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On the Distributed Coupled-Line Digital Frequency Multipliers 

-Part 1: the Frequency Domain Behaviour 

Iwata SAKAGAMI 

Abstract 

Functions of coupled-line type digital frequency multipliers are described from the aspect of frequency do 

main by using Fourier transforms. Discrete frequency components of both a train of periodical impulses and 

that of pulses are firstly introduced. It has been shown that the proposed multipliers act as a kind of passive 

filter， that is， certain discrete frequency components are eliminated and others are passed. Secondly， this paper 

has proved that the attenuation of the transmitted components is minimized in the frequency characteristics of 

coupled-line type multipliers. Lastly， referring to a train of Gaussian pulses， it has been demonstrated that the 

proposed multipliers can function well under the network transfer functions based on TEM wave approxima-

tlOns 

1. Introduction 

The multiplication of pulse repetition frequencies in the microwave frequency bands distributed 

coupled-line networks has been reported， and experiments have shown good agreement with the 

predictions of network systhesis theory[l]， [2]. In the process of network systhesis， it has been 

convenient to treat a train of input pulses as a train of impulses. This is so that the principle .of 

the coupled-line type multipliers can be understood easily， and because the output responses from 

arbitrary input waveforms Can be obtained by the convolution integral[3] 

The train of impulses possesses equi-amplitude equi-spacing discrete frequency components over 

一∞<ω<∞， but no problems crop up aS far as the network transfer functions are concerned. 

Expressed by the delay oprator z -1 or the Richards variable t = jtanθ ， the network transfer func 

tions have periodical frequency characteristics at a11 frequencies of一∞<ω<∞.Therefore， con-

ditions for the multiplication of the periodical impulses can be satisfi巴d.

In general， the frequency characteristics in actual networks wi11 show good agreement with 

those of the network transfer functions at the first or second period. However， as the frequency in-

creases， the frequ巴ncycharacteristics stray from those of network transfer functions by the para 

sitc reactances at discontinuity interfaces or by conductor dielectric losses. Therefore， a pulse of 

finite duration should be introduced in real inputs and real networks as discussed at fo11owing 

sections. 

The main topics here are: (i) discrete frequency components of periodical impulses， (ii) those of 

periodical pulses of finite duration， (iii) behavior of the proposed multipliers in the frequency do 

main， (iv) verification on the minimum insertion loss of the transmitted discrete frequency compo 

nents， and (v) a train of Gaussian pulses 
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11. Frequency Components of a Train of Input Pulses 

(i) Discrete frequency components of periodical impulses 

Fig.1(a) shows the constant-resistance n-section coupled-line network. Figs.1(b)(c) are the equiva 

lent circuits. They are similar to Figs.4(b)(c) in [2]， differing i~ the position of bj. Fig.1 will be ex-

plained in section IV again. Refs.[1，2] have shown three kinds of multipliers with regard to 

Fig.1(a). Figs. 2， 3 and 4 are the most simple inputloutput responses. They are realized by 1-

section and 2-section networks in Fig.1(a). 

In general， a train of unipolar impulses and a train of bipolar impulses are represented by[4] 

an + (t) =ヱ δ(t-kT)

an + (t) = 2: (_l)kδ(t-kT) 

The Fourier transforms of (1) are 

タ[an+ (t)] =ω+ ヱ δ(ω-k印+)

∞ (2k+1)ω+ 
5Tan一(t)]=ω+ ヱ δ1(ω-2  

(1a) 

( lb) 

(2a) 

(2b) 

whereω+=2π/T. T is the impulse interval. Although the period of (la) is T， that of (1 b) is tre-

ated as 2T in this paper. When eqs.(l) are applied to port Al in Fig.1(a)， T must be T=2(n十1)τ ，

where r is a time delay in the line length e. 
The transient responses will be over in several nanoseconds in distributed networks of micro-

wave frequency bands[5]. Therefore let eqs.(l) be incident impulse trains covering一∞<t<∞ In

(1)， it is assumed that a positive polarity impulse comes to port A) at t = O. Eqs.(2) show that the 

unit 1土11 ::1: 1 impulse trains possess discrete frequency components of equi-amplitudeω+ and 
+ eqUl-spaClllgω 

(ii) Discrete frequency components of periodical unipolar pulses. 

