

水平力を受ける鉄筋コンクリートラーメン架構の剛 域に関する研究

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-03-04
	キーワード (Ja):
	キーワード (En):
	作成者: 大築, 和夫, 鈴木, 邦康
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/611

水平力を受ける鉄筋コンクリートラーメン架構の 剛域に関する研究

大築 和夫, 鈴木 邦康

Study on the Rigid Zone of Reinforced Concrete Frames under Horizontal Loading

Kazuo OHTSUKI and Kuniyasu SUZUKI

Abstract

The purpose of this paper is to clarify the rigid zone lengths for reinforced concrete members. The rigid zone lengths were calculated from the results of finite element analysis of column – beam connections. The equations to estimate a rigid zone lengths were derived to utilize those rigid zone lengths.

The estimated rigid zone lengths were applied to three spans, $1\sim9$ stories reinforced concrete frames, and those frames were analyzed by stiffness method. The results of the analysis were very much in agreement with the results of finite element analysis of those frames.

1. はじめに

通常、柱・梁からなる鉄筋コンクリートラーメン架構の応力解析は、各部材を線材に置換して行うが、その場合、材端条件あるいは部材断面の形状によっては精度の良い解が得られないこともあり得る。そのような場合の応力解析の一つの手法として材端に剛域なる概念を取入れた解析方法が提案"されている。この剛域の決め方に関しては日本建築学会鉄筋コンクリート構造計算規準。(以下、RC規準という)にも示されており、それによれば剛域長さは柱、梁に関係なく、単にその部材のせいとそれに接続する部材のせいによって決めるとしている。剛域長さは部材の応力状態によって変ることは既に指摘。されているが、その他にも接続部材の形状、即ち部材の幅あるいは接続部材が両側にあるのか片側のみにあるのかによっても変化すると考えられる。

剛域長さに関する研究としては、RC規準に示されている剛域算定式の基となったセルロイド 模型による実験ややエポキシ樹脂板による模型実験ががあるが、いずれも小型模型による平面的 な形状のものであり、上述の接合部材の接合の仕方あるいは接合部材の寸度が変化した場合につ いては十分に検討されていない。

近年、建築構造部材の諸性状に関する研究は塑性設計指向となっているが、建築基準法施行令の耐震規定では、低層建物(31 m以下)については許容応力度設計を行って、層間変位、剛性率、偏心率等によって安全性を確認すれば良いとしている。この場合、それらの値は弾性応力および弾性剛性に基づいて算出されており、弾性時の応力および変形を精度良く求めることによって、より信頼性のあるものとなる。

このような視点に立ち、本論では剛域を取入れて線材置換される構造物の解析精度を高めることを目的として、柱・梁からなるラーメンモデルを三次元有限要素法解析し、その結果に基づいて剛域長さを算定し、それらを統計的に処理して、簡易な剛域算定式を提示する。更に、層数を1~9層まで変化させた3スパン平面ラーメンを二次元有限要素法解析し、その結果と有限要素法解析結果に基づく剛域を取入れた線材置換による解析結果との比較を行い、提案剛域長さの適合性について検証する。

なお、本論は既に建築学会大会⁶⁻⁷⁾ および建築学会北海道支部研究報告集⁸⁻⁹⁾ に発表したもの並びに投稿中のもの ¹⁰⁻¹¹⁾ を取まとめ加筆したものである。

2. 有限要素法解析結果に基づく剛域長さについて

2. 1 剛域算定のための有限要素法解析モデルについて

解析モデルは図-1に示す4つのタイプの形状のもので,同図(a)はラーメン中間部の柱,(b)は同外側柱,(c)は中間階の梁,(d)は最上階または最下階の梁を想定したものである。以下では柱を想定し

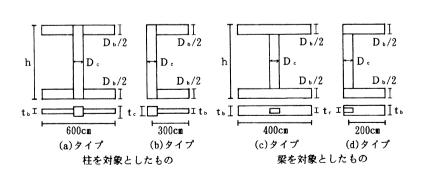


図-1 解析モデルの形状

す。表中のモデル名は部材断面を示しており, 柱幅(t_s)×柱せい(D_s) - 梁幅(t_s)×梁せい (D_b)となっている。表-1の断面のものにつ いて, 柱の両側に梁がある場合(図-1(a), (c) タイプ) と片側のみにそれがある場合 (図-1(b), (d) タイプ) の2通りとし、そ れぞれのものについて、モデル名の後に・印 を付してないもののうち、柱を対象としたも のについては材長 h を 2.4, 3.0, 3.6, 4.2 m の4種に変化させ、同じく梁を対象としたも のについては材長を3.1, 4.2, 6.0, 7.8 m と5種に変化させた。なお、上記の他に後述 の剛域算定に用いるために、それぞれの柱断 面(t。×D。)の柱のみのもの(純柱という) について、材長hを数種に変化させた場合に ついても解析した。

解析に用いた単位要素は自由度24の直方体要素である。要素分割の一例を図-2に示す。その他の諸元のモデルについても図示のものに準じた分割である。解析に際しては図-2に示す梁材軸を通るA-A平面およびB-B平面内の全節点のZ方向変位,回転拘束のためB-B平面内の全節点のY方向変位を零とし,その他の節点は自由とした。外力としてはA-A平面内の全節点のY方向に単位の変位S=1を与えた。これは梁材軸を固定とし,単位の層間変位(部材間変位)を想定したものである。また,コンクリートのポアソン比は1/6,ヤング係数Eは単位とした。

表-1 解析モデルの種別

モデノ	レ名(柱を対象)	モデル名(梁	を対象)
<u>tc×</u>	$Dc-tb\times Db$	t c×Dc-t	b×Db
• 45×	$45 - 30 \times 60$	• 45× 60- 4	15× 45
• "	40× 60	• "	60× 45 ·
• "	45× 60	• " {	80× 45·
"	30×80	• "	15× 60 ·
"	40×80	• "	60×60
"	45× 80	• " {	80× 60 ·
"	30×110	• "	15× 80 •
"	40×110	• "	60× 80 ·
"	45×110	• " {	80× 80
• 60×	$60 - 30 \times 60$	45× 80- 4	15× 45
• "	40×60	• "	60×60
• "	60×60	• " {	80×80
• "	30×80	45×110- 4	15× 45
• "	40× 80	" (60×60
• "	60×80	<i>"</i> {	80× 80
"	30×110	• 40× 60- 4	15× 45
"	40×110	• "	60×60
"	60×110	• " {	80× 80
• 80×	$80 - 30 \times 60$	40× 80- 4	15× 45
• "	40×60	" (60× 45 •
• "	80×60	" {	80× 45 ·
• "	30× 80	• "	15× 60 ·
• "	40× 80	• "	60×60
• "	80× 80	• " {	80× 60 ·
"	30×110	• "	5× 80 •
"	40×110	• "	80× 80 ⋅
"	80×110	• " {	80×80
• 60×	$45-30\times33.8$		15× 45
• "	40×33.8 •		60×60
• "	60×33.8 ·		80×80
• "	30× 45 ·	• 30× 60- 4	5× 45
• "	40× 45 ·	• "	60× 60
• "	60× 45 ·		80×80
• "	30× 60·	$30 \times 80 - 4$	5× 45
• "	40× 60 ·		60×60
• "	60× 60 ·	• " {	80×80
		30×110- 4	5× 45
	*	<i>"</i> (60×60
		<i>"</i> {	0× 80

