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CHARACTERISTICS IN AN RF SUPERCONDUCTING
QUANTUM INTERFERENCE DEVICE AS A FUNCTION
OF APPLIED MAGNETIC FLUX:
SYSTEMATIC CALCULATIONS 1

Tsuyoshi AOCHI, Shuji EBISU and Shoichi NAGATA

Abstract

There has been a lot of discussion of characteristics in superconducting quantum interference device (SQUID).
However, much less information is available on systematic calculations of these behavior. In this report, we describe
various features in a superconducting ring having one Josephson junction. Systematic computer calculations of static
behavior of the 7f — SQUID have been carried out. The characteristic features depend strongly on a parameter f =
(27 LIy) / ®, where I is a critical current of the junction, L is a self — inductance of the ring and ® is the flux
quantum. In the regime B >1, the quantum states are discrete and the transitions between the quantum states are
irreversible. The present work is focused on the correspondence between energy of the system and the characteris-
tics in the 7f — SQUID over the range of 8= 0.20 to 2 7 The results of the calculations are shown in the following
No. 2 paper.

1. Introduction

The superconducting quantum interference device (SQUID) is originated from the epoch — mak-
ing theoretical prediction of the Cooper pairs tunneling between two superconductors.l) We will
describe here the details of the physical bases and the numerical calculations for the SQUID.

The SQUID has been investigated from various viewpoints and by various kinds of experimental
techniques since the first observation by Jaklevic et al. in 1964.24 These subjects represent some
of the purest and most fundamental aspects of the superconductivity.>9

However, much less information is available on systematic calculations of the characteristics of
the SQUID. The present work is concerned with systematic computer calculations of the static be-
havior of the 7/ — SQUID, which contains one ideal Josephson junction in the superconducting ring.

The SQUIDs are based on the two physical pillars. The first is fluxoid quantization and the
second is Josephson effect. Figure 1 shows a superconducting ring with a single Josephson weak
link. We shall make the simplification that the ideal Josephson junction area is small enough for
the current density to be uniform, and that it never contains a significant fraction of a flux quan-

tum. The internal magnetic flux ® passing through the ring includes the magnetic flux LI s gener-
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ated by the current [ s circulating in the ring, where L is the self — inductance of the ring. As

shown in Fig. 1, the internal flux ® threading the ring is then related to the applied flux ® x by
d=90 x —Lls y

where ® x is the applied flux intercepted by the ring, and LI s is the screening flux generated by
the induced supercurrent.

In the present paper, many physical quantities have been calcuated as a function of applied
magnetic flux @ x. Their behavior depends on the dimensionless parameter 8 = (2 7 LIy) / &,
where I is the critical current of the junction and ® ¢ is the flux quantum. For # <1, ® is a
single — valued function of ® x, whereas in the regime 8 >1, it is three — valued around half in-
teger values of @ x. Then hysteresis appears, for transitions in increasing and decreasing field

occur at different ® x values. Namely the quantum states are discrete and the transitions between

X
Fig. 1 Superconducting ring with a ideal Josephson junction denoted
by /. The contour used for integration is shown by the broken
line. Internal magnetic flux ®, circulating current I s, self —
inductance L and applied magnetic flux ® . are related by ®
=& x —LIs. Typical values are L = 5nH, and Iy = 1 g A.

The junction resistance in the normal state is R = 10 , and
the diameter of the ring is about 2mm.
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the quantum states are irreversible.

Most practical 7f — SQUIDs have typical values of L ~5X10"19H, Ip~1X 106 A ; hence the
magnitude of £ is about 1.50. Our numerical calculations have been carried out for values of B
from 0.20 to 2 7.

We emphasize the correspondence between the energy of the ring and the various characteris-
tics in the 7f — SQUID. For f > 1, when the applied magnetic flux ® x is increased, the potential
energy barrier preventing transition from the initial fluxoid quantum state to an adjacent one de-
creases. Actually, the transition occurs as the energy barrier vanishes at a critical value of ® x c.

In section 2 the fluxoid quantization, the Josephson tunneling and the energy of the system are
briefly reviewed in order to recall their physical meaning and to define physical quantities for the

following discussion.

