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Tsuyoshi AOCHI， Shuji EBISU and Shoichi NAGATA 

Abstract 

There has been a lot of discussion of characteristics in superconducting quantum interference device (SQUID) 

However. much less information is available on systematic calculations of these behavior. In this report. we describe 

various features in a superconducting ring having one Josephson junction. Systematic computer calculations of static 

behavior of theてf-SQUID have been carried out. The characteristic features depend strongly on a parameter s = 

(2πLん)/φo. where 10 is a critical current of the junction. L is a self -inductance of the ring and φ。isthe flux 
quantum. In the regime s > 1. the quantum states are discrete and the transitions between the quantum states are 
irreversible. The present work is focused on the correspondence between energy of the system and the characteris 

tics in theげ SQUIDover the range of s = 0.20 to 2πThe results of the calculations are shown in the following 
No. 2 paper. 

1. Introduction 

The superconducting quantum interference device (SQUID) is originated from the epoch -mak. 

ing theoretical prediction of the Cooper pairs tunneling between two superconductors.!) We will 

describe here the details of the physical bases and the numerical calculations for the SQUID. 

The SQUID has been investigated from various viewpoints and by various kinds of experimental 

techniques since the first observation by Jaklevic et al. in 1964.2-4) These subjects represent some 

of the purest and most fundamental aspects of the superconductivity.5-9) 

However. much less information is available on systematic calculations of the characteristics of 

the SQUID. The present work is concerned with systematic computer calculations of the static be. 

havior of theげ SQUID，which contains one ideal Josephson junction in the superconducting ring. 

The SQUIDs are based on the two physical pillars. The first is fluxoid quantization and the 

second is Josephson effect. Figure 1 shows a superconducting ring with a single Josephson weak 

link. We shall make the simplification that the ideal Josephson junction area is small enough for 

the current density to be uniform， and that it never contains a significant fraction of a flux quan田

tum. The internal magnetic flux φpassing through the ring includes the magnetic flux LI s gener-
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ated by the current 1 s circulating in the ring， where L is the self -inductance of the ring. As 

shown in Fig. 1， the internal fluxφthreading the ring is then related to the applied flux φx by 

φ=φx -L1 s 

where ⑤ x is the appliedflux intercepted by the ring， and LI s is the screening flux generated by 

the induced supercurrent 

In the present paper， many physical quantities have been calcuated as a function of applied 

magnetic fluxφx. Their behavior depends on the dimensionless parameter s = (2πLIo) /φ0， 

where 10 is the critical current of the junction and φo is the flux quantum. For s < 1，φIS a 

single -valued function ofφx， whereas in the regime s > 1， it is three -valued around half in 

teger values ofφx . Then hysteresis appears， for transitions in increasing and decreasing field 

occur at differentφx values. Namely the quantum states are discrete and the transitions between 

弘
Flg. 1 Superconducting ring with a ideal Josephson junction denoted 

by ]. The contour used for integration is shown by the broken 

line. Internal magnetic flux φ， circulating current 1ぉ， self 

inductance L and applied magnetic flux φx are related by φ 

=φx -LIぉ Typicalvalues are L二 5nH，and 10ニ 1μA.

The j unction resistance in the normal state is R = 10 n， and 
the diameter of the ring is about 2mm 
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the quantum states are irreversible. 

Most practical rf -SQUlDs have typical values of L -5 x 10-]0 H. 10 -1 X 10-6 A ; hence the 

magnitude of s is about l.50. Our numerical calculations have been carried out for values of s 

from 0.20 to 2π ー

We emphasize the correspondence between the energy of the ring and the various characteris 

tics in the rf -SQUID. For s > 1， when the applied magnetic flux φx is increased， the potential 

energy barrier preventin耳transitionfrom the initial fluxoid quantum state to an adjacent one de 

creases. Actually， the transition occurs as the energy barrier vanish巴sat a critical value of φx c . 