2. 2 解析結果に基づく剛域長の算定

図-3に示すように単位水平変位時の梁付き柱のせん断力Qと純柱のせん断力Q。が等しくなるときの両者の階高(材長)hとh。との差から剛域長さ ℓ 。を次のように算定する。

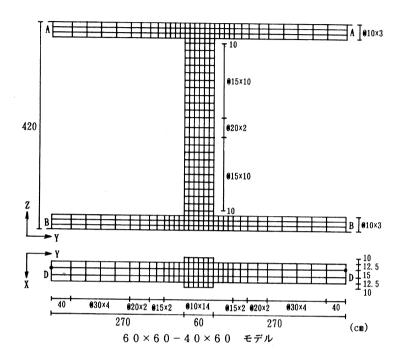


図-2 要素の分割の一例

なお、曲げおよびせん断変形を考慮した梁理論によれば、単位層間変位時の純柱の負担せん断力 Q_0 と材長 ℓ との関係は次式のようになる。

$$\frac{1}{Q_0} = \left(\frac{\ell^3}{12I} + \frac{2.8 \, \ell}{A}\right) \cdot \left[\frac{1}{E}\right] \qquad (2)$$

ただしI:断面二次モーメント

A:断面積

κ:1.2 形状係数

 $G: E/2 (1 + \nu)$

ν:1/6 ポアソン比

(2)式の値と純柱の有限要素法解析値の近似度合は要素分割によって変化し、(2)式によって得られるQ。を用いることは得られる剛域長さの精度を悪くするので、剛域算定に際しては純柱の有限要素法解析値に基づいてQ。と ℓ との関係を次式で近似させるとして各柱断面毎に係数 a. b.

c, dを最小二乗法により求め、その式により求まるQ。を使用した。このようにすることにより、純柱と梁付き柱の分割状態はほぼ同様なので算定結果(剛域長さ)に及ぼす要素分割の影響は微少になると考えられる。

$$\frac{1}{Q_0} = a + b \ell + c \ell^2 + d \ell^3 \qquad (3)$$

表-2に各柱断面についての係数 $a\sim d$ を示す。表-3に部材断面 60×60 cm² および 45×80 cm² の場合について(3)式によって求めた値と有限要素法解析値を示す。同表に見られるように(3)式によって求め

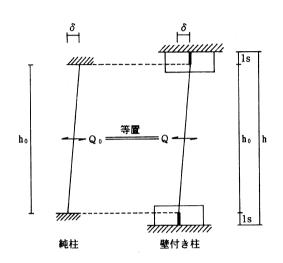


図-3 剛域算定の概念

られる値は有限要素法解析値に十分近似しており、他の部材断面の場合も同様である。これより 任意の材長の純柱のせん断力Q。を(3)式によって算定しても問題はないと考える。

表-4 および5の FEM の欄に前述の手法により、有限要素法解析結果に基づいて求めた剛域長さ(FEM 値)を、柱を対象としたモ 表-2 純柱のせん断力算定に用いた係数 デルについては材長2.4 m 、4.2 m の

デルについては材長 $2.4 \,\mathrm{m}$, $4.2 \,\mathrm{m}$ の 場合について、梁を対象としたもの については材長 $4.2 \,\mathrm{m}$, $8.7 \,\mathrm{m}$ の場合 について示した。

2. 3 既住の算定式との比較

表-4および表-5に徳広式⁵⁾ および RC 規準式²⁾ による剛域長さを示す。 表中 () 内はそれらの値と FEM 値 との差である。

先ず、徳広式の値とFEM値を比較 すると、柱を対象としたモデルでは

部材断面		係	数	
t c×Dc	a	b	С	d
$(cm \times cm)$				
45×45	0.003517	0.115280	0.011310	0.232455
60×60	-0.000141	0.070904	0.001479	0.075045
80×80	-0.000759	0.041628	0.000048	0.024034
60×45	-0.019673	0.107331	0.000667	0.174978
45×60	0.233191	-0.122849	0.068614	0.093405
45×80	0.055953	0.020823	0.016405	0.041078
45×110	0.009631	0.044444	0.003095	0.016220
40×60	0.263889	-0.139261	0.077449	0.105076
40×80	0.062798	0.023552	0.018437	0.046217
40×110	0.010832	0.050002	0.003481	0.018248
30×60	0.346904	-0.182416	0.102630	0.140140
30×80	0.083637	0.031458	0.024551	0.061623
30×110	0.014432	0.066666	0.004627	0.024331

両側に梁がある場合および片側のみに梁がある場合とも、材長4.2mのものでは徳広式によって算定される剛域長さはFEM値より10cm以上長くなるものが多い。材長2.4mのものでは両者の差は10cm以下となっているが、モデルの断面形状によって真定される剛域長さの方が短いものもある。梁を対象としたモデルでは直交部材の取付き

表-3 単位水平変位時の純柱のせん断力一例

 $(\times \delta E)[1/cm]$

部 材	断面	5cm×45cm	部材	断面	45cm×80cm
ED (PE	19 IBJ 4	OCM A 40CM	ap 1/1	HOL TET	43Cm × 6UCm
材長(m)	FEM値	(3)式	材長(m)	FEM値	(3)式
0.80	10.42173	10.42190	2.30	1.44951	1.44834
1.25	4.21280	4.21279	3.10	0.66535	0.66581
1.70	2.02690	2.02689	4.20	0.28767	0.28767
2.15	1.10502	1.10502	5.10	0.16564	0.16562
2.60	0.66085	0.66085	6.00	0.10369	0.10369
3.05	0.42389	0.42389	6.90	0.06908	0.06908
3.50	0.28705	0.28705	7.80	0.04828	0.04829
3.95	0.20292	0.20292	8.70	0.03505	0.03505
4.40	0.14852	0.14852			

方、材長(4.2mおよび8.7m)に拘らず、いずれのものも徳広式によって算定される剛域長さの方がFEM値より長く、その差は殆んどのもので10cm以上となっている。また、両者の差は材長の長い方が大きくなっている。このように徳広式による値とFEM値との差は材長、断面形状によって大きく異なるものとなった。これは徳広式が腰壁・垂壁付き柱を対象として、限られた諸元のモデルの実験結果に基づいて導かれているためと考えられる。従って、この式を用いて、柱・梁からなる一般的なラーメン部材の剛域を精度良く推定することは難しいと言える。

因に、材長4.2mの部材で一端の剛域長さに10cmの差がある場合、全体で可撓長さは20cm異なることになり、両者の可撓長さの比は最小の場合(4.2mと4.0mの場合)でも1.05となる。この場合、集中荷重を受ける部材の曲げ変形は材長の三乗に比例するので水平変位量は約16%差が出ることになり、水平変位を問題にする場合には無視出来ない値となる。

