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On the Distributed Coupled-Line Digital Frequency
Multipliers-Part I : Output Simulations
to Cosine Half Wave Inputs

Iwata SAKAGAMI

Abstract

The simulations of output responses of distributed coupled-line digital frequency multipliers are discussed. The
simulated waveforms are obtained from sampled data of measured amplitude and phase characteristics and found to
be in good agreement with experimental photographs.

The input signals here are the cosine half wave pulses sliced at a positive level. Therefore the Fourier transform

and the energy ratio within a specified frequency band are also considered.

1. Introduction

Speeding up a train of unipolar or bipolar pulses without using nonlinear elements has been dis-
cussed for the case of distributed coupled-line (briefly, DCL) networks [1, 2]. The main theme of
these past papers was how to synthesize DCL networks from network transfer functions and im-
pulse responses. For the network synthesis, it has been convenient to treat a train of input pulses
as a train of impulses. The reasons were as follows: (1) The train of input impulses possesses
equi-amplitude and equi-spacing discrete frequency components over -oo < f < oo [3], and (ii)
the frequency and phase characteristics of the DCL networks are also periodical at all frequencies
of -00 < f < 00, as the network transfer functions are expressed by the delay operator z_1=exp
(-2s 7)) or the Richards variable t = jtan 8 ¢ [See II. in [2] for the symbols T, B, ¢, and s].
Theoreticélly, the property of (1) can be matched to that of (ii) at all frequencies, and this eases
the synthesis problems.

Normally, the transfer functions of DCL networks are calculated on the basis of TEM wave
approximations. Arbitrary waveforms are allowable as input pulses if the waveforms are duration-
limited and no overlap occurs at the output port. However, a train of cosine half wave (CHW)
pulses will be introduced in this paper for the reasons that (1) the CHW pulse occupies the nar-
rowest bandwidth among many other duration-limited waveforms [4], (ii) the train of CHW pulses
can be obtained easily from a sinusoidal oscillator, and (iii) the train of CHW pulses is considered

to be suitable to the high speed pulse transmissions.
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The main topics here are: (1) A CHW pulse in more general form [See Fig. 1] and the Fourier
transform; (ii) Energy within a specified frequency; (iii) Energy spectra of periodical CHW pulses;
and (iv) Simulations of output responses of the DCL digital frequency multipliers.

In this way, the functions vof the digital frequency multipliers will be clarified and verified from

the considerations of these subjects.

2. Energy Ratio of a CHW Pules on the Frequency Axis

A. Fourier Transform apd Effective Bandwidth

v (%)

Fig. 1 shows a cosine half wave (CHW) pulse which is sliced

at a positive voltage level from a sinusoidal wave. The waveform
viis '
A (coswyt—cos b o), [t] <aW
vo= 0 ,VItI >aW (1) +
—aw aw
where, w, = 7 /2W, fo=am /2, and 0<a<1. . Fig. 1 A cosine half wave (CHW)

. . L. . pulse (0 <a < 1).
The a is variable and represents the positive voltage slice level

indirectly. The 2W indicates the duration of the CHW pulse at = 1. Designating the Fourier

transform of v(t) by V(w), the CHW pulse sliced at zero voltage level is given by a = 1 and repre-

sented by
cos (woth L] <W
cos (w nt), t| <
v (©) =‘ VW ’ (22)
0 [t] <W
A 47 VW cos(Ww) /(T °—4W2w?), w#+ T / 2W
Viw) = - (2b)
VW L w=+7T /2W

(1) needs to be discussed at first for the following reasons: In general, CHW pulses created by
diode circuits and so forth correspond to the case of 0<a<1; and a train of CHW pulses with
variable duty ratio can be obtained from a sinusoidal oscillator by changing the positive slice
level, though this is a rather primitive method.