2. Basic Equations

2.1 Fluxoid quantization
2.1.1 Bohr — Sommerfeld quantum condition

A closed line integral of the canonical momentum along a path in a superconducting ring can be
derived in the presence of a magnetic field. Then the Bohr — Sommerfeld quantum condition gives

the fluxoid quantization, as follows :

§p'dl=nh,

p=m'vte A (e*<0),

where p is the canonical momentum of a Cooper pair (m" = 2m, ¢ = 2¢), A is the vector potential
and » is an integer. If the superconducting ring is sufficiently thick in comparison to the penetra-
tion depth then the contribution fm' v+ d/ for the supercurrent vanishes except in the Josephson
junction. The dashed line in Fig. 1 represents the integration path. Hence the integral can be writ-

ten as
(1 /e‘)é p- dl= [m‘ / (‘0* e’ )]fjunction J* dl+fsur{ace B- dS’

which is equal to n (b / e") = n (h / 2¢) = n ®@o. Here j is the current density given by (p *¢* v), £*
being the number of the Cooper pair per unit volume. The enclosed flux will be called internal
magnetic flux and denoted by ® and the flux quantum is defined to be ®¢( =h / 2¢).

For simplicity we assume that the Josephson junction is sufficiently small in area. Hence we in-
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troduce a following definition of phase difference across the junction @ :

8 =—1m /@ P M junction J * AL

=271 [®/ Dotnl.

The minus sign indicates that the direction of current j is opposite to that of the increase in @,

as can be seen in Fig. 1.
2.1.2 Ginzburg — Landau viewpoint

The order parameter is a complex quantity as
= \ ¥ (2,9, 2) | expli ¢ (x,y, 2),

where the amplitude is ’ ¥ (x, y, 2) | =+ P*and ¢ (v, 2) is the phase. A relationship between

the current density flowing in the superconductor and the order parameter in the presence of a

magnetic field is given byS)

=R/ @mti) e -t — 2/ m) AT |2
Substituting ¥ into this equation, we get

To=(/R)A+ m* /(e LR

From the viewpoint of GL theory, the fluxoid quantization is based on the existence of a single —
valued complex superconducting order parameter ¥. This requires that the phase $ (x, y, 2) must

change by an integral multiple of 27 when a complete close circuit has been covered.

2an=("/h) [ qrpae B dSF /€ P W [ junction J * AL

= (" /1) [ qwrace B+ S+ 6.
Then, the value of the phase difference # and defind by

0 =—(m" /€ L B[ junction J - AL,

=27 [®/ Dotn |

2.2 Josephson current

The superconducting current I across the junction shown in Fig. 1 depends on the phase differ-
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ence 6 asl®
I=1Iysin |6 (0) +e* Vit / hl

where [p is the maximum zero — voltage current that can be passed by the junction and V is a con-
stant dc bias voltage. With no bias voltage (the dc Josephson effect) a dc current will flow across
the junction with a value between Iy and — Iy according to the value of the phase difference 8 .
This phase difference @ adjusts to the current I, according to the above Josephson relation. If a
current greater than Iy is passed through the junction, a voltage appears across it.
2.3 Energy of the system

If the current through the junction is varying with time, the phase difference # must also be
changing with time, and it can be shown that a voltage V is developed across it. This voltage is re-

lated to the time rate of § by!®

dg 2e

At ko
Consider a junction through which a constant current [ s is flowing, the current having been
raised from zero to this value over a time t. During the time the current is increasing, the rate of
change of current dI / dt corresponds to a voltage V across the junction. Therefore, power IV is
being delivered to it and work, dE; = IVd¢, is performed in setting up the current and the conse-
quent phase difference. The value of dEj is the increase in energy of the junction due to the pas-

sage of a current through it and dE| is given by!?

dE, = IVdt,

deg
= (Ioh) / (2e) sin § ——d¢.
dt
Then, we obtain the junction coupling energy Ej which depends on the phase difference, as

Ey = (Ioh) / (2¢) [1 — cos 0],

= — Epcos § + constant.