次にRC規準式による値とFEM値を比較すると、両側に梁がある柱を対象としたものでは直交する梁断面が30×80 cm²、30×110cm²、40×110 cm²の一部のものを除けば両者の値は比較的近似していると言える。しかし、片側のみに梁がある柱を対象としたものではいずれもRC規準式による値はFEM値よりも大きく、RC規準式では剛域長さを過大に見積もることになる。

表-5の梁を対象としたモデルについて見ると、両側に直交部材(柱)のあるものではいずれもRC 規準式による値はFEM 値よりも小さく、両者の差は断面の縦横比(D。/t。)が大きいものほど増大する傾向が見られる。片側にのみ直交部材(柱)があるものではRC 規準式による値は比較的FEM 値に近似しているが部材断面の形状によっては両者間に差のあるものも見られる。

以上のように既往の剛域算定式では部材断面の形状、直交部材の有無によって精度に変動が見られ、構造解析結果の精度を高めるためには不十分であると考えられる。

2. 4 剛域算定式の提案

FEM 値を整理して剛域算定式を導く。剛域長さに影響する要因は応力状態をも含めれば無数

大築 和夫, 鈴木 邦康

表-4 柱対象モデルの剛域長さ

直交部材(梁)が両側にあり(aタイプ) 直交部材(梁)が片側にあり(hタイプ)							
モデル名	14 FF					『材(梁)が片側に	
セテル名 tc×Dc-tb×Db	材長 (cm)	FEM (cm)	徳広式(-FEM)	RC規準(-FEM)	FEM	徳広式(-FEM)	RC規準(-FEM)
$\frac{16 \times 16 - 10 \times 100}{45 \times 45 - 30 \times 60}$			(cm) (cm)	(cm) (cm)	(cm)	(cm) (cm)	(cm) (cm)
00 × 06-CF × CF	240 420	16.0	23.0(7.0) 26.0(10.3) 24.9(7.0)	18.8(2.8) 18.8(3.1)	10.3	18.8(8.5)	18.8(8.5)
-40×60	240	15.7 17.9	24.9(7.0)	18.8(0.9)	10.3	23.6(13.3) 21.0(9.1)	18.8(8.5) 18.8(6.9)
15 > 4 8 0	420	17.6	27.1(9.5)	18.8(1.2)	11.8	24.8(13.0)	18.8(8.5) 18.8(6.9) 18.8(7.0)
-45×60	240 420	18.6 18.3	25.6(7.0) 27.5(9.2)	18.8(0.2) 18.8(0.5)	12.4	21.7(9.3)	18.8(6.4)
-30×80	240	247	30.6(5.9)	28.8(4.1)	12.3	25.3(13.0) 25.1(8.0)	18.8(6.5)
10 × 00	420	24.5	30.6(5.9) 34.6(10.1) 33.2(6.2)	28.8(4.3)	17.2	31.5(14.3)	28.8(11.6)
-40×80	240 420	24.5 27.0 26.7	33.2(6.2) 36.1(9.4)	28.8(1.8)	19.2	31.5(14.3) 28.0(8.8) 33.1(13.9) 28.9(9.0) 33.7(13.8)	28.8(11.7) 28.8(11.6) 28.8(9.6) 28.8(9.6) 28.8(9.6) 28.8(8.9)
-45×80	240	27.8	34.1(6.3) 36.6(9.1)	28.8(2.1) 28.8(1.0)	19.2	28 9(9 0)	28.8(9.6) 28.8(8.9)
20 > 110	420	27.5	36.6(9.1)	28.8(1.0) 28.8(1.3)	19.9	33.7(13.8)	
-30×110	240 420	38.5 38.5	42.1(3.6)	43.8(5.3)	28.9	34.5(5.6)	43.8(14.9)
-40×110	240	41.1	47.6(9.1) 45.7(4.6) 49.7(8.8)	$\begin{array}{ccc} 43.8 & 5.3 \\ 43.8 & 2.7 \end{array}$	29.5 31.5	43.3(13.8) 38.5(7.0)	43.8(14.3) 43.8(12.3)
-45×110	420 240	40.9	42.1(3.6) 47.6(9.1) 45.7(4.6) 49.7(8.8)	43.8(2.9)	31.9	45.6(13.7)	43.8(11.9)
	420	42.0 41.8	46.9(4.9) 50.3(8.5)	28.8(1.3) 43.8(5.3) 43.8(5.7) 43.8(2.7) 43.8(2.9) 43.8(1.8) 43.8(2.0) 15.0(3.3) 15.0(3.7)	32.4 32.7	34.5(5.6) 43.3(13.8) 38.5(7.0) 45.6(13.7) 39.8(7.4) 46.3(13.6)	43.8(11.4)
$60\times60-30\times60$	240	11.7	17.1(5.4)	15.0(3.3)	6.8		
-40×60	420 240	11.3 13.6	22.7(11.4)	15.0(3.3) 15.0(3.7) 15.0(1.4)	6.7	19.3(12.6)	15.0(8.3)
40 / 00	420	13.2	20.6(7.0) 24.6(11.4)	15.0(1.4) 15.0(1.8)	8.2 8.0	15.1(6.9)	15.0(6.8)
-60×60	420 240	16.4	24.1(7.7)	15.0(-1.4)	10.2	18.9(8.7)	15.0(7.0) 15.0(4.8)
-30×80	420 240	15.9	26.6(10.7)	15.0(-0.9)	10.0	21.5(13.5) 18.9(8.7) 23.7(13.7)	15.0(5.0)
80 × 60	420	18.7 18.4	20.6 (10.7) 22.9 (4.2) 30.2 (11.8) 27.5 (6.2) 32.8 (12.0) 32.1 (7.3) 35.5 (11.3)	25.0(6.3) 25.0(6.6) 25.0(3.7)	11.6 11.6	14.9(3.3) 25.7(14.1) 20.1(6.4) 28.6(15.0) 25.3(8.8)	25.0(13.4)