Now let us consider a train of pulses VTr (t) [for instance， see Fig.5]. It is assumed that the con 

stituent single pulse v(t) is time-limitted and the duration is less than 2πin order that the pulses 

not overlap at output port A2・Designatingthe Fourier transform of v(t) by V(ω)， 

v(t)=τ1......foo V(ω)exp(jωt)dω 
乙7τ ・'∞

V(ω)=J二V(山 p(一jωt)dt
(3a) 

(3b) 

Let to be an arbitrary real number. As v(t) can be expressed as a linear combination of exp(jkω+ 

t) on interval (to， to十T)，the linear combination of VTr (t) holds on (一∞<t<∞)

VTr(t)= 三 Vk(kω+)exp(jkω+t)，一∞<t<∞)

1 'T/2 
Vk(kイ)=云l' v(t)exp(一jkw+t)dt

1 • ~T/2 

Using (3b)， (4b) and an assumption that v(t) is zero on I t I >T/2， 

Vk(kω+)=V(kω+)/T 

Therefore (4a) and the Fouier transform are 
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叶 r炉 ( 6a) 

，;;hTr(t)]=ω+ 2: V(kω+)δ(ω-kω+) (6b) 

Thus， the Fourier series expansion of periodic pulses can be obtained by using the Fourier trans 

form of single pulse v(t). It is seen that (6b) is given by the product of (2a) and V(ω) 

(iii) Discrete fr巴quencycomponents of periodical pulses. 

Let us consider the periodical bipolar pulses [for instance， see Fig.6] When w(t) consists of posi~ 

tive single pulse v(t) and negative single pulse -v(t-T)， 

w(t)= Iv(t]-v(t-T)， (-toS;tS;2T-to) 

10 ， (t<-to，t>2T-to) 

W(ω)二.'f'[w(t)]=V(ω)!l-exp(一JωT)I 

( 7a) 

(7b) 

Let a train of bipolar pulses consisting of w(t) be WTr(t)， and the period be 2T. Similarily to (4a) 

and (4b)， 

WTrエヱ WK(kω+/2 )exp(jkω+ t/2)，∞<t<∞) (8a) 

，2T-to 
WK(k ω十/2)=二一 w(t)exp(-jkω 十/2)dt

2T J -to 

At -to→一∞， 2T一to→∞ in(8b)， 

WK(kω+ /2)=W(kω+/2)/2T， 

(8b) 

(9) 

From (7b)， 

WK(kω 十/2)= I 0 (k:even number) 

I V(kw十/2)/T (k:odd number) 
Therefore WTr(t) and the Fourier trasform are written by 

(10) 

w附叫吋川Tr川山rバ山(仇ωtり)= ÷i=三人勺∞V川1(2叩 )wωU山+勺/川2

+∞ (2k+1)ω+ I ~ [ (2k十1)ω 十
F到[w附Tむ山rバr(t仇ωtり)]ト=ωw+  三∞ V引1 2 !げδ|川ω一

(一∞<t<∞) (l1a) 

)
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Similarily to the results of (6b)， the train of p巴riodicalbipolar pulses can be represented using the 

Fourier transform V(ω)， and (11 b) is equal to the product of (2b) and V(ω). 

111. Behavior of the Coupled-Line Type Multipliers in the Frequency Domain 

(i) The case of fast巴runipolar pulses of time interval 2て beingoutput from input unipolar 

pulses of time interval 2(n + 1) r 

The examples of this case (i) are given by Fig.10 in [1]， Figs.2(a)(b)and Figs.3(a)(b). 