In section 2 the fluxoid quantization， the Josephson tunneling and the energy of the system are 

briefly reviewed in order to recall their physical meaning and to define physical quantities for the 

following discussion 

2圃 BasicEquations 

2.1 Fluxoid quantization 

2.1.1 Bohr -Sommerfeld quantum condition 

A closed line integral of the canonical momentum along a path in a superconducting ring can be 

derived in the presence of a magnetic field. Then the Bohr .-Sommerfeld quantum condition gives 

the fluxoid quantization， as follows 

p=  m・v+e'A (e'<O)， 

where p is the canonical momentum of a Cooper pair (m' 2m， e' 2e)， A is the vector potential 

and n is an integer. If the superconducting ring is sufficiently thick in comparison to the penetra. 

tion de 帥 then the cont 山 tion 1 m' v ・dl for 山 S幻叩u附I
junction. The dashed line in Fig. 1 represents the int伐egra抗tiωonpath. Hence the integral can be writ. 

ten as 

(1 / e') ~ p ・dl こ二二二二二二二二 I抑隅が*り川/刈(ρ • ♂r州，リ，)1川)リ11んJU山山If叩n山1C

which is equal to n (h / e') = n (h / 2e) =ηφo. Here j is the current density given by (ρ'" e* v)，ρe 

being the num ber of the Cooper pair per unit volume. The enclosed flux will be called internal 

magnetic flux and denoted by CT and the flux quantum is defined to beφ。(=h / 2e). 

For simplicity we assume that the Josephson junction is sufficiently small in area. Hence we in 
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troduce a following definition of phase difference across the junction θ・

8 =-Im' / (〆 f川 junctionj ， d 1， 

ニ 2πIφ/φ。十nj

The minus sign indicates that the direction of current j is opposite to that of the increase inφ， 

as can be seen in Fig， 1. 

2.1.2 Ginzburg - Landau viewpoint 

The order parameter is a complex quantity as 

'¥}I= !'¥}I(x，y，z)!叫 li世(川

W仙he悦r代et恥hea訓mp州li出1此山tudei川s什!'¥}I収仏，y，z川)川!=v戸P'a刷nd世い仏，y，z幼)i凶st恥h恥ep帥h脱 A 仙 tion
the current density flowi口ingin the superconductor and the order parameter in the presence of a 

5) 
magnetic field is given by 

j=1川/(2m' i)j l'¥}l'マ?一?マ'¥}I'I一(〆2/が)A!'¥}I!2

Substituting '¥}I into this equation， we get 

マ持 =(e・/Ji) A十 1m・/(e' P'品)jj

From the viewpoint of GL th巴ory，the fluxoid quantization is based on the existence of a single 

valued complex superconducting order parameter '¥}I. This requires that the phase世(x，y， z) must 

change by an integral multiple of 2πwhen a complete close circuit has been covered. 

2πn = (e' / Ji) f s山 eB . d S+ 1m' / (e' P' Ji)j f junction j . d 1， 

こ(〆/的[叫ceB. dS+θ 

Then， the value of the phase differenceθand defind by 

θ三一 1m'/ (e' p'Ji)jf川 onj ， dl， 

=2π|φ/φ。+n1. 

2.2 Josephson current 

The superconducting current 1 across the junction shown in Fig. 1 depends on the phase differ 

36 



CHARACTERISTICS IN AN RF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE AS 
A FUNCTION OF APPLlED MAGNETIC FLUX : SYSTEMA TIC CALCULA TIONS 1 

enceθaslO) 

1 = 10 sin I {} (0) +e' Vt / nl 

where 10 is the maximum zero -voltage current that can be passed by the junction and V is a con 

stant dc bias voltage. With no bias voltage (the dc Josephson effect) a dc current will flow across 

the junction with a value between 10 and -10 according to the value of the phase differenceθ. 

This phase differenceθadjusts to the current 1， according to the above Josephson relation. If a 

current greater than 10 is passed through the junction， a voltage appears across it 

2.3 Energy of the system 

If the current through the junction is varying with time， the phase differenceθmust also be 

changing with time， and it can be shown that a voltage V is developed across it. This voltage is re-

lated to the time rate of θbylO) 

V
 

Consider a junction through which a constant current 1 s is flowing， the current having been 

raised from zero to this value over a time t. During the time the current is increasing， the rate of 

change of current d1 / dt corresponds to a voltage V across the junction. Therefore， power 1V is 

being delivered to it and work， dEJ = 1V dt， is performed in setting up the current and the conse-

quent phase difference. The value of dEJ is the increase in energy of the junction due to the pas-

sage of a current through it and dEJ is given bylO) 

dEJ = 1Vdt， 

d θ 
= (10島)/ (2e) sin θ一一一dt.

dt 

Then， we obtain the junction coupling energy EJ which depends on the phase difference， as 

EJヒ (10島)/(2e)11-cosθJ， 

三一 Eocosθ 十 constant

Provided EJ is large compared with the thermal fluctuation energy k B T， phase coherence extends 

across the barrier and a supercurrent can be passed through up to the critical current 10・

On the other hand if the current 1 goes through the superconducting ring， the magnetic energy of 

2 
the current flowing in the inductance L is (1 / 2) LI ~. The energy of the system of the supercon-
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ducting ring is then expressed by two terms.l1) 

1 。
Uニ 2LIs G - Eocos 0 . 