-40×80	240	21.3 20.8	27.5(6.2)	25.0(3.7)	13.7	20.16 6 45	25.0(13.4) 25.0(11.3)
-60×80	420 240	20.8 24.8	32.8(12.0) 32.1(7.3)	25 11(4 2)	136	28.6(15.0)	25.0(11.4)
00 / 00	420	24.0	35.5(11.3)	25.0(0.2)	16.5	25.3(8.8)	25.0(8.5)
-30×110	240	30.7		25.0(0.8) 40.0(9.3)	16.5 16.3 20.7	31.6(15.3) 20.6(-0.1)	25.0(8.7) 40.0(19.3)
-40×110	420 240	30.6 34.0	41.5(10.9) 37.8(3.8)	40.0(9.4)	21.1 23.6	35.3(14.2)	40.0(18.9)
40 \ 110	420	33.8	37.8(3.8) 45.2(11.4)	40.0(6.0)	23.6 23.9	27.6(4.0)	40.0(16.4)
-60×110	240	38.3	AA 1 (5 0)	40.0(6.2) 40.0(1.7) 40.0(2.2)	27.4	39.4(15.5) 34.7(7.3)	40.0(18.9) 40.0(16.4) 40.0(16.1) 40.0(12.6)
$80 \times 80 - 30 \times 60$	420 240	37.8 7.8	48.8(11.0) 6.7(-1.1) 16.7(9.2) 12.9(3.4) 20.2(11.1)	40.0(2.2) 10.0(2.2)	27.5	43.4(15.9)	40.0(12.5)
	420	7.5	16.7(9.2)	10.0(2.2) 10.0(2.5)	4.3		10.0(5.7)
-40×60	240	7.5 9.5	16.7(9.2) 12.9(3.4) 20.2(11.1)	10.0 0.5	$\frac{4.1}{5.3}$	4.9(-0.4)	10.0(5.9) 10.0(4.7)
-80×60	420 240	$\frac{9.1}{14.3}$	20.2(11.1) 22.1(7.8)	10.0(0.9)	5.1	11.7(7.6) 4.9(-0.4) 15.7(10.6) 15.3(6.9) 21.6(13.6)	10.0(4.9)
	420	13.6 12.9	22.1(7.8) 25.5(11.9) 8.9(-4.0)	10.0(-4.3)	8.4 8.0	15.3(6.9)	10 0(1.6)
-30×80	240	12.9 12.6	8.9(-4.0)	10.0(-3.6) 20.0(7.1)	7.4	0. (-1.4)	10.0(2.0) 20.0(12.6)
-40×80	420 240	15.4	22.2(9.6)	20.0(7.4) 20.0(4.6)	7.2	15.7(8.5)	20.0(12.8)
	420	14.9	22.2(9.6) 17.1(1.7) 26.9(12.0) 29.5(7.6) 34.0(13.0)	20.0(5.1)	9.0 8.8	0.b(-2.4) 20 9(12 1)	ZU.0(11.0)
-80×80	240 420	21.9 21.0	29.5(7.6)	20 06 -1 95	13.5	20.3(6.8)	20.0(6.5)
-30×110	240	22.2	14.3(-9.9)	20.0(-1.0) 35.0(12.8)	$13.2 \\ 13.4$	6.6(-2.4) 20.9(12.1) 20.3(6.8) 28.8(15.6) 0. (-13.4)	20.0(12.8) 20.0(11.0) 20.0(11.0) 20.0(11.2) 20.0(6.5) 20.0(6.8) 35.0(21.6)
	420	22.1	30.6(8.5)	35.0(12.9)	13.6	21.5(-13.4)	
-40×110	240	25.8 25.4	30.6(8.5) 23.6(-2.2) 37.0(11.6)	35.0(9.2)	16.0	9.1(-6.9)	35.0(19.0)
-80×110	420 240	34.4	40.5(6.1)	35.0(9.6) 35.0(0.6)	16.1	28.7(12.6) 28.0(5.2)	35.0(19.0) 35.0(18.9) 35.0(12.2)
	420	33.5	40.5(6.1) 46.7(13.2) 13.8(8.7) 14.6(8.5)	35 0(1 5)	22.8 22.6	39.6(17.0)	35.0(12.2) 35.0(12.4)
$60 \times 45 - 30 \times 33.8$ -40×33.8	420 420	5.1 6.1	13.8(8.7) 14.6(8.5)	5.6(0.5)	2.8	12.3(9.5)	5.6(2.8)
-60×33.8	420	7.7	14.6(8.5)	5.6(-0.5) 5.6(-2.1)	3.5 4.5	13.3(9.8)	5.6(2.1)
-30×45	420	8.0	18.4(10.4) 19.5(10.0)	11 2(3 2)	4.5	16 5(12 0)	5.6(1.1) $11.2(6.7)$
-40×45 -60×45	420	9.5	19.5(10.0)	11.2(1.7)	5.6	17.7(12.1)	11.2(5.6)
-30×60	420 420	11.6 13.3	24 5(11 2)	11.2(1.7) 11.2(-0.4) 18.8(5.5)	$\frac{7.1}{9.2}$	18.9(11.8)	11.2(41)
-40×60	420	13.3 15.2	20.6(9.0) 24.5(11.2) 26.0(10.8)	18.8(3.6)	8.2 9.7	14.2(9.7) 16.5(12.0) 17.7(12.1) 18.9(11.8) 21.9(13.7) 23.6(13.9) 25.3(13.5)	18.8(10.6) 18.8(9.1)
-60×60	420	17.8	27.5(9.7)	18.8(1.0)	11.8	25.3(13.5)	18.8(7.0)