The network transfer function of Fig.1(a) is written as [1]，[2] 

fn(z)=三qkz-k/11+ヱPkZ-k I 
k=り k=l

where Z-lニ exp(-2jωr) 

(12 ) 

The condinions for the faster unipolar output impulses and output amplitude Sd were described 

in (22) of [1]. Using the same notations as in [2]， 

qoエ qlニ ーニqn， ( 13a) 
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Sct=qo/11十51Pkl(13b)

Let the numerator of (12) be f2(z -1)ーFrom(13a)， 

f2(z-I)=qO (1十zI十.+z -n) 

Here (1 -z -1 ) f2 (z -1 ) = qo 11 -z← (n + 1) 1 holds. Using ω+=π/ (n + 1) ， ， the transmission zeros 
and their angular frequencies are given by 

zk=explj2πk/(n + 1) 1 =exp 12j(kω+)，1 
ωk=kω+ 

where k当n(n+1); k，m:integer. 

(l4a) 

(14b) 

Comparing (14b) with (2a) and (6b)， it is seen that discrete frequency components of input unipo-

lar impulse trains (or pulse trains) correspond to network transmission zeros， except for the case 

of k = m(n + 1). Therefore， the penetration of input impulse trains (or pulse trains) arises at k = m(n 

十1).From (14b) and T = 2(n + 1) ， ， the transmitted angular frequency components can be given 
by 

ωt-mπ/τ (15) 

(15) is equivalent to z = 1. One period of (12) corresponds to one turn on the unit circule of z 

plane， that the insertion loss at (15) is constant 

r n (z -1) I z = 1 = (n + 1) Sd (16) 

Referring to (2a)， as th巴 amplitudeisω+ ， the amplitude of transmitted frequency components is 

given by 

ω+(n+1)Sct= JrSct/， 
By (15) and (17)， the discrete output responses in the frequency domain can be written as 

千sdE δ(ω 竺~)
ι 皿=ー∞ ι

( 17) 

(18) 

This equation also represents the Fourier transform of an output unipolar impulse train of time in 

terval 2 ， 
Fig.7 shows the transmitted frequency characteristics of Fig.9 in [1]. The center frequency fo 

was 192[MHz]. About 4 periods of the frequency characteristics are photographed目 Accordingto 

II(ii)， because ω+=2πfo， the discrete frequency components of th巴inputunipolar pulse train 

which was given by Fig.10(a) in [1] are located just at frequencies of the maximum and minlmum 

attenuation. The discrete frequency components at the maximum attenuation are rejected， and 

those of minimum are transmitted to the output port along with network insertion losses. In this 

way， the resultant output pulse train become twice as fast as input one 

Ref.[2] has shown two other functions 

(ii) The case of faster bipolar pulses of time interval 2 ， being output from input unipolar 
pulses of time interval 2(n + 1) ， • 

The input and output relations in Figs.2(a)(c) of this paper and Figs目8(a)(b)of [2] are the exam-

ples of this case(ii) 

The realization conditions and the output amplitude Sp were given in (14) of [2]. 

qo= -q1 =q2=. . .= -qn 

St=qo/11 +ヱ(_l)kpkl

n:odd number 
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Further explanations of this case will be omitted. 

(iii) The case of faster bipolar pulses of time interval 2 '[ being output from input bipolar 

pulses of time interval 2(n + 1) '[ . 

Figs.8(b)(c) in 121 and Fig.4 of this paper are the example of this case (iii). 