=(去)(φ一札)2-Eocos (三子).
where the first term is the magnetic energy E m associated with a current and the second is the 

junction coupling energy E J ・Herethe electro-static Coulomb energy associated with any differ-

ence in charge density between the two sides of the barrier is neglected. The extra amount of con-

stant energy is also assumed to be zero. 

2.4 Basic equations 

The basic equations are summarized and are described below. The main characteristics of theてf

SQUID are the behaviors of the internal flux φand of the screening circulating current 1 s as a 

function of the external flux φx. They are derived from the next equations. 

φ=φx一LIs. (1) 

。=2πiφ/φ。+n). (2) 

1 s =Iosin 0 . (3) 

Equations (1). (2) and (3) are linked equations for the three unknown quantities φ.ls and θin 

terms of the applied flux φx. Here we introduce dimensionless parameter s. defined as 

s= (2πLIo) /φo. (4) 

where s depends on the value of LIo. The limiting forms of the equations are φ=φx for L10 = 

O. which corresponds to an open ring. and complete flux q回 ntization② =ηφofor LIo} φo. 

which corresponds to a closed ring with no weak link. Making the substitution of eqs. (2) and (3) 

into eq. (1). we get a next relation. 

φ=φx -LIosin (2πφ/⑤0) (5) 

Substituting eqs. (1) and (2) into eq. (3) gives 

1 s = 10sin (2πφ/φ。). (6) 

For the ring with a junction the energy of the system is given by 
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2πφ 
U=(z)(φ-h)2-Eocosvl) (7) 

3. Numerical Computer Calculations for the Characteristics in rf-SQUID 

3.1 The system energy U (φ，φx) 

The system energy U， normalized by (φ02/ 2L)， is written as 

U / (φ02/ 2L) = (φ/φ。φx/φ。)2-s / (2π2)Eos (2πφ/φ。). (8) 

The energy U (φ ，②xl of the system given by eq. (8) is calculated. Figures 2 to 11 show the re-

sults of U (φ，φx) for various values of parameter s. U sing partial derivative of U (φ，φx) with 

respect toφ， the condition at the local minimums of U (φ，φx) is 

δU(φ，φx) ハ

δ φv  (9) 

which leads to the next equation : 

⑥立②x LIosin(24竺)
"'0 

)
 

の
Ul
 
(
 

This is exactly the same equation to eq. (5). We can get the following relatio日

d φ 1  

d φ1十戸cos(2π ②/φ。). )
 
-l
 
(
 

For s < 1， the denominator of eq. (ll) has always positive value and then there are no portions of 

the curve with negative slope in φTherefore，⑤ is a single -valued function. As a result， the 

ring has only one stable state whoseφvalue is obtained by eq. (10) for any value ofφx. On the 

other hand， for s > 1，② in eq. (10) is three -valued for some parts of the range φx. Then meta 

stable states can exist. Consequently， hysteresis can occur since the transitions in increasing and 

decreasing flux occur at differentφxc. 

For an exal叩 le，let explain the behavior of the hysteresis in Fig. 9 in the case of s = 1.50 

Figure 9 shows the behavior in the low energy portion of U for s = 1.50 in greater detail. There 

are two specific inflection points atφ/φ。=0.366 and 0.634 in Fig. 9. When increasing the ex-
ternal flux φx， the transition occurs at φxc /φ。=0.544， whereas it takes place at ②xc /φ。=
0.456 when decreasing the flux. Up to flux ②xc the system is maintained in the lower flux side of 

the potential valley by the central barrier， even if it is in the unstable equilibrium state (see② 

0.52 in Fig. 9). Finally the barrier vanishes at φxc and the transition takes place. During the back 

process the system change occurs in the inverse order 
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The behavior of the system can be understood by considering its trajectory. The essential fea-

ture is that the external flux jumps from an initial fluxoid quantum state to the next fluxoid state 

3，2 The junction coupling energy E J vs. external flux φx 

The junction coupling energy is 

E J = -Eocos (2πφ/φ0). (12) 

Using the expressions of Eo and s， we get the normalized form of E J 

E J / (φ02/2L)ニ!日/(2π2)l cos (2πφ/φ0). (13) 

Figures 12 to 17 display the E J vsφx for the following values of parameter s : 0.20， 0.50， 

l.00， l.50， 3.00 and 2π ーThederivative of E J with respect toφx becomes 

dE J Iosin (2πφ/φ0) 

d φχ1  + s cos (2πφ/φ。) (14) 