表-5 梁対象モデルの剛域長さ

	直交部材(柱)が両側にあり(cタイプ) 直交部材(柱)が片側にあり(dタイ						
T = 1.0	14 E						
モデル名 to Y Do-th Y Dh	材長 (cm)	FEM (cm)	徳広式(-FEM)	RC規準(-FEM)	FEM	徳広式(-FEM)	RC規準(-FEM)
$\frac{\text{tc} \times \text{Dc-tb} \times \text{Db}}{45 \times 60 - 45 \times 45}$	420	10.1	(cm) (cm) 20.0(9.9)	(cm) (cm) 7.5(-2.6)	(cm) 5.9	(cm) (cm) 17.8(11.9)	(cm) (cm) 7.5(1.6)
	870	10 0	21.3(11.3)	7.5(-2.5)	5.8	20 2(14 4)	7.5(1.6) $7.5(1.7)$
-60×45	420	12.0	20.7(8.7)	7.5(-2.5) 7.5(-4.5)	5.8 8.3 8.8	20.2(14.4) 18.6(10.3)	7.5(-0.8)
-80×45	420	12.3	21.3(9.0)	7.5(-4.8)	8.8	19.2(10.4) 23.7(14.0)	7.5(-1.3)
-45×60 -60×60	420 420	15.6 18.0	20.0(11.0)	15.0(-0.6) 15.0(-3.0)	9.7 13.0	23.7(14.0) 24.8(11.8)	15.0(5.3) 15.0(2.0)
	870	18.2	26.6(11.0) 27.6(9.6) 28.8(10.6)	15.0(-3.2)	13.3	27.5(14.2)	15 0(17)
-80×60	420	18.5	28.3(9.8)	15.0(-3.5)	13.9	25.6(11.7)	15.0(1.1)
-45×80 -60×80	420 420	23.7 26.6	35.5(11.8) 36.8(10.2)	25.0(1.3) 25.0(1.6)	15.9 20.0	31.6(15.7) 33.1(13.1)	25.0(9.1) 25.0(5.0)
-80×80	420	27.4	37.8(10.4)	25.0(-2.4)	21.6	34 2(12 6)	25.0(3.4)
4504	870	27.9 8.5	37.8(10.4) 38.9(11.0) 19.1(10.6) 20.9(12.7) 26.8(10.8) 28.5(12.6)	25.0(-2.9) 2.5(-6.0) 2.5(-5.7)	22.2	37.2(15.0) 16.2(11.5) 19.5(14.9)	25.0(2.8) 2.5(-2.2)
$45\times80-45\times45$	420 870	8.5	19.1(10.6)	2.5(-6.0)	4.7 4.6	16.2(11.5)	2.5(-2.2)
-60×60	420	16.0	26.8(10.8)	10.0(-6.0)	11.4		2.5(-2.1) 10.0(-1.4) 10.0(-1.4)
	870	15.9	28.5(12.6)	10.0(-6.0) $10.0(-5.9)$	11.4	26.6(15.2)	10.0(-1.4)
-80×80	420	25.0	31.1(12.1)	20.0(-5.0)	19.2	32.2(13.0)	20.0(0.8)
45×110-45×45	870 420	24.9 7.2	38.6(13.7) 17.6(10.4)	$ \begin{array}{cccc} 20.0(&-4.9) \\ 0.&(&-7.2) \end{array} $	19.5 3.8	36.2(16.7) 13.8(10.0)	20.0(0.5) 0. (-3.8)
*	870	6.6	20 3(13 7)	n (-66)	3.6	18.3(14.7)	0. (-3.6)
-60×60	420	14.3	25.6(11.3)	2.5(-11.8)	10.1	20.4(10.3)	2 5(-7 6)
-80×80	870 420	13.8 22.8	25.6(11.3) 27.9(14.1) 36.0(13.2)	2.5(-11.8) 2.5(-11.3) 12.5(-10.3)	10.0 17.3	25.4(15.4) 29.3(12.0)	2.5(-7.5) 12.5(-4.8)
	870	22.2	38.0(15.8)	12.5(-9.7)	17.2	34.8(17.6) 18.1(10.8) 20.4(13.0) 25.2(11.4) 27.7(13.5)	12.5(-4.7)
$40 \times 60 - 45 \times 45$	420	22.2 11.2	38.0(15.8) 20.3(9.1)	12.5(-9.7) 7.5(-3.7) 7.5(-3.7) 15.0(-3.5)	17.2 7.3	18.1(10.8)	7.5(0.2)
-60×60	870	11.2	21.4(10.2) 27.9(9.4)	7.5(-3.7)	7.4 13.8	20.4(13.0)	7.5(0.1)
00 ^ 00	420 870	18.7	29.0(10.3)	15.0(-3.3) 15.0(-3.7)	142	27 7 13 5	15.0(1.2) 15.0(0.8)
-80×80	420	27.9	38.1(10.2)	25.0(-2.9)	22.3	34.3(14.4)	95 N(9 7)
10 × 90 15 × 15	870	28.4	39.1(10.7)	25.0(-3.4) 2.5(-7.3)	22.9 6.3	37.4(14.5) 16.7(10.4)	25.0(2.1) 25.0(2.1) 2.5(-3.8) 2.5(-3.7) 2.5(-5.4)
$40\times80-45\times45$	420 870	9.8 9.5	19.6(9.8) 21.1(11.6)	2.5(-7.3) 2.5(-7.0)	6.3	19.7(10.4)	2.5(-3.8) 2.5(-3.7)
-60×45	420	11.0	20.4(9.4)	2.5(-8.5)	7.9	17.7(9.8)	2.5(-5.4)
-80×45 -45×60	420	11.3	21.1(9.8)	2.5(-8.8)	8.2	18 4(10 2)	4.3(-3.7)
-60×60	420 420	14.8 16.7	26.1 (11.3) 27.2 (10.5) 28.7 (12.2) 28.1 (11.0) 34.8 (12.5) 36.3 (11.5)	10.0(-4.8) 10.0(-6.7)	9.7 12.3	22.2(12.5) 23.5(11.2)	10.0(0.3) 10.0(-2.3)
	870	16.5	28.7(12.2)	10.0(-6.5)	124	26.9(14.5) 24.5(11.5) 27.6(12.4)	10.0(-2.4)
-80×60	420	17.1	28.1(11.0)	10.0(-7.1)	13.0	24.5(11.5)	10.0(3.0)
-45×80 -60×80	420 420	22.3 24.8	36 3(11 5)	20.0(-2.3) 20.0(-4.8)	15.2 18.7	31.4(12.7)	20.0(4.8) 20.0(1.3)
-80×80	420	25.6	37.5(11.9) 38.8(13.3)	20.0(-5.6)	20.1	32.7(12.6)	20.0(-0.1)
103/110 153/15	870	25.5	38.8(13.3)	20.0(-5.5)	20.3	36.5(16.2)	20.0(-0.3)
$40 \times 110 - 45 \times 45$	420 870	8.5 8.1	18.4(9.9) 20.5(12.4)	0. (-8.5)	5.4 5.3	14.5(9.1) 18.6(13.3)	0. (-5.4) 0. (-5.3)
-60×60	420	15.0	26.2(11.2)	0. (-8.1) 2.5(-12.5)	11.1	21.1(10.0)	2.5(-8.6)
	870	14.6	28.2(13.6)	2.5(-12.1)	11.0	25.7(15.7)	2.5(-8.5)
-80×80	420 870	23.5 22.9	20.5(12.4) 26.2(11.2) 28.2(13.6) 36.6(13.1) 38.3(15.4)	12.5(-11.0) 12.5(-10.4)	18.3 18.2	30.0(11.7) 35.2(17.0)	12.5(-5.8) $12.5(-5.7)$
30×60-45×45	420	12.7	21.0(8.3)	2.5(-12.1) 12.5(-11.0) 12.5(-10.4) 7.5(-5.2) 7.5(-5.3) 15.0(-4.5)	9.4	18.9(9.5)	7 5(-1 9)
	1 870	12.8	21.0(8.3) 21.8(9.0) 28.6(9.1)	7.5(-5.3)	9.6	18.9(9.5) 20.7(11.1) 25.9(10.5)	7.5(-2.1)
-60×60	420 870	19.5 19.8	28.6(9.1) 29.3(9.5)	15.0(-4.5)	15.4 15.8	25.9(10.5)	15.0(-0.4)
-80×80	420	29.1	38.8 9.7	15.0(-4.8) 25.0(-4.1)	24.2	35 3(11 1)	15.0(-0.8) 25.0(0.8)
*	420 870	29.6	39.4(9.8)	25.0(-4.6)	24.9	28.0(12.2) 35.3(11.1) 37.7(12.8)	25.0(0.1)
$30\times80-45\times45$	420	11.5	20.4(8.9)	2.5(-9.0)	8.5	17 77 4 9 9 1	2.5(-6.0)
-60×60	870 420	17.9	21.5(10.2) 28.1(10.2)	2.5(-8.8) 10.0(-7.9)	8.5 14.0	20.2(11.7)	2.5(-6.0) 10.0(-4.0)
	420 870 420	17.8	29.1(11.3)	10.0(-7.8)	14.1	27.4(13.3)	10.0(-4.1)
-80×80	420	27.1 27.1	29.1(11.3) 38.4(11.3) 39.2(12.1)	20.0(-7.1) 20.0(-7.1)	22.3	33.7(11.4)	20.0(-2.3)
$30 \times 110 - 45 \times 45$	870 420	10.4	39. Z(12.1) 19 7(9 3)	0.0(-7.1)	22.6 7.8	20.2(11.7) 24.5(10.5) 27.4(13.3) 33.7(11.4) 37.0(14.4) 15.8(8.0)	20.0(-2.6) 0. (-7.8)
	870	10.1	21.0(10.9)	0 (-10 1)	7.7		0 (-7.7)
-60×60	420	16.4	27.4(11.0)	2.5(-13.9) 2.5(-13.6)	13.0	22.5(9.5)	2.5(-10.5) 2.5(-10.4)
-80×80	870 420	16.1 25.2	28.8(12.7) 37.8(12.6)	$ \begin{array}{c} 2.5(-13.6) \\ 12.5(-12.7) \end{array} $	12.9	26.4(13.5)	$\frac{2.5(-10.4)}{12.5(-8.2)}$
	870	24.7	39.2(12.1) 19.7(9.3) 21.0(10.9) 27.4(11.0) 28.8(12.7) 37.8(12.6) 38.9(14.2)	12.5(-12.2)	20.7	22.5(9.5) 26.4(13.5) 31.3(10.6) 35.8(15.1)	12.5(-8.2) $12.5(-8.2)$