The frequency domain behaviours will be described below， although the discussions are similar 

to cases of (i) and (ii) 

The realization conditions and the output amplitude Sp were given in (22) of 121. 

qO=-ql=q2=.. .=qn (19a) 
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(19b) 

n:even number 

As the numerator of (12) is given by f2(Z-1)=qo(1-z-1+z-2ー...+z-n)， 

(1+z-1)f2(Z一1)=qo!l +z一(n+1)I holds. Therefore the transmission zeros and the anglar frequen. 
cles are 

(2k+n+1)π 
zk=explj(2k+n + 1)π/(n + 1) I =exp!2j・

2(n+1) '[ 

ωk=(2k+n+ 1)ω+/2 

k当n(n + 1); k，m: integer 

Comparing (20b) with (2b) and (11 b)， it will be understood that the discrete frequency components 

of input bipolar impulse trains (or pulse trains) coincide with network transmission zeros， except 

for the case of k = m (n + 1). Therefore， the peneration occurs at k = m (n + 1). The transmitted 

(20a) 

(20b) 

angular frequency components can be given by 

ωt=(2m+1)π/2 '[ 

(21) corresponds to z=-l， and the insertion loss at (21) is 

(21) 

rn(Z-l) I z=ー1=(n+1)Sp

Since the amplitude of (2b) isω+ 

ω+(n+1)Sp=πSp/ '[ 

Thus， the discrete output responses in the frequency domain can be written by 

∞ (2m+1)πl 
一~Sn ~ δ|ω 一一ーでヶ一一一|
T Ym=ー ∞乙τ

(22) 

(23) 

(24) 

(24) represents the Fourier transform of an output bipolar impulse train of time interval 2 '[ . 

Fig.8 shows thoeretical frequency characteristics of 2.section coupled line digital frequency tri. 

plers. The solid curve and the chain curve indicate the cases of (i) and (iii)， respectively. In the 

case of chain curve， the input bipolar impulse train possesses the normalized discrete frequency 

components 113， 1， 5/3 in the first period of 0三f/fo<2. The frequency components 1/3 and 5/3 

are rejected by the network， and the frequency components flfo = 1 transmits to output port. The 

transmitted frequency components are士1，:1:3，土5，. . . at all frequency bands， and these compo. 

nents will form a three times faster impulse train than input 

The reader may wonder whether the distributed line networks could not satisfy the specified 

frequency characteristics at all frequencies， since the network transfer functions are based on the 

TEM wave approximations， and moreover the train of impulses is not an actual one. However， this 

question is answered in the light of (2)， (6b) and (11 b). In the case of a pulse train whose consti-
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tuent pulses have finite duration， the amplitudes of discrete frequency components are determined 

by ω+V(ω). In general， the Fourier transform V(ω) of single pulse v(t) converges to zero as the 

frequency increases. Therefore if the energy of input pulse trains concentrates on the region of the 

specified frequency characteristics being satisfied， the proposed multipliers function well [See last 

、sectionVI] 

IV. The Non-Negative Constant 

In this section， the non-negative constant will be taken up in preparation for discussion of the 

minimum instraction loss in the next section. The non-negative constant is occasionally used in the 

synthesis of cascaded transmission line networks[6]，[7]. The phasical nature will be clarified. 

Let us start at different derivations of network transfer functions from (3) and (4) in [2]. The re-

flection and transmission coefficients of the network shown in Fig.1(a) are defind as 

rn(z~I)=bo/ao ( 25a) 

Tn(z~I)=cdao (25b) 

(25a) is the same as network transfer function from port AI to port A2 

In Figs.1(b)(c)， the ao， bo， al， bl， . . .， an， bn， c l are the power waves[8]. The rei and tei (i= 1，2， . . 

.， n + 1) are defined in the same way as in 11，2] and represent the reflection transmission coeffi 

cients'at the ith interface. Paying attention to the am， bm， am+l， bm+1 at the (m+1) -section in 

Fig.1(b) or (c)， 

[11[11可[凶Z-iam 1 1 re.m+]Z-il Iz-il"am+1 
~1/2 立|
bml te.m+1 I re.m+l z I I bm+1 

Therefore the relation of a]， b1， an， bn， is given by 

[z n/21  Z H/ "al 1 l!'.. I 1 
(n~ J) /2L I --， 
UI IμI  m~2 I r em 

where μ'= (te2te3・ ten)