Provided E; is large compared with the thermal fluctuation energy k g T, phase coherence extends
across the barrier and a supercurrent can be passed through up to the critical current Io.
On the other hand if the current I goes through the superconducting ring, the magnetic energy of

the current flowing in the inductance L is (1 / 2) LI % The energy of the system of the supercon-
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ducting ring is then expressed by two terms,!V

1
U=—2-L152—E0c030,

).

where the first term is the magnetic energy Em associated with a current and the second is the

_ L _ 2 21
<2L) (®—P«) Eqcos ( .

[

junction coupling energy E j. Here the electro—static Coulomb energy associated with any differ-
ence in charge density between the two sides of the barrier is neglected. The extra amount of con-
stant energy is also assumed to be zero.
2.4 Basic equations

The basic equations are summarized and are described below. The main characteristics of the #f
— SQUID are the behaviors of the internal flux ® and of the screening circulating current I's as a

function of the external flux ® x. They are derived from the next equations,

¢=¢x_LIs, (1)
=27 [®/ Dotn (2)
Is:IOSina. (3)

Equations (1), (2) and (3) are linked equations for the three unknown quantities ®, I and 6 in

terms of the applied flux ® x. Here we introduce dimensionless parameter #, defined as
ﬂ: (ZﬂLlo)/ q)o, (4)

where B depends on the value of Llo. The limiting forms of the equations are ® = ® « for LIy =
0, which corresponds to an open ring, and complete flux quantization ® = n ® ¢ for Llp) ® o,
which corresponds to a closed ring with no weak link. Making the substitution of egs. (2) and (3)

into eq. (1), we get a next relation,
S=® x— Llpsin (27 D / ®y). (5)
Substituting egs. (1) and (2) into eq. (3) gives
Is =Igsin (27 @ / ®y). (6)
For the ring with a junction the energy of the system is given by
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erqa)

1
U= (5) (®—®* — Egcos o

3. Numerical Computer Calculations for the Characteristics in rf— SQUID

3.1 The system energy U(®, ®x)

The system energy U, normalized by (<I>o2 / 2L), is written as
U/ (®*/2L)=(®/ @o— D,/ B2 — B /(27 cos (2T D / o). (8)

The energy U (®, ®,) of the system given by eq. (8) is calculated. Figures 2 to 11 show the re-
sults of U (®, @) for various values of parameter 8. Using partial derivative of U (®, ®,) with

respect to @, the condition at the local minimums of U (®, ®,) is

U (D, @) _

5 0, (9)

which leads to the next equation :

CI)=<I>X—LIOSin(2;q)). (10)
0

This is exactly the same equation to eq. (5). We can get the following relation :

e _ ! . 1)
dd, 1+ Bcos(2m @/ D)

For B <1, the denominator of eq. 1) has always positive value and then there are no portions of
the curve with negative slope in ®. Therefore, ® is a single — valued function. As a result, the
ring has only one stable state whose ® value is obtained by eq. (10 for any value of ®,. On the
other hand, for #>1, @ in eq. (10 is three — valued for some parts of the range ® .. Then meta-
stable states can exist. Consequently, hysteresis can occur since the transitions in increasing and
decreasing flux occur at different ® xc.

For an example, let explain the behavior of the hysteresis in Fig. 9 in the case of 8 = 1.50.
Figure 9 shows the behavior in the low energy portion of U for 8 = 1.50 in greater detail. There
are two specific inflection points at @ / ®¢= 0.366 and 0.634 in Fig. 9. When increasing the ex-
ternal flux ®,, the transition occurs at ® ./ ® o= 0.544, whereas it takes place at @ xc / ®o=
0.456 when decreasing the flux. Up to flux ® xc the system is maintained in the lower flux side of
the potential valley by the central barrier, even if it is in the unstable equilibrium state (see &=
0.52 in Fig. 9). Finally the barrier vanishes at ®xc and the transition takes place. During the back

process the system change occurs in the inverse order.
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The behavior of the system can be understood by considering its trajectory. The essential fea-
ture is that the external flux jumps from an initial fluxoid quantum state to the next fluxoid state.
3.2 The junction coupling energy E, vs. external flux ®x

The junction coupling energy is

Ej=—Eqos (27 ® / dy). (12
Using the expressions of Eo and B, we get the normalized form of E |