に存在することになるが、それでは実用にならないので、ここでは応力状態に関しては本論で有限要素法解析した応力状態、即ち部材中央点に反曲点があり、せん断力一定の場合とする。剛域長さ ℓ 。に影響する要因としては部材形状のみを取り上げ、材長h、部材幅t。、部材せいD。,直交部材幅t。、およびせいD。を考える。

剛域長さに及ぼす材長の影響は表-4,5に見られるように非常に小さく、材長 $4.2\,\mathrm{m}$ のものを基準にすると柱を対象としたものでは材長 $2.4\,\mathrm{m}$ の場合、剛域長さは増すが、その差は $1.0\,\mathrm{cm}$ 以下であり、梁を対象としたものでは材長 $3.1\,\mathrm{m}$ ~ $8.7\,\mathrm{m}$ の間でその差は $\pm 0.5\,\mathrm{cm}$ 以下のものが殆どであった。このことから算定式を導くに際しては材長を剛域長さに影響する要因から除外し、材長 $4.2\,\mathrm{m}$ の場合の FEM 値を用いることにする。また算定式に汎用性を与えるため以下のように無次元化した変数を用いることにする。

$$\ell'_{s} = \frac{2 \ell_{s}}{D_{b}} \qquad \qquad t_{bc} = \frac{t_{b}}{t_{c}} \qquad \qquad D_{bc} = \frac{D_{b}}{D_{c}} \qquad \qquad D_{tc} = \frac{t_{c}}{D_{c}} \qquad \qquad \cdots \qquad \cdots \qquad (4)$$

表-6は、 ℓ' 。と各変数との関係を示したものである。これによると D_{bc} 、 D_{tc} の値に拘らずいずれの場合も t_{bc} の値が大きくなるにつれて ℓ' 。の値も増加している。また、 D_{tc} の値が違っても ℓ' 。と t_{bc} の関係は近似し、 t_{bc} の値が同じならば D_{tc} の値が変っても ℓ' 。には大きな差は見られない。このことから D_{tc} の値も影響要因から除外し、剛域推定式を導くことにする。

図-4は表-6の値を D_{bc} 毎に、 D_{tc} の値の違いを区別することなくプロットしたものである。これについて最小二乗法により近似式を導く。なお、解析モデルの中には表に示した D_{bc} の値以外のものもあるが、同じ D_{bc} の値に対するデータの数が少なく、これらから導かれる式は外挿点での誤差が大きくなる可能性があるので本論ではFEM値のうち、表-6に示したもの(表-1のモデル名の前に・印を付したもの)のみの値を用いることにした。近似式としては直交部材の幅 t_b が薄くなれば ℓ' 。は零に近づき、逆に厚くなれば1.0に近づくと考え次式の形とした。

$$\ell'_{s}=1-\frac{1}{\{1+a(t_{bc})^{b}\}}$$
(5)

FEM 値より D_{le} 毎に求めた(5)式の係数 a, bを表-7に示す。また、図-4の実線は(5)式の値である。係数 a, bをプロットすると図-5のようになり、これを D_{le} の二次式で近似させると次式を得る。

