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CHARACTERISTICS IN AN RF SUPERCONDUCTING
QUANTUM INTERFERENCE DEVICE AS A FUNCTION
OF APPLIED MAGNETIC FLUX:
SYSTEMATIC CALCULATIONS 1

Tsuyoshi AOCHI, Shuji EBISU and Shoichi NAGATA

Abstract

Characteristic feature in superconducting quantum interference device (rf — SQUID) is shown on the basis of the
analysis of the foregoing paper. The behavior will be given in detail. The parameter 8= (27 LIy) / ®¢ changes gra-
dually the characteristic feature, here Iy is the critical current of the junction, L is the self — inductance of the ring
and @y is the flux quantum. Abrupt transitions between two adjacent quantum states are clearly shown in the reg-
ime 8 > 1. The results of the systematic calculations of the characteristics in the 7f — SQUID are presented over
the range of 8= 0.20 to 2 7.

1. Introduction

The superconducting quantum interference device (#f — SQUID) is based on the two physical
pillars. The first is fluxoid quantization and the second is Josephson effect. Figure 1 shows a su-
perconducting ring with a single Josephson weak link. We shall make the simplification that the
ideal Josephson junction area is small enough for the current density to be uniform, and that it
never contains a significant fraction of a flux quantum. The internal magnetic flux ® passing
through the ring includes the magnetic flux LI generated by the current I circulating in the ring,
where L is the self — inductance of the ring. As shown in Fig. 1, the internal flux ® threading the
ring is then related to the applied flux ®, by ® = ®, — LI, where ®, is the applied flux inter-
cepted by the ring, and LI is the screening flux generated by the induced supercurrent.

In the present paper, many physical quantities have been calculated as a function of applied
magnetic flux ®,. Their behavior depends on the dimensionless parameter 8 = (27 Llo) / ®o,
where Iy is the critical current of the junction and ®y is the flux quantum.

Our numerical calculations have been carried out for values of 8 from 0.20 to 27 . The present
work is concerned with systematic computer calculations of the static behavior of the 7f — SQUID,
which is based on the theoretical investigation given in the previous paper of this volume.l) Here

we will present further detailed characteristics of the f — SQUID.
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2. Basic Equations

The basic equations are summarized and are described below. The main characteristics of the 7f
— SQUID are the behaviors of the internal flux ® and of the screening circulating current I as a

function of the external flux ®,. They are derived from the next equations,

d=&,— LI, (1)
=27 [®/ Dot n) (2)
Is = Ipsin 6 . (3)

Equations (1), (2) and (3) are linked equations for the three unknown quantities @, I and 6 in

terms of the applied flux ®,. Here we introduce dimensionless parameter £, defined as
B=(@2nLIly)/ ®o, (4)

where B depends on the value of LIy. The limiting forms of the equations are ® = &, for LI,=0,
which corresponds to an open ring, and complete flux quantization ® = n ®¢ for LIy ) @, which
corresponds to a closed ring with no weak link. Making the substitution of eqs. (2) and (3) into eq.

(1), we get a next relation,

®=0,—Llpsin(27 ® / D). (5)
Substituting eqgs. (1) and (2) into eq. (3) gives

Is=Ipsin(27™ ® / D). (6)

For the ring with a junction the energy of the system is given by

271'(1))

1
U= (5p) (®— ®,)%— Eo cos ( o,

3. Numerical Computer Calculations for the Characteristics in rf— SQUID

We have investigated the following problems on the basis of the theoretical analysis of the fore-
going our paper : 1)
1. The system energy U (P, ®,)

2. The junction coupling energy Ej vs. external flux ®,
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3. The magnetic energy E, vs. external flux ®,
4. Ej, E, vs. phase difference 4
5. Internal flux ® vs. external flux &,
6. Induced flux LI vs. external flux &,
7. Phase difference 6 vs. external flux ®,
8. Fluxoid vs. external flux &,

The results of the systematic calculations are shown in Figs 2 to 35.

4. Summary

Static characteristics of an 7f — SQUID are described on the basis of numerical computer cal-
culations. Systematic changes in the behavior of a superconducting ring are found when the pa-
rameter S varies from 0.20 to 27 .

When £ >1, the internal flux ® and the screening current Is are continuous single valued func-
tions of the external flux ®,. There are no sudden transitions, the superconducting ring can go
continuously from one quantum state to the next.

For 8 > 1, the transitions between two quantum states are irreversible. The transition to suc-
cessive fluxoid takes place at § =cos™! (—1 / £). The maximum in the system energy U (8) cor-
responds to the critical external flux ® xc at which the internal flux ® and the screening current
I have an infinite slope as a function of the external flux ® . From the energy view point of U (®,

®,), @ corresponds to the value at which the system changes from metastable state to the stable

state.
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Fig. 1

bt

Superconducting ring with a ideal Josephson junction
denoted by J. The contour used for integration is
shown by the broken line. Internal magnetic flux @,
circulating current [, self — inductance L and applied
magnetic flux ®, are related by ® =®, — LI. Typi-
cal values are L = 5 nH, and Iy = 1 # A. The junc-
tion resistance in the normal state is R = 10Q, and
the diameter of the ring is about 2mm.
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Fig. 2 A demonstration of a flux jump in a potential surface in the case of 8 =6 7. The system poten-
tial U(®, ®,) surface for ®,=0 to 3P and =P, to —4 Dy is shown. When ®,=0, the sys-
tem is trapped around a minimum such as point A in the potential well associated with a fluxoid
quantum state. The system is constrained by a potential barrier at B. As ®, is increased, the
potential energy increases along the valley A — A’ and the system can transfer from point A’,
where ®, =®,. and AU = 0, to point C'.
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Fig. 3

Fig. 4

Potential U (®, ®,) surface for ®,= 0
to 2®pand ®= 3P to — 3Py in the
case where B = 0.50. The sharp transi-
tion can not occur between the two adja-
cent quantum states.