Ey /(®2/2L)= —[B /(27 Y cos (2T ® / D). 13

Figures 12 to 17 display the E j vs. ® , for the following values of parameter B :0.20, 0.50,
1.00, 1.50, 3.00 and 2 @ . The derivative of E j with respect to ®, becomes

dE;  Isin (27 D/ D) W
dd, 1+pBcos@rnd/ dy’
For 8 >1,if cos® =—1/ B, the denominator of eq. (14 goes to zero, leading to an infinite
slope of Ej at ®xc. Pxcis given by the next two equations :
D/ D= / Dot (B /27)(1— L1/2, 19
O/ Po=(1/27)cost(—1/ B). (16)

As an example, in the case # =1.50, we get two values of ®xc/ ®o, namely 0.544 and 0.456,
in the range 0< ®/® (< 1. These critical values are exactly the same as»those obtained from the
analysis of the system energy U, as explained previousy. That is, hysteresis occurs since the tran-
sitions in increasing and decreasing flux takes place at different ® . values. These critical values
® «c correspond to the position at which the slope of E j takes infinite value.

3.3 The magnetic energy Em vs. external flux @,

The magnetic energy of the ring is
Em = (i) (® — @, 1Y)
2L X
The normalized form is
Em /(®P/20)=[B /@27)?sin® (27 @ / D). (18

Figures 12 to 17 show the Em vs. ®, behavior with parameter £ from 0.20 to 2 7.

The derivative of Em with respect to @ « becomes
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dEm (B /L)(®y—®)cos2m @ / )
do, 14+ Bcos(2m @ / &)

19

For #>1,if cos§ =—1/ B, the denominator of eq. 19 goes to zero, leading to an infinite
slope of Em at ®xc. The value of ®xc is the same as obtained by eqgs. (15 and (16).

Hysteresis occurs when the transitions in increasing and decreasing flux take place at different
®, values. These critical value ® xc corresponds to the position at which the slope of Em gives in-
finite value.

The total energy U, which is normalized, is also shown in Figs. 12 to 17. The value of U in
these figures corresponds to the maximum or minimum value in Figs 6 to 11
3.4 E,, Em vs. phase difference 6

The junction coupling energy E j, the magnetic energy Em and the system energy U are express-

ed as a function of the phase difference € as follows:

Ey /(®o*/2L)= —[B /(27 cosh, 20
Em/(®¢/2L)=[B /@m)?sin® 6, @1
U/ (®¢%/2L)y=—[B /(27% cos@ + [B /(27)sin? 6, @2

=—[B/27H cos@T D/ Do)+ [B/@m)sin®27 D/ D). @3

Equation @3 can be also obtained by making a substitution of eq. (10 into eq. (8). Consequently the
physical meaning of egs. 22 and @3 is that the minimum, the maxiimum, local minimum or local
maximum energies of the superconducting ring are given by eqs. 22 or 3. Figures 18 to 23 show
the behavior of these functions for several values of 8.

The derivative U with respect to 8 gives
AU/ (®o°/2L)/dO =B /(27?]sinf [1+ Bcosb]. 24)

When B < 1, the superconducting ring has a minimum energy at § = 0 and a maximum energy
at @ = 7. On the other hand, when S > 1, the system has a minimum energy at § = 0 and a
maximum energy at 6 = cos™l (— 1/ B).

3.5 Internal flux ® vs. external flux ®
In Fig. 24 to 29, results of calculations for ® versus ®, relation are shown. These behavior

depends on the dimensionless parameter 8 = (27 LIy) / ®,. Taking the derivatives of ® with re-
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spect to ®,, we can get the following relations using egs. (5) or (10):

dd 1

d0, 1+ Bcos2n®/ dy) @

For B < 1, the denominator of eq. 25 is always positive and then, there are no portions of the
curve with negative ® vs. @, slope. Namely, the value of @ increases monotonically as a function
of ®,. Therefore, ® is a single — valued functions of ®,. The slope of ® is maximum at ®,/ @,
= 1/ 2. On the contrary, for B > 1, the ® vs. ®, curves have regions of negative slope. The
portions with negative slope in these curves are unstable. This point has been already discussed
from the viewpoint of the system energy U. Namely the quantum states are discrete and the transi-
tions between the quantum states are irreversible. Consequently, hysteresis exists when the transi-
tions in increasing and decreasing field occur at different ®, values.

