_ t | v(t) | 2dt=0,

(ap2af” v | %t (A1)
(Aw)ZAJ—Iw w? [ V(w) [ *de ‘ (A.2)
- 27T — o0 .
Uncertainty Relation
At A w=05 (A3)
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&(t) A 1 2 n 5
1
o — 1+ —_
/o—f — R ol — 92
bnt) Ay
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Fig. 1 (a) A constant-resistance n-section coupled-line network.
(b) An even mode equivalent circuit.
(¢) An equivalent signal flow graph.

47



Iwata SAKAGAMI

> 2Tk
(¢)

Fig. 2 Input/output responses in case of n=1.
(a) A train of input unipolar impulses.
(b) Output unipolar impulses - In case of Section ITI(i).
(c) Output bipolar impulses - In case of Section III(ii).

—6T —>|
o)

N I O

> 27T k-

(b)

Fig. 3 Input/output responses in case of n=2.
(a) A train of input unipolar impulses.
(b) Output unipolar impulses - In case of Section III(i).
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- k—6T—
(2)

| | |

SI2T k-
~(b)

Fig. 4 Input/output responses in case of n=2.
(a) A train of input bipolar impulses.
(b) Output bipolar impulses - In case of Section III(iii).

Input wave$orm

"1 00 ' 000 500
Time <nsec>

Fig. 5 A train of unipolar Gaussian pulses.
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Input Wave+oym

5.0
Time <nsec>

Fig. 6 A train of biplolar Gaussian pulses.
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8 1 i || | 1 1 1 1 | 1 1 ] 1 T 1 1 { l I |
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Fig. 9 (a) Frequency characteristics of the test circuit A in (2]).
Solid line : measurement. Broken line : theory.
(b) Energy spectrum of input pulse train in Fig. 5.
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Fig. 7 A photograph of the transmitted frequency characteristics
of Fig. 9 in (1.
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Fig. 8 Theoretical frequency characteristics of the 2-section coupled-
line digital frequency triplers. re=0.2.
The solid line I case of III(i). The chain line : case of ITI(iii).
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On the Distributed Coupled-Line Digital Frequency Multipliers
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Fig. 10 (a) Frequency characteristics of the test circuit B in (2],
Solid line ! measurement. Broken line . theory.
(b) Energy spectrum of input pulse train in Fig. 6.
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