;T11l[zJanj 

On ao， bo， a 1， b] at first section， 

[:…可.._-1， r_-n/2 aol 1 relZ Ilz al 
(n+I)/2" 1ニ 1.. -1 1 1 _ -(n-I)/2 
bo 1 te1 1 r el Z 1 1 z '" "1' "bl 

At the place of conductance gl， 

[z -~:2an] ニ[r e.~+1 ] an 

bn te.n + 1 I r e.n + 1 

These conditions lead (26) to 

IZ ~(n+ 1)/2a旬叫01 z 山 c" I!'.. I 1 r 印
1--(凶nド刊川+刊1り)/2"1 ニ一 一←ム"-- 1 rr 1.. -1 1I 1 .. 
I Z-- DO I μ 1 m ~ 1 1 r em Z 11 1 r e仏叩.n+1 1 

where μ=  (telte2・ te.n+l) 

(26) 

(27) 

Calculating the matrices inside the 1I ，the resultant elements fl(z ~ 1) and f2(z ~ 1) are n-th order 

polinomials of z-I whose coefficient of each term is composed of products and sums of rem(m=1，2， 

，n). Therefore， (27) can be rewritten as 

[「「「ffJJ円(凶M山nけ刊川山叫+刊刊叫1υ1)/ν/z-(け 1)/2bol f1 I f2(Z一1) (28) 

From (25) and (28)， 
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r n (z -1) = fz (z -1) / f1 (z -1 ) 

Tn(Z-I)=μz -n/Z/h (z -1) 
(29a) 

(29b) 

In Fig.1(b)， regarding the even mode cascaded transmission.line(EMCTL) between 1-11 and (n十

1)一(n+ 1h as a black-box， ao， bo and c e respectively represent the incident， reflected and trans-

mitted power waves of the black-box. As the conductance gl is not inculded and the EMCTL is 

lossless， I ao I 2ニ Ibo I 2+ I c e I 2. Therefore， from (25) and (29)， 
h (z -1) h * (z -1) -fz (z -1 )fz * (z -1) = μ(30)  

* : complex conjugate 
In this way， it has been demonstrated that the non苧negativeconstant stated in [6].[71 is given by 

the square of the product of the transmission coefficient at the discontinuity interface of each unit 

element. 

V. The Minimum Insertion Losss 

According to three capabilities as digital frequency multipliers， the numerators of (29a) are 

given by 

(i) fZ(z-I)=qo(1+z-1+.. .+z-n) 

(ii) fZ(z-I)=qo(1-z-1+.. .-z-n) 

n:odd number 

(iii)- fZ(z-I)=qo(1-z-1+. _ .+z-n) 

n:even number 

Values of the above-mentioned three equations are respectively equal to 

fZ(Z-I)lz=士1=qo(n+ 1) (31) 

at z = 1，一1，一1.Here qo = rel， and 0 < r el < 1 holds as r el represents a reflection coefficient at 

the discontinuity interface 1 -11 in Fig.1(b). Taking the triangle inequality to the three numer-

ators， 

I qo(1+z-1+z-2十.. . +z-n) I 

三qo(1+I z-1 I +... + I z-n I )=qo(n+1) (32) 

Dividing (30) by h(z-l)fl*(z-l) 

rn(Z-I)rn *(z一1)=1μZ/h(Z-I)h*(z一1) (33) 

(31) indicates a maxmum value. Also fl(Z-I)hホ(z-1) reaches a maxmum due to (30). As a result， 

(33) gives the value which is the closest to 1. Represented by -lOlog r n(Z -1 )rn * (z -1)， the atte-

nuation of the discrete transmitted frequency components is the minimum in the frequency charac 

teristics of the proposed coupled-line type multipliers 

VI. Discrete Frequency Components of a Train of Gaussian Pulses 

Let v(t) described in II.(ii) be a Gaussian pulse. Then， the Fourier transform of v(t) is also Gaus-

sian， and (3) can be given by 

v(t)= 1一一上-:-¥y1ν4expl一(-L)21乙π(Lムt)Z I ~~... I '2ムt (34a) 

V(ω)=iJ長11/4exp1一ぜ戸)zl (34b) 

whereムtand ~ωare called effective duration and effective bandwidth. It is known that more 

than 99.7% of total energy is included in the range of I t I < 3 ~ t or IωI <3~ ω. In the case 

43 



Iwata SAKAGAMI 

of a Gaussian pulse. from the uncertainty relation [9].[101 (See Appendix). 