両側に直交部材がある場合

片側にのみ直交部材がある場合

表-6 剛域長さ ℓ'。と各変数の関係

-				文 部	材が同			場合し	a, c	717)		
. /n	4 /5	A 075	0.500	A 007		bc = t		1 000	1 500	4 550		
<u>b/⊅c</u> .75	tc/Dc	0.375	0.500	0.667	0.889	1,000	1.125	1.333	1.500	1.778	2.000 0.596	2.667
	0,375 0.5					***************	0.494		0.556		0.596 0.571	
	0,563							0,535	0.564			· · · · · · · · · · · · · · · · · · ·
	0,563 0,667 0,75 1.0					0.448	U.498	0.531	· · · · · · · · · · · · · · ·	0.545		
	1.0	0.250	0.303	0.364		0.453 0.457						
0	0 375											0.67
•	0.375 0.5		*************				0.558	***********	0.619		0.650	
	0,563									0.626	0.640	
	0,667 0,75					0.520		0 599	0.617	0.618	•••••	
	1.0	0.314	0.372 0.378 0.356	0.440		0.525						
	1.333		0.356	0.422		0.513						
33	0.5											0,72
	0.667					0.593		0.664		0.686	0.697	
	1.0		0.459	0.521	0.588	0.605						
	1.333		0.443		U.588			·	h d.	タイプ)		
		0.375	直	交 部	材がま	† 側に t bc= t	有る b/ t c	場 合(2 000	2 66
	tc/Dc 0.375	0.375			材がき	十側に	有るb/tc 1.125	場合(1.500	タイプ)	2.000 0.467	2.66
	tc/Dc 0.375 0.5	0.375	直	交 部 0.667	材が月	† 側 に t bc = t 1.000	有るb/tc 1.125 0.324	場 合(1.500 0.409 0.417	1.778		2.66
	tc/Dc 0.375 0.5	0.375	直	交 部 0.667	材が月	† 側 に t bc = t 1.000	有るb/tc 1.125 0.324	場 合(1.500 0.409 0.417	1.778	0.467	2.66
	tc/Dc 0.375 0.5 0.563 0.667 0.75		0.500	交 部 0.667	材が月	† 側 に t bc = t 1.000	有るb/tc 1.125 0.324	場 合(1.500 0.409 0.417	1.778	0.467	2.66
	tc/Dc 0.375 0.5	0.375	0.500	交 部 0.667	材が 月 0.889	† 側 に t bc = t 1.000	有るb/tc 1.125 0.324	場 合(1.500 0.409 0.417	1.778	0.467	2.66
0/Do	tc/Dc 0,375 0,5 0,563 0,667 0,75 1,0 1,333		直 0.500 0,169	交 部 0.667	材が月	t bc = t 1.000 0.261 0.268	有るb/tc 1.125 0.324	場合(1.333 0.379 0.371	1.500 0.409 0.417	0.391	0.467 0.432	
75	tc/Dc 0.375 0.5 0.563 0.667 0.75 1.0 1.333 0.375		直 0.500 0,169	交 部 0.667	0.889	t bc = t 1.000 0.261 0.268 0.267	有るb/tc 1.125 0.324 0.325	場合(1,333 0,379 0,371	1.500 0,409 0.417	1.778	0.467 0.432	
75	tc/Dc 0.375 0.5 0.667 0.75 1.0 1.333 0.375 0.5		直 0.500 0,169	交 部 0.667	0.889	t bc = t 1.000 0.261 0.268 0.267	有るb/tc 1.125 0.324 0.325	場合(1.500 0.409 0.417	0.391	0.467 0.432	
75	tc/Dc 0.375 0.5 0.667 0.75 1.0 1.333 0.375 0.5 0.667 0.75	0.138	0.500 0.169 0.164	交部 0.667 0.205	0.889	t bc = t 1.000 0.261 0.268 0.267	有るb/tc 1.125 0.324 0.325	場合(1.500 0.409 0.417	0.391	0.467 0.432	2.66
75	tc/Dc 0,375 0,5 0,667 0,75 1,0 1,333 0,375 0,5 0,563 0,667 0,75 1,0	0.138	0.500 0.169 0.164	交部 0.667 0.205	0.889	t bc = t 1.000 0.261 0.268 0.267	有るb/tc 1.125 0.324 0.325	場合(1.500 0.409 0.417	0.391	0.467 0.432	
75	tc/Dc 0.375 0.5 0.667 0.75 1.0 1.333 0.375 0.5 0.667 0.75 1.0	0.138	0.500 0.169 0.164	交部 0.667 0.205	0.889	t bc = t 1.000 0.261 0.268 0.267	有るb/tc 1.125 0.324 0.325	場合(1,333 0,379 0,371	1.500 0.409 0.417	0.391	0.467 0.432	
.0	tc/Dc 0.375 0.5 0.667 0.75 1.0 1.333 0.375 0.5 0.667 0.75 1.0	0.138	0.500 0.169 0.164	交部 0.667 0.205	0.889	tbc=t 1.000 0.261 0.268 0.267 0.329 0.333 0.315	有るb/tc 1.125 0.324 0.325	場合(1.333 0.379 0.371	1.500 0.409 0.417 0.468	0.391	0.467 0.432	0.55
75	tc/Dc 0.375 0.5 0.563 0.667 1.75 1.0 1.333 0.375 0.563 0.667 1.0 1.333	0.138	0.500 0.169 0.164 0.219 0.224 0.202	交部 0.667 0.205 0.268 0.248	0.889	tbc=t 1.000 0.261 0.268 0.267 0.329 0.333 0.315	有るb/tc 1.125 0.324 0.325	場合(1.333 0.379 0.371	1.500 0.409 0.417 0.468	0.391	0.467 0.432	0.55
.0	tc/Dc 0.375 0.5 0.667 0.75 1.0 1.333 0.375 0.5 0.667 0.75 1.0	0.138	0.500 0.169 0.164	交部 0.667 0.205 0.268 0.248	0.889	tbc=t 1.000 0.261 0.268 0.267 0.329 0.333 0.315	有るb/tc 1.125 0.324 0.325	場合(1.333 0.379 0.371	1.500 0.409 0.417 0.468	0.391	0.467 0.432	0.55

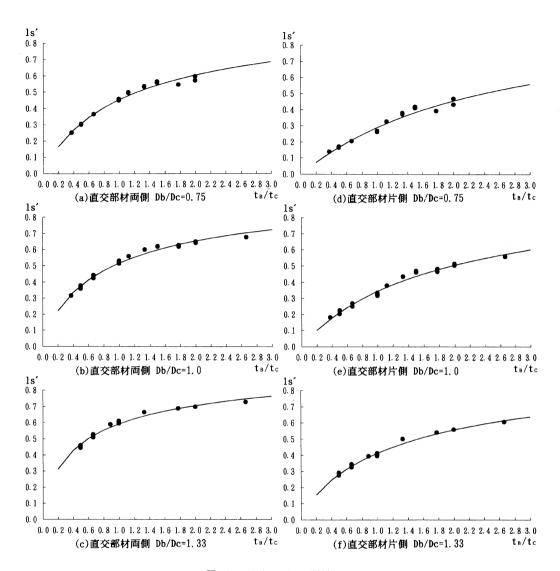


図-4 ℓ'sとt₀/t₀の関係

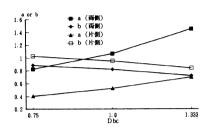


図-5 係数a, bとD_{bc}の関係

表-7 係数aおよびb

D bc	0.75	1.0	1.333
両a	0.8262	1.0664	1.4505
側 b	0.8864	0.8205	0.7218
片a	0.4082	0.5251	0.7011
側 b	1.0306	0.9545	0.8378

$$\begin{array}{c} a = 0.\ 135 + 0.\ 287\ (D_{bc}) + 0.\ 103\ (D_{bc})^2 \\ b = 1.\ 200 - 0.\ 167\ (D_{bc}) - 0.\ 078\ (D_{bc})^2 \end{array} \right\} \qquad \cdots \cdots (7)$$

(4)~(7)式を用いて算定した剛域長さを表-8,9の提案式の欄にFEM値との差と共に示す。なお、同表には柱の負担せん断力も示した。同表に見られるように推定式を導くのに用いなかったモデル(モデル名の前に・印を付してないもの)をも含めて、本論の提案式の値とFEM値との差は大きなものでも±2 cm以内であり、前述の既往の式と比べてFEM値との近似度は良く、推定式としては十分な精度であると言える。また、本論での解析モデルは通常用いられている部材断面の範囲を包含しており、実用式として十分対応し得ると考えられる。