For the waveform of total energy 1,

oo 1 0
f_wiv(t)lzdt-———f v (0)|do = 1 (3)

2w -0

Using (3), A in (1) can be given by
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A=y m™ /y/W{ 2am + amcos(a7) — 3sin (ax) } (4)
By (A. 2) defined in the Appendix, the effective bandwidth A @ of (1) is rewritten by
" .
(Aw)2=flw‘dv(t)/dt|2dt. (5)

Calculating (5),

Aw= T ‘/ am —sin(ax) . (6)
2W 2am 4+ am cos (am) — 3sin (a7)

V (w) can be given by

V (w) ="4W 7 AP(X), (7)
where

P (X) = Xsin (4 o) ;o?n('x-i ?()/—a)a(:r” c—(is)((ﬁ/(z)sin (X7 2) (7a)

X=2aWaw. (7b)
Putting

7, = 2aW, (8)

T ; denotes the pulse duration in Fig. 1.

Egs. (1) and (4) in case of a = 1 represent the same equation as in (2a). In the same way, (7) be-

comes equal to (2b).

B. Energy within | 0 | < Q
As the total energy of v (t) is 1 due to (3) and (4); the energy ratio E,, of the energy included

within | @ | < Q to the total energy is given by

1 Q 2 .
Era"‘é? f_n ’V(w)! dw . (9a)
4W 7 A® ©10 2
=== | [P (x)]? dx. (9b)
a -T1Q

P (X)at X =0, & a7 are given by

2sin (o) — am [
Lim P (x) = —n (60 v <03 (8 0) (10a)
X—0 27

am — sin(am)
lim P (X) = 5 (10b)
X—+am 4 .

Taking (10) into account, the numerical calculations of E,, are carried out as a function of (7 1)
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by the double precision Romberg method. The results are shown in Fig. 2. The curves Co. 1 and

Co. 2 represent cases of a = 1 and a = 0. 5, re- Q Energy Ratio

—

spectively. The curve of Rec. indicates the energy Rec.
ratio of a rectangular wave [See (A. 5) in appen-
dix], presented for comparison with the CHW : Cos1,C0.2
pulses. It is known that the effective bandwidth
A w of the CHW pulse of a = 1 is the narrowest

among many other duration limited pulses [See (A.

. o

4) ; when T ; = 2W, (A4) is equal to (2a). ] > r . : , . - . —

©0 2 4 6 8 10 12 14 16 18
However, there are no practical differences be-

T, Q

tween Co. 1 and Co. 2, so that the case of energy !

Fig. 2 The energy ratio within | w | <Q as a
ratio 99% is examined numerically at first as a function of (£ T y).

standard of bandwidth required for the network design.
(1) The case of Era =0.99

When a = 1, we have 7;Q = 7.426. For the pulse duration 7; = 1.1 nsec [See C., V. in [2] ],
we have fg = 1.074 GH,. Here fq = Q / 27 . When a = 0.5, we have 7 ; Q = 7.484. This
means fo = 1.083 GH: for the same value of 7 ;.

The fq of this case indicates that 99% energy of a CHW pulse is included within | f | <fgq.
(11)The case of E,, = 0.997

It is known that the energy ratio of a Gaussian pulse exceeds 99.7% at three times the effective
bandwidth of the Gaussin pulse. For the confirmation, the case of E,, = 0.997 is also examined
about the CHW pﬁlses. For a = 1.0, and 0.5, we have 7 ;Q = 12.11, and 12.60. Using (6), we
have  / A w = 3.85, and 4.0, respectively. This means the energy of 99.7% of the CHW pulses
of a =1 and a = 0.5 are included within 3.85 times and 4.0 times A w. .
(ii1) The case of rectangular pulse

In order to exceed 99% energy, there must be 7,0 >64. 63. Therefore, a fairly large fq is re-
quired.

In the following sections, the CHW pulse of a = 1 will be used for the calculation of output re-

sponses as the curves Co. 1 and Co. 2 are very close to each other.