ムt.ムwニ 0.5 (35) 

Because of 

j∞ I v(t) 12dt=1. 。。

the total en巴rgyof (34) is l. 

The Fourier series expansion and its Fourier transform to a train of Gaussian pulses can be 

obtained by substituting (34) into (6) or (11)ー Asse巴nfrom (34). the Gaussion pulse could not be 

called a time-limited pulse waveform in a strict sense. However. assuming both the edges of the 

waveform represented by (34) reach zero. so that no overlap occurs with adjacent pulses. we can 

acknowledge following equations with respect to (6a) and (11a): 

jV2 
I VTr(t) 12dt=1 

-T!2 

j mn  
I WTr(t) 12dt=1 

T/2 

The energy spectra of input pulse trains are given by multiplying the periods by the mean power 

of periodical pulses. Therefore: 

(a) in the case of a train of unipolar Gaussian pulses 

v.;-:: ∞ 
ーと2: expj-(kω+/ムω)2/21ニ 1
Tムωk= ∞

(b) in the case of a train of bipolar Gaussian pulses 

…一∞

」丘三- 2: exp[-j(2k+1)ω+ /2ムω12/2]=1
Tムωk= ∞

(36a) 

(36b) 

However. (36b) is obtained by multiplying the half-period T by the mean power. The energy spec恥

tra are also discrete and given by each term of the left sides of (36) [See Fig.9(b) and Fig.10(b). 

where negative components are omittedl 

In Fig.8(a) of[2]. the pulse width generated by P. G. was arround l.1nsec. Assuming a train of 

Gaussian pulses with period T = 5.2nsec. fundamental frequency f+ニ 192MHzand pulse width 3 

ムt= 0.55nsec. as shown in Fig.5. almost all the energy (99.63%) of the Gaussian pulse train con 

centrates within 3ムf.Here. 3ムf=l.3GHz gue to (35). Figs.9(a)(b) indicate the frequency charac-

teristics of the test circuit A of [2]. and the energy spectrum of Fig.5. In Fig.9(b). fO indicates the 

direct current(DC) component and fl = fてf2=2f¥.. .hold. For the design of proposed multipliers. 
it is desirable that the frequency characteristics are satisfied in the region of 0 -l.3GHz. As seen 

from Fig.1 in [2]. test circuit A is a directional coupler. which cuts off the DC component complete 

ly. The frequency components f2. f4.. . . in Fig.9(b) are rejected. and others fl，f3.. . . transmit to 

output port A2・Inthis way. output pulses can be formed twice as fast as input. 
Similar arguments are valid in test circuit B in [21. Figs.10(a)(b) show the frequency characteris 

tics of test circuit B. and the energy spectrum of Fig.6. respectively. As seen from (36b). the DC 

component is not included in th巳Jrainof bipolar pulses. Comparing both figur巴s.it is understand 

able that fl，f3，f4....are rejected and f2，f5.…penetrate to output port B2. Higher frequencies than f5 
can safely be neglected. According to the consideration from the frequency domain. it can be said 

that most of the waveform in Fig.8(c) of [21 comes from the transmitted discrete frequency compo 

nent f2. The pulse width being shortened. the frequency domain spectra spread to higher bands. 
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As a result， the continuous waveform in Fig.8(c) of [2] is separated into single pulses. 