Potential U (®, ®,) surface for ®,= 0
to 2®g and ®= 3 Pyto — 3Py in the
case where 8 = 1.50. The sharp transi-
tions can occur between the two adjacent
quantum states at ® , = 0.544 &, and
0.456 @ in the irreversible process, see
Fig. 9.
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I - 1 Fig. 5 Potential U (®, ®,) surface for ®,= 0
0 to 2®pand &= 3P, to — 3P in the
'3 "2 ‘] 0 l 2 3 case where # = 2 7. The sharp transi-
¢/¢0 tions can occur between the two adjacent

quantum states, see Fig. 11.
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Fig. 6 System energy U for 8 = 0.20 as a func-
tion of ® . The energy minimum shifts

Fig. 7 System energy U for 8= 0.50 as a func-
tion of ®. The value of ®, changes from

gradually from a flux quantum state to a 0.0 to 1.10.

neighbor state when the external magnetic

flux ® , changes. The value of ® , de-

noted in each graph is normalized by ®o.
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Fig. 8 System energy U for 8 = 1.00 as a func-

tion of ®. The value of ®, changes from
0.0 to 1.20.
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Behavior of hysteresis in U for 8 = 1.50.
With increasing external flux ®, the su-
perconducting ring stays at the minimum
point up to ®, / ® o= 0.500. From
0.500 to 0.544 the system remains in the
metastable state and the transition takes
place at 0.544. On the other hand, with
decreasing ® , the transition occurs at
0.456. For simple illustration, the solid
circles indicate the flux in increasing
process and the open circles show the
flux in decreasing process.
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10 Behavior of hysteresis in U for the case
of B = 3.00. The hysteresis appears in
the same way shown in Fig. 9. The
value of ®, changes from 0.0 to 1.10.
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Behavior of hysteresis in U for the case

of B = 2. The hysteresis appears in
the same way shown in Fig. 9. The
value of ® , changes from — 0.30 to

2.70.
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~0.02} Fig. 12 Junction coupling energy E;, magnetic energy E. and
' 0'5 . I'o 4 1'5 system energy U as a function of the external flux
' (l) /(b ' : @, for £ = 0.20. The value of U corresponds to the
X770 minimum value in Fig. 6.
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0.5 1.0 1.5 Fig. 13 E;, E, and U as a function of ®, for 8 = 0.50. The
(l)x /q)o value of U corresponds to the minimum value in Fig.
7.
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Fig. 14 Ej, E, and U as a function of @, for 8 = 1.00. The

value of U corresponds to the minimum value in Fig.
8.

Fig. 15 E), E,, and U as a function of ®, for = 1.50. The
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hysteresis with transitions at different ® , is indi-
cated by arrows. The hysteresis behavior can be
understood by considering the correspondence be-
tween Fig. 9 and Fig. 15. The value of U corre-
sponds to the minimum or maximum value in Fig. 9.
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Fig. 16 E;, Ey and U as a function of ®, for 8 = 3.00. The

hysteresis behavior can be understood by consider-
ing the correspondence between Fig. 10 and Fig. 16.
The value of U corresponds to the minimum or max-
imum value in Fig. 10.

Fig. 17 Ej, E,, and U as a function of &, for 8 = 2. The
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hysteresis behavior can be understood by consider-
ing the correspondence between Fig. 11 and Fig. 17.
The value of U corresponds to the minimum or max-
imum value in Fig. 11.
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B8=0.20

21 3

Fig. 18 Junction coupling energy E), magnetic energy E, and
system energy U as a function of the phase differ-

ence § across the junction for 8 = 0.20.

Flg 19 Ej,
6 o

21 3
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E,, and system energy U as a function of 8 for
0.50.
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Fig. 22 E;, E, and system energy U as a function of 6 for

B =3.00.

Fig. 23 E;, E, and system energy U as a function of # for
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Fig. 24 Internal flux ® and the flux LI induced by screening current as a
function of the external flux ®, for £ =0.20.

Fig. 25

Internal flux ® and the induced flux LI as a function of ®, for B

= 0.50.
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Fig. 26

Fig. 27

Internal flux ® and the induced flux LI as a function of ®, for 8
= 1.00.

Internal flux @ and the induced flux LI as a function of ®, for
= 1.50. The hysteresis with transitions at different ®, is indicated
by arrows. The hysteresis behavior corresponds to that in Fig. 9.
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Fig. 29

Internal flux ® and the induced flux LI as a function of ®, for 8
= 3.00. The hysteresis behavior corresponds to that in Fig. 10.

Internal flux ® and the induced flux LI as a function of ®, for 8
= 2. The hysteresis behavior corresponds to that in Fig. 11.
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Fig. 31 Phase difference 8 and fluxoid as a function of ®, for 8= 0.50.
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Fig. 32 Phase difference 6 and fluxoid as a function of ®, for 8= 1.00.

Fig. 33 Phase difference # and fluxoid as a function of ®, for 8 = 1.50.
The hysteresis with transitions at different ® , is indicated by
arrows. The hysteresis feature corresponds to that in Fig. 9.
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The hysteresis feature corresponds to that in Fig. 11.
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