3. Energy Spectrum of a Train of Input Pdlses

Now let us consider a train of unipolar pulses vy, (t) of time interval T (period T) and a train of

bipolar pulses wr; (t) of time interval T (period 2T) [ For instance, see Figs. 6(a), (b)].
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A. The Case of v, (t)

The pulse train v, (t) and its Fourier transform are given by

, =
v O = 2, Vike ) exp (ko Ty, (o0 <t < o) (11a)
k=-00
Flve®]= ot 2, Viko®) § (0 ko), (11b)
k=-00

where @ ¥ = 27 / T. When the DCL n-section networks in Fig. 4 in [2] are used, T=2 (n + 1)
7. The 7 indicates the time delay of a unit element [ See Fig. 3 in [2] ].

As the energy within a period is given by

fT/Z Ivee (]2 dt =1,

-T/2
we have
I &, N
?ZV (ko ™) =1, (12)

k=-00

where V (kw *) = 4W r AP (X)) and Xy = kw * T .

B. The Case of wr, (t)

The pulse train wr, (t) and its Fourier transform are

o

1
wre = 2, ViEkthe /2 texplj @kt ot t/2}, (o <t<e) (13

k=-00
Flwe, ©1= 0* >, Vi@k+thot/2} 8 { 0 —(2k+1)w*/2}. (13b)
k=-00 .
The wr, (t) alternates between the positive and negative polarities at time interval T. Assuming

a positive polarity pulse arrives at the input port of the DCL networks att = 0,

fT;iz lwre ()% dt = 1,

Therefore, we have

1
T -

[

S, v @kt t/2t =1, (14)

k=-c0
where V{ 2k+1)wt/2} = 4W T AP (X) and Xy = 2k+D)w T 71/ 2.

From (11b) and (13b), it is understood that the frequency components of periodical unipolar

pulses or those of bipolar pulses are discrete and given by integral multiples of w ¥ or odd num-

ber multiples of w */2 and the amplitudes are determined by the Fourier transform of each con-
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stituent pulse. As (12) and (14) can be obtained by multiplying the mean power of periodical

waves by the period, each term of the left side of each equation represents the energy spectrum.

C. Frequency Characteristics of Test Circuits A and B
Fig.3 shows the same measurement system as in Fig. 1 (a) in [2]. The design parameters of test

circuits are the same as those in [2]. Therefore, the amplitude and phase characteristics can be

Al € 3'17 %;Re
Ag . . Test Circult A
% ]

R1
Ro Test Circuit B

< T>T->=R1

B1

Fig. 3 Test circuits for measurement, where P. G., test circuit A and test circuit B
indicate a pulse generator, a 1-section directional coupler and a 2-section
coupled-line network.

calculated from their network transfer functions. Figs. 4 (a) and (b) show the amplitude and phase
characteristics of test circuit A, and Figs. 5 (a) and (b) are those of test circuit B. In these figures,
the theoretical curves are depicted by broken lines to suit the computer drawing. The equipment
for the measurement was a set of HP8620A, HP8410A, HP8746B and HP8413A. For the ampli-
tude characteristics, the measurement data were tied with solid lines directly. However, for the
phase characteristics, there were not many measurement points. As seen from Fig. 4 (b), the
theoretical curves have double values of —90° and +90° at integral multiples of 385MHz, so that
the data from close to these transition points could not be measured accurately. Therefore, on the
phase characteristics of Fig. 4 (b), the 3-rd order least mean square (LMS) polynomials y = a ¢ +
a1x+azx’+a 3 x> were derived from the measurement data. In Fig. 5 (b), the situations are

similr to the above.

D. Discrete Frequency Components of Input CHW Pulses
The trains of CHW pulses for the use of output simulations are respectively shown in Fig. 6 (a)
and (b). In Fig. 6 (a), the period T; is 5. 2nsec and the duration of a CHW pulse 7 ; is 1.1nsec. In

Fig. 6 (b), the pulse interval T is T;/ 2 or 2.6nsec and the duration is the same as in Fig. 6 (a).
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Fig. 4 (2)Amplitude characteristics of test circuit A. Fig. 5 (2)Amplitude characteristics of test circuit B.