Referring back to Fig.8， the frequency characteristics have two different peak values in a 

period: for a chain line， one is at flfoニ 1，and the other is at flfo = 0 (or = 2.0). The same. thing 
can be said in Fig.lO(a). The verification in section V ensures that attenuation of the transmitted 

components is a minimum even if the frequency characteristics have different peak values within a 

period. 

VII. Conclusions 

A train of periodical impulses consists of equi-amplitude equi-spacing discrete frequency compo-

nents. On the other hand， in case of a train of periodical pulses， it possesses the same discrete fre 

quency components as that of impulses， but the amplitudes are different and are given by the 

Fourier transform of the constituent single pulse waveform. Therefore， generally， as the frequency 

is increased， the amplitudes are close to zero. Regarding the input puls巴sgenerated by the pulse 

generator as Gaussian pulses of duration l.lnsec， the frequency band where almost all the energy 

of the train of Gaussian pulses concentrates is O~ 1.3GHz. This fact means that the distributed 

coupled-line networks can be used as digital frequency multipliers even if the specified frequency 

characteristics are damaged in the higher frequency region. 

In section III， functions of coupled-line type multipliers have been explained， and it has been 

shown that a coupled-line type multiplier works as a kind of a passive filter which eliminates cer 

tain discrete frequency components and transmits other components to the output port. As a re-

sult， the transmitted components from a train of output pulses with a higher repetition frequency 

than the input onεin the time domain. 

In section IV and V， it has been proved that attenuation of the transmitted components is the 

mmlmum 

The proposεd multipliers have the dratback of lowering amplitude level and need amplitude 

amplifiers for actual use. Or， a train of higher amplitude level pulses should be input in advance in 

order to have necessary output level. However， it could be said that the multiplication by passive 

elememts only would be worthy of note. 

In part II， which will be presented in the near future， energy ratio at a specified frequency and 

computer output Simulation will be demonstrated with respect to Cosine half wave inputs. 

Und耐d由E灯山川r川tけ伽}

Appendix[9] 

The Definition ofムtandムω

( ム削州tυ山)

(はム ω川)2会h二~roo∞ ωw2 I川V(wω)川I2加dψrωυ 
ム八.-∞ 

Uncertainty Relation 

ムt・ム ω三0.5
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Fig. 1 (a) A constant-resistance n-section coupled-l ine network. 
(b) An even mode equivalent circuit. 

(c) An巴quivalentsignal flow graph. 
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Fig. 2 Input/output responses in case of nニ1.
(a) A train of input unipolar impulses. 
(b) Output unipolar impulses -In case of Section III (i). 

(c) Output bipolar impulses -In cas巴 ofS ection III (ii). 
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Fig. 3 Input/output responses in case of n = 2 
(a) A train of input unipolar impulses. 
(b) Output unipolar impuls巴s-In case of Section III(i). 

48 



-1.0 

On the Distributed Coupled-Line Digital Frequency Multipliers 

長一6τ

(a) 

→12τ 柊ー
Cb) 

Fig. 4 Input/output responses in case of n = 2. 
(a) A train of input bipolar impulses. 

(b) Output bipolar impuls巴s-In case of S巴ctionIII (iii). 
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Fig. 5 A train of unipolar Gaussian pulses. 
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Fig. 6 A train of biplolar Gaussian puls巴s
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Fig. 9 (a) Fr巴quencycharacteristics of the test circuit A in (2). 
Solid line : measurement. Broken line : theory. 
(b) Energy spectrum of input pulse train in Fig. 5. 
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Fig. 7 A photograph of the transmitted frequency characteristics 
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Fig. 8 Theoretical fr巴quencycharacteristics of the 2-section coupled-
line digital frequency triplers. rel二 0.2.

The solid line: case of III(i). The chain line: case of III(iii). 
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Fig. 10 (a) Frequency characteristics of the test circuit B in [2 J 
Solid line : measurement. Broken line : theorv. 

(b) Energy spectrum of input pulse train in Fig. 6 
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