For 8> 1,if cos® =— 1/ B, the denominator of eq. €5 goes to zero leading to an infinite
slope of @ vs. ®, at @ xc. These values ®xc are given by the two equations (19 and (6. As an ex-
ample, in the case B = 1.50, values 0.544 and 0.456 for ®x / ®o correspond to the critical posi-
tions of the transitions when ®, increases or decreases in a range of 0 < ®,/ @, < 1, respec-
tively. These critical values are exactly the same as those obtained from the analysis for the sys-
tem energy U.

When increasing 3, the flux ranges of successive hysteresis path overlaps partly as can be
seen in Fig. 29. The critical value of B leading to overlap of the hysteresis path is given by the
criterion that the critical external flux @ xc of the one fluxoid quantum state reaches zero in the
decreasing flux process. Then the critical value of B¢ is deduced by the two egs. (19 and (16), which

give the next equation.
(1/27)cos (— 1/ Bo)=(Bo/27)(1— By D2 6
We can obtain the critical value of 8¢ by numerical calculation,
Bo=4.6033. @7

3.6 Induced flux LIs vs. external flux ®,

In Fig. 24 to 29, results of calculations of LI s versus ® , are shown. The numerical calcula-
tions have been made by using eq. (1). The calculated curves depend on the dimensionless pa-
rameter S . In these figures the positive or negative sign of LI s correspond to the current direc-
tion in the ring. By considering eq. (1), the value of LI is obtained by subtracting the value of ®

from the diagonal line in the ® vs. ® , relation. Hence the criterion for hysteresis is derived in
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the same way as for the ® vs. ®, curves. For 8 < 1,y is a single — valued functions of @ ,,
whereas for 8> 1, LI is three — valued in some parts of the @, range. Hysteresis appears since
the transitions in increasing and decreasing flux occur at different ® , values. The critical value
® xc corresponds to the position at which the slope of I s becomes infinite. These values of ®xc are
exactly the same as those obtained by the analysis of the system energy U as well as the case of
D vs. O,.

It should be noticed that the transition does not take place at the maximum value Iy but at the

value I sc given by
Ise=1Io(1 — Byl/2 (B>1). @9

For B = 1.50, the critical value of the current I s is 0.7451. In addition, the screening current
has the form Iy sin (27 ® / ®(). Then the maximum current appears always at ® / &, =1/ 4.
3.7 Phase difference 6 vs. external flux @

In Figs. 30 to 35, the values of the phase difference € across the junction as a function of ex-

ternal flux @, are shown. Taking the derivatives of § with respect to ®,, we obtain

da 2/ dy)

dd, 1+ Bcos(2m d/ By @)

For < 1, the denominator of eq. 29 is always positive and there are no portions of the 8 vs. O«
curves with negative slope. Therefore, 8 is a single — valued functions of ®,. Instead, for 8 >
1, 6 is multi — valued for some parts of the @, range. Hysteresis appears since the transitions in
increasing and decreasing flux occur at different @, values. These critical values ® xc correspond
to the position at which the slope of # takes an infinite value.
3.8 Fluxoid vs. external flux &4

In Figs. 30 to 35, results of the absolute value of | fluxoid / ®¢ | are shown as a function of
®,. The applied flux ®, is able to drive the transition from one fluxoid quantum state to another

successive quantum state. From eq. (2). ifluxoid / tI’o} is integer n which is expressed as
fluxiod / ®o|=n= (6 /27)— (& / D). (30

The derivative of n is

n do 4o
1@, /2% G, ~ 1/ R0 yg
1
= [(17 Do) — (17 D). 31

1+ Bcos(2nd/ ®y)
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The derivative can have a non zero value only if cos § = —1/ B, which corresponds to the
transitions between two fluxiod quantum states. These critical values have also the same magini-
tudes as those given by the analysis of the system energy U. The derivative of eq. 31 is zero if cos
6 +— 1/ B, which means for # to be constant.

For B <1, the fluxoid can change at ®,/ ®¢ = 1/ 2 : the system energy reaches its maximum

value corresponding to § = 7 and one flux quantum can enter into the ring.
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Figure Captions

Figures of the numerical calculations of the characteristics in the #f — SQUID and the figure
captions are given in the following paper.
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