Solid lines: measured. Broken lines: theoretic-
al.

(b)Phase characteristics of test circuit A.
~ 1 3-rd order least mean square (LMS)
polynomials.
Broken lines: theoretical.

(c)Energy spectra of Fig. 6 (a).
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Solid lines: measured. Broken lines: theoretical.
(b)Phase characteristics of test circuit B
=~ 1 1-st order LMS polynomial for the first
peried and 3-rd order LMS polynomials for
other periods.
Broken lines: theoretical.
(c)Energy spectra of Fig. 6 (b).



Assuming that the
pulse generator P. G.
in Fig. 3 outputs the
pulse train in Fig. 6
(a), the energy spectra
calculated from (12)
are shqwn in Fig. 4
(c). Similarly, assum-
ing the test circuit A
generates the pulse
train in Fig._ 6 (b), the
energy spectra given
in Fig. 5 (c) can be
calculated from (14).

In Fig. 4 (c), the

energy of the unipolar
CHW pulse train ex-
ceeds 99% at f =
1.154 GHz, and the
energy of 99.5% is in-
cluded within | f | <
1.154GHz.
Within | f | <1.731
GHz, the energy of
99.77% is included.

In Fig. 5 (c), the

energy of the bipolar
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g Input Wave+orm

Time [hsec]

E Input Wave-+orm

4 T 1] T L
0.0 5.0
] Time [hsec]
' ﬂ N [\ hA
J i '!
\/ \J v
Fig. 6 Trains of CHW pulses. Fig. 7 Experimental results at
(a) Input for test circuit A. (2) port A;, (b) port Az, and
(b) Input for test circuit B. (¢) port By.

CHW pulse train exceeds 99% at f = 0.962GHz. The energy of 99.5% and that of 99.85% are re-
spectively included for | f| <0.962GHz and for | f| <1.731GHz.

In this paper, the measured data from zero to 1.731GHz are used for the output simulations.

The DC component fo in Fig. 4 (c) is cut off completely, as seen from the test circuit A. From

Figs. 4 (a), (b) and (c), it is understandable why the frequency components f2, f4, ... are rejected,

and others f1, f3, ... transmit to output port Az This is the reason why the output pulses can be
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formed twice as fast as input. The test circuit A satisfies the prescribed amplitude and phase
characteristics approximately in the region where almost all the energy of input pulse train is con-
centrated.

As seen from Fig. 5 (c), there is no DC component in the train of bipolar pulses. In Figs. 5 (a),
(b) and (c), similarly to the case of Figs. 4 (a) (b) (c), the components f1, {3, {4, ... are ‘rejected and
{2, {5, ... transmit to output port B,. This is the reason Why the tripler can be built up with DCL
networks. However in the case of Fig. 6 (b), the outbut pulses overlap each other at both edges as
pointed out in Fig. 2 (c) in [2]. Referring to Fig. 5 (c) again, higher frequencies than f5 can be neg-
lected. Therefore, in other words, it can be said that most of the waveform shown in Fig. 7 (c)
comes from the transmitted component 2. The duration of an input pulse being shortened, the fre-

quency domain spectra spread to higher bands, so that separated output pulses can be generated

three times as fast as the input.

4. Simulations of Output Responses

In this section, the waveforms of output simulations will be compared with photographs in Fig.

In general, when inputs and outputs are denoted by ar (t) and b (t) in the time domain, their

Fourier transforms At (w) and Br (w) are related by
Br (w) = I'n(w) Ar (w), _ (15)
where T', (w) is the transfer function of n-section DCL network.

When Byt (w) and Bzt (@) respectively represent the output Fourier transforms for the train of
unipolar input pulses at (t) = v, (t) and for that of bipolar input pulses ar (t) = wr, (t), egs. (16)
and (17) are obtained from (11b), (13b) and (15).