For s > 1， if cos θ二一 1/ s， the denominator of eq. (14) goes to zero， leading to an infinite 

slope of E J atφxc②xc is given by the next two equations 

φxc /φ。ニ②/②o士(s/2π) (1 -s -2)1 ! 2， (15) 

⑤ /φ。ニ (112π)coc1 (一11戸). 位。

As an example， in the case s = l.50， we get two values ofφxc /φ0， namely 0.544 and 0.456， 

in the range 0 <φ/φ。<l. These critical values are exactly the same as those obtained from the 

analysis of the system energy U， as explained previousy. That is， hysteresis occurs since the tran 

sitions in increasing and decreasing flux takes place at differentφx values. These critical values 

φxc correspond to the position at which the slope of E J takes infinite value. 

3.3 The magnetic energy Em VS. external flux φx 

The magnetic energy of the ring is 

Em = (去)(φ 一色)2 (1め

The normalized form is 

Em / (φ02/ 2L) = [s / (2π)]2 sin2 (2πφ/φ。). (1司

Figures 12 to 17 show the E m vs.⑤x behavior with parameter s from 0.20 to 2π 

The derivative of E m with respect toφx becomes 
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dEm 戸/L) (φx一φ)cos(2πφ/φ。)

dφ1十戸cos (2πφ/φ。)
(19) 

For s > 1， if cos θニー 1/ s ， the denominator of eq. (19) goes to zero， leading to an infinite 

slope of E m atφxc. The value of φxc is the same as obtained by eqs. (15) and (16). 

Hysteresis occurs when the transitions in increasing and decreasing flux take place at different 

φx values. These critical value CT xc corresponds to the position at which the slope of E m gives in 

finite value 

The total energy U， which is normalized， is also shown in Figs. 12 to 17. The value of U in 

these figures corresponds to the maximum or minimum value in Figs 6 to 11 

3.4 E J， Em vs. phase difference e 
The junction coupling energy E J ， the magnetic energy E m and the system energy U are express-

ed as a function of the phase differenceθas follows : 

E J / (φ。2/2L) = 一1s / (2π2)1 cosθ ， 。。

Em / (φ02/2L)= Is /(2π)128iI120， 位。

U / (φ。2/2L) =一 Is/ (2π2)] cos θ+  Is / (2π)12 sin2 8， 凶

= -Is / (2π2)] cos (2πφ/φ0) + Is / (2π)12 sin2 (2πφ/②0) (23) 

Equation (23) can be also obtained by making a substitution of eq. (10) into eq. (8). Consequent1y the 

physical meaning of eqs. (22) and (23) is that the minimum， the maxiimum， local minimum or local 

maximum energies of the superconducting ring are given by eqs.包2)or (23). Figures 18 to 23 show 

the behavior of these functions for several values of s 

The derivative U with respect toθglves 

d IU / (φo2/2L)I/d θ=  Is / (2π2)1 sin θ11 + s cos θ| 包司

When s < 1， the superconducting ring has a minimum energy at 8 = 0 and a maximum energy 

atθ=πOn the other hand， w hen s > 1， the system has a minim um energy atθo  and a 

maximum energy at 8 = cocl (-1/戸)

3.5 Internal flux φVS. external flux φx 

In Fig. 24 to 29， results of calculations for ② versus φx relation are shown. These behavior 

depends on the dimensionless parameter s = (2πLIo) /φo. Taking the derivatives ofφwith re 
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spect toφx. we can get the following relations using eqs. (5) or (10) : 

d φ 1  

dφχ 1+ s cos (2πφ/φ0) . 
。。

For s < 1， the denominator of eq. (25) is always positive and then， there are no portions of the 

curve with negative φvs.φx slope. Namely， the value ofφincreases monotonically as a function 

ofφx. Therefore，φis a single -valued functions of φx・Theslope ofφis maximum atφx /φ。
1 / 2. On the contrary. for s > 1， the φvs.②x curves have regions of negative slope. The 

portions with negative slope in these curves are unstable. This point has been already discussed 

from the viewpoint of the system energy U. Namely the quantum states are discrete and the transi 

tions between the quantum states are irreversible. Consequently， hysteresis exists when the transi 

tions in increasing and decreasing field occur at different ⑤x values. 