Bir (@)= w* >, Tuko®)V(ke®) § (0—kot), (16)

k=-00

Brr (@)= ot >, Tu {(@k+ 1) 0*/2} V{@k+tho*/2}
o 0 lo—Ck+hwt/2}. A7)

A. Output Waveforms of Test Circuit A
When the output of P. G. in Fig. 3 (a) is assumed to be the pulse train of Fig.6 (a), we substitute
wt = w{=27/T)and n =1 into (16), where T; = 5.2nsec. Then we have the output Fourier

transform of test circuit A.
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Bir (w) = w/ 2 I ko) Viko) s (0 —kw). (18a)

Taking into account the following: (1) I'1 (0) = 0; (11) 'y (w) and V (w) are even functions ;
and (iii) Phase 0 5 (w) of ', (w) is a odd function, the inverse transform of (18a) can be given

by
s =
bir (1) = 2 T (ko) | Vkoi)cos { kot — 61 (ko) }. (18b)
k=1

The sampled data for the output simulations are shown in Table I. They are obtained from the

Table 1 Sampled Data Used in Fig. 8

Freq.[MHiz] O 192 385 | 577 769 | 962 | 1154 | 1346 | 1538 | 1731

Ampli.[dB] v | 7.0|34.0f 7.0|25.0 | 7.2|{21.0]| 8.0]16.9 | 8.9

Phaseldeg.]| x| -6.1]73.8| 4.9]80.9 [17.4]76.1]33.0] 99.6 |53.3

measurement curves at the discrete frequency components in Figs. 4 (a) (b) (c). The phase data
were read out from the 3-rd LMS polynomials. Applying the sampled data to (18b), we have the

resultant simulation waveform in Fig. 8.

B. Output Waveforms of Test Circuit B : - Case of Input Waveform Fig. 6 (b) -
The output of test circuit B can be obtained by substituting w ¥ = wi=2m/Tsyinto (17),
where T, = 2.6nsec.

In the same way as in A. IV,
bar ( t)—T 20 K+ Dwg/ 2} |V {@K+1) wf/2}
ccos [(2k+tDwy t/2— 0, { (2K+1) wF/ 2} ). (19)
Applying the sampled data from Figs. 5(a) (b) (c) to (19), the resultant simulation waveform can be
obtained.
C. Output Waveforms of Test Circuit B: - Case of the Waveform in Fig. 8 being input-

As the input is given by Bit (w) in (18a), we have

Bar (@)= wi >, Tatko) Ti(koy)V (ko) o (0 —koi, (20)

k=-00
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In the same way as in A. IV,

2 oo
br =5 2, [Tokoi) T ko) V ko)
k=1
ccos {kot t— 01(koi)— 0zko]) }. (21)

The amplitude and phase sampled data

000

for test circuit B can be obtained from the g Output Wavesorm D] Output Waveform

measurement curves in Figs. 5(a) (b), but

in this case the sampling points are taken

at the discrete frequency components in ]
]

Fig. 4 (c). Fig. 9 shows the result. It can

be said that Figs. 8 and 9 well approxi-

0.0 5.0

Time [hsec]

mate the photographs in Fig.7.

7 Time [nsec]
D. Output Responses of Ideal Networks Fig. 8 The simulation of Fig. 9 The simulation of
. . test circuit A when test circuit B when
Using the same programs as in A., B,

& prog Fig. 6 (a) is the in- Fig. 8 is the input.
and C, we can show ideal output re- put.
ponses. Followings are the data used here for the test circuit A. 8

O,
6.95dB and 0°  at (2k—1) w Q| Quiput Uovesorm

100.0dB and 90° at 2kw }

Fig. 10 shows the output waveform using the data of @ 7 ~ 9w 7

The frequency band of this case is 0~ 1731 MHz, and 99.8% of the

energy of the input pulses is covered.

0.0 5.0

Time [hsec]
E. Output Waveforms:- Case of duration 0.66nsec-

As ststed in D. [l ., when the duration of input pulses is 1.1nsec, Fig. 10 A theoretical re-

overlaps occur at both edges of each output pulse of the test circuit sponse by an ideal

coupler of K =
B. Here let us take up the case of input pulses being shortened to 6.95dB.
0.66nsec.