For s > 1， if cos 8 = -1 / s ， the denominator of eq. (25) goes to zero leading to an infinite 

slope ofφvsφx atφxc. These values φxc are given by the two equations (15) and (16). As an ex-

ample， in the case s = 1.50， values 0.544 and 0.456 for φxc /φo correspond to the critical posi 

tions of the transitions when φx increases or decreases in a range of 0 <φx /φ。<1， respec-

tively. These critical values are exactly the same as those obtained from the analysis for the sys 

tem energy U. 

When increasing s， the flux ranges of successive hysteresis path overlaps partly as can be 

seen. in Fig. 29. The critical value of s leading to overlap of the hysteresis path is given by the 

criterion that the critical external flux φxc of the one fluxoid quantum state reaches zero in the 

decreasing flux process. Then the critical value of s 0 is deduced by the two eqs. (15) and (16)， which 

give the next equation. 

(1 / 2π) cos'l (一 1/ s 0) = (s 0 / 2π) (1-s 0'2)1/2 。。

We can obtain the critical value of s 0 by numerical calculation， 

s 0 = 4.6033. 。ヵ

3.6 Induced flux LI s VS. external flux φx 

In Fig. 24 to 29， results of calculations of LI s versus φx are shown. The numerical calcula-

tions have been made by using eq. (1). The calculated curves depend on the dimensionless pa-

rameter s. In these figures the positive or negative sign of LI s correspond to the current direc-

tion in the ring. By considering eq. (1)， the value of LI s is obtained by subtracting the value ofφ 

from the diagonal line in the φvsφx relation. Hence the criterion for hysteresis is derived in 

42 



CHARACTERISTICS IN AN RF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE AS 
A FUNCTION OF APPLIED MAGNETIC FLUX : SYSTEMA TIC CALCULA TIONS 1 

the same way as for the ② vsφx curves. For s < 1， 1 s is a single -valued functions of ⑤x， 

whereas for s > 1， LI s is three -valued in some parts of thε ②x range. Hysteresis appears since 

the transitions in increasing and decreasing flux occur at differentφx values. The critical value 

φxc corresponds to the position at which the slope of 1 s becomes infinite. These values of⑤xc are 

exactly the same as those obtained by the analysis of the system energy U as well as the case of 

φvs.φx 

It should be noticed that the transition does not take place at the maximum value 10 but at the 

valuε 1 sc given by 

1 sc = 10(1 - s-2)1/2 (s> 1) (28) 

For s = 1.50， the critical value of the current 1 sc is 0.745/0. In addition， the screening current 

has the form 10 sin (2πφ/φ。).Then the maximum current appears always atφ/φ。=1/4 

3.7 Phase difference a VS. external flux φx 
In Figs. 30 to 35， the values of the phase differenceθacross the junction as a function of ex 

ternal flux φx are shown. Taking the derivatives ofθwith respect toφx， we obtain 

dO 2π/φ。)

d ⑥ 1 + s cos (2πφ/φ。). (29) 

For s < 1. the denominator of eq. (29) is always positive and there are no portions of the 0 vs.φx 

curves with negative slope. Therefore， 0 is a single -valued functions ofφx. Instead， for s > 

1，θis multi -valued for some parts of theφx range. Hysteresis appears since the transitions in 

increasing and decreasing flux occur at differentφx values. These critical valuesφxc correspond 

to the position at which the slope ofθtakes an infinite value 

3.8 Fluxoid VS. external flux φx 

In Figs. 30 to 35， results of the absolt山 V山 eof I fluxoid /φ。Iare shown as a function of 
φx. The applied flux φx is able to drive the transition from one fluxoid quantum state to another 

successive quantum state. From eq. (2). I flux州/②01is intψr n which is expressed as 

I fluxiod /φ。I=n = (θ/2π)一(φ/φ0)

The derivative of n is 

dn d θ d  φ 
= (1 / 2π) 一(11φ。)一一一d φ I d φ -¥JI d φ 

=一一一一一一一一一一一一一 [(11φ。)-(1 /φ。)j
1 + s cos (2πφ/φ。)
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The derivative can have a non zero value only if cos θ=  -1 I s， which corresponds to the 

transitions between two fluxiod quantum states. These critical values have also the same magini. 

tudes as those given by the analysis of the system energy U. The derivative of eq. (31) is zero if cos 

O宇一 1I s， which means for n to be constant. 

For s < 1， the fluxoid can change atφx Iφ。1I 2 : the system energy reaches its maximum 
value corresponding to 0 =πand one flux quantum can enter into the ring. 
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Figure Captions 

Figures of the numerical calculations of the characteristics in theてf-SQUID and the figure 

captions are given in the following paper. 
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