When input waveform Fig.6 (a) is applied to port A; in Fig. 3, the approximate output wave-
form of test circuit B via test circuit A is given in Flg. 11 (a). The calculation is based on (21) and

measurement sampling data obtained at A. and C. in 1V.. Therefore, the frequency band under
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consideration corresponds to 0 ~ 1731

MHz and 99.1% of the energy of input

5000

0
Output Waveform g Output Waveform

pulses is considered here.
The ideal output response which we
can expect is shown in Fig. 11 (b), where

the input pulses Fig. 6 (b) are applied to

port Bi. The used data at 2k + 1)w F/ 2 an

(18 0 0.0! o0

are (1) 5.4 dB and 0° for k = 1, 4, 7 V

d (ii) 100 dB and 61.945° for k = 0,
and (1) an or Time [nsecl Tive secl
2, 3, 5, 6. The frequency band is 0 ~

Fig. 11 Output waveforms for CHW pulses of duration 7,

2.885 GHz, and 99.8% of the energy of = (.66nsec.
input pulses is taken into acount. (a) An approximation of the output from test cir-

cuit A to B by the measured sampling data,
where Fig. 6 (a) is the input.

(b) A theoretical response of an ideal 2-section net-
work for the input Fig. 6 (b).

5. Conclusions

In 1., a cosine half wave (CHW) pulse sliced at a positive voltage level has been considered on
the Fourier transform and nhe energy ratio. It has been shown no practical differences exist on
the energy concentration in the frequency domain between the case of a = 1.0 and 0.5. Fig. 2 can
be used to know the energy concentration on the frequency axis for the CHW pulses and rectangu-
lar pulses of arbitrary duration 7 i, since the energy ratio E;, is represented as a function of X =
710, )

In I, the energy spectra have been considered on a train of unipolar pulses and on a train of
bipolar pulses. It has been found that (1) the frequency components of these periodical pulses are
discrete and the .amplitudes are determined by the Fourier transform of each constituent pulse,
(11) the proposed distributed coupled-line (DCL) multipliers function like passive linear filters
which eliminate certain frequency components and pass others that the trains of input pulses ori-
ginally possess, and (iii) although the network transfer functions are obtained on the basis of TEM
wave approximations, the fabricated DCL networks (test circuits A and B) have satisfied the pre-
scribed frequency characteristics in the frequency band where almost all the input energy concen-
trates.

In IV, the output simulations of the fabricated DCL networks have been obtained from a few
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sampling measurement data by using a 16 bit personal computer and MS-FORTRAN 77. The re-
sults have shown good agreements with the experimental photographs.

The experimental networks, test circuits A and B, are handmade, using copper clad laminates.
Therefore, precise fabrications with low loss materials will provide even better output waveforms

for the input pulse of shorter duration.
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Appendix [4]
The Definitions of the Effective Duration At and Effective Bandwidth A w

Under the condition of fi t | v (t) | Zdt = 0,
(A = f: v 2 dt, (A. 1)

(Aw)2= f;: wz‘v(a))|2dw, ‘ - (A, 2)

where V (w) is the Fourier transform of v (t).

Theorem
On the effective bandwidth A w of a duration-limited pulse waveform v (t),
Aw>7m /(Ty) (A.3)
where 7 is the duration.

Equality is only achieved when

2 T
—cos (—1), |t|<7,/2
v(t) = 1 T

0 ot >t/ 2 (A. 4)

The Energy Ratio of a Rectangular Wave

When a rectangular wave is represented by
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A |t <Tty/2

v(t)={
0, |tl>ry/72

the energy ratio within | o | < Q is defined by
Q oo
E..= f_a{v(w)lzdw/f_m\v(m)Izdw, (A. 5)

where V(w) = 71 Asin (X/2)/(X/2)and X = @ 74,
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