表-8 柱対象モデル提案式の剛域長さ

						せん脚		位[1/0	
		直交部材质	(両側)	こあり(<u>a タイプ)</u>	直交部材			
モデル名	材長	せん断力	FEM Ł	是案式(FEM-提案)	せん断力	FEM B	B案式(I	'EM-提案)
$tc \times Dc - tb \times Db$	(cm)	Q(×δE)	(cm)	(cm)	(cm)	Q(×δE) (cm)	(cm)	(cm)
$45\times45-30\times60$	240	0.41947	16.0	15.5	(0.5)	0.36196	10.3	10.0	(0.3)
40.400	420	0.07017	15.7	45.0	(0.2)	0.06469	10.3	((0.3)
-40×60	240 420	0.44172 0.07218	17.9	17.3	(0.6)	0.37658	11.9	11.7	(0.2)
-45×10	240	0.07218	17.6 18.6	17.9	(0.3) (0.7)	0.06615	11.8 12.4	12.4	$\left\{ \begin{array}{c} 0.1 \\ 0. \end{array} \right\}$
•	420	0.07289	18.3	17.0	0.4	0.06666	12.3	12.4	(-0.1)
-30×80	240	0.53296	24.7	24.6	(0.1)	0.43234	17.1	17.1	(0.)
	420	0.08023	24.5		(-0.1)	0.07175	17.2	((0.1)
-40×80	240	0.56986	27.0	26.6	(0.4)	0.45706	19.2	19.0	(0.2)
-45×80	420 240	0.08311 0.58339	26.7 27.8	27.4	$\left(\begin{array}{c}0.1\\0.4\end{array}\right)$	0.07396	19.2 19.9	19.8	$\{\begin{array}{c} 0.2 \\ 0.1 \end{array}\}$
40 × 00	420	0.08413	27.5	41.4	\ 0.1 \	0.07474	19.9	19.0	0.1
-30 ×110	240	0.81390	38.5	39.9	(-1.4)	0.60388	28.9	31.0	(- 2 .1)
	420	0.10084	38.5		(-1.4)	0.08688	29.5	((-1.5)
-40×110	240	0.88792	41.1	42.0	(-0.9)	0.65256	31.5	32.3	(-0.8)
-45 V 11A	420 240	0.10518	40.9	40 0	(-1.1)	0.09039	31.9	00.0	(-0.4)
-45×110	420	0.91531 0.10672	42.0 41.8	42.8	(-0.8) (-1.0)	0.67041	32.4 32.7	32.8	(-0.4) -0.1
60×60-30×60	240	1.08220	11.7	11.2	$\overline{0.5}$	0.96357	6.8	6.4	(-0.1)
•	420	0.19949	11.3		(0.1)	0.18668	6.7	V.7 ((0.3)
-40×60	240	1.13623	13.6	13.0	(0.6)	0.99545	8.2	7.9	(0.3)
	420	0.20502	13.2		(0.2)	0.19023	8.0	((0.1)
-60×60	240 420	1.21838 0.21325	16.4	15.5	(0.9)	1.04480	10.2	10.3	(-0.1)
-30×80	240	1.29130	15.9 18.7	18.4	(0.4)	0.19564 1.08189	10.0 11.6	11.2	(-0.3)
•	420	0.22129	18.4	10.4	(0. 3	0.20030	11.6	11.2	(0.4) (0.4)
-40×81	240	1.38263	21.3	20.7	(6.6)	1.13711	13.7	13.3	(0.4)
•	420	0.22975	20.8		(0.1)	0.20608	13.6		(0.3)
-60×80	240	1.51875	24.8	23.9	(0.9)	1.22029	16.5	16.5	(0.)
-30×110	420 240	0.24189 1.79018	24.2 30.7	01 6	(0.3) (-0.9)	0.21453	16.3	01.0	(-0.2)
30 × 110	420	0.26758	30.6	31.6	(-1.0)	1.36175	20.7 21.1	21.6	(-0.9 (-0.5)
-40×110	240	1.97106	34.0	34.4	(-0.4)	1.47067	23.6	24.1	(-0.5)
	420	0.28133	33.8		(-0.6)	0.24065	23.9	. ((-0.2)
-60×110	240	2.23811	38.3	38.2	(0.1)	1.63144	27.4	27.8	(-0.4)
80×80-30×60	420	0.30041	37.8		(-0.4)	0.25464	27.5		(-0.3)
90 × 90-30 × 90	240 420	2.74623 0.56655	7.8 7.5	7.7	$(0.1) \\ (-0.2)$	2.53981	4.3	3.9	0.4
-40×60	240	2.85185	9.5	9.2	(0.3)	0.54079 2.59711	4.1 5.3	5.0	$\{ \begin{array}{c} 0.2 \\ 0.3 \end{array} \}$
•	420	0.57925	9.1	0.2	(-0.1)	0.54808	5.1	3.0	(0.1)
-80×60	240	3.17988	14.3	13.5	(8.0)	2.77980	8.4	8.4	\ 0.1 \
00.400	420	0.61729	13.6		(0.1)	0.57085	8.0	((-0.4)
-30×80	240 420	3.08002	12.9	12.7	(0.2)	2.71670	7.4	6.8	(0.6)
-40×80	240	0.60820 3.26027	12.6 15.4	14.9	(-0.1) (0.5)	0.56435 2.81598	7.2 9.0	Q E /	(0.4)
•	420	0.62870	14.9	17.0	\ 0.3 \	0.57669	8.8	8.5	$\{ \begin{array}{c} 0.5 \\ 0.3 \end{array} \}$
-80×80	240	3.80457	21.9	20.7	(1.2)	3.12308	13.5	13.7	(-0.2)
•	420	0.68722	21.0		(0.3)	0.61345	13.2	10	(-0.5)
-30×110	240	3.83991	22.2	22.7	(-0.5)	3.11722	13.4	13.3	(0.1)
-40×110	420 240	0.69840 4.18990	22.1 25.8	25.8	(-0.6)	0.61719	13.6	15.0	(0.3)
40 \ 110	420	0.73402	25.4	40.0	(0.) (-0.4)	3.31002 0.63988	16.0 16.1	15.9	$\{ \begin{array}{c} 0.1 \\ 0.2 \end{array} \}$
-80×110	240	5.22817	34.4	33.4	(1.0)	3.89074	22.8	23.2	(-0.4)
	420	0.83065	33.5		(0.1)	0.70369	22.6	20.2	(-0.6)
• $60 \times 45 - 30 \times 33.8$	420	0.08013	5.1	5.2	(-0.1)	0.07755	2.8	2.8	(0.)
-40×33.8		0.08137	$\frac{6.1}{7.7}$	6.1	(0.,)	0.07831	3.5	3.6	(-0.1)
-60×33.8 -30×45	420 420	0.08324 0.08362	7.7 8.0	7.6 8.4	$\begin{pmatrix} 0.1 \\ -0.4 \end{pmatrix}$	0.07949	4.5	4.8	(-0.3)
• -45×45	420	0.08543	9.5	9.7	(-0.4) (-0.2)	0.07954	4.5 5.6	4.8 (5.9 ((-0.3) (-0.3)
-60×45	420	0.08805	11.6	11.6	(0.")	0.08251	7.1	7.7	(-0.6)
-30×60	420	1.09033	13.3		(-0.5)	0.08386	8.2	8.4	(-0.2)
· -40×60	420	0.09299	15.2	15.5	(-0.3)	0.08575	9.7	10.0	(-0.3)
-60×60	420	0.09671	17.8	17.9	(-0.1)	0.08843	11.8	12.4 ((-0.6)

表-9 梁対象モデル提案式の剛域長さ

		20	26/12/	C) / DEX DOOM		望位 [1/cm]
		直交部材が	べ両側に	こあり(cタイプ)	直交部材が片側	にあり(dタイプ)
モデル名	材長	せん断力	FEM 技	是案式(FEM-提案)	せん断力 FEM	提案式(FEM-提案)
$tc \times Dc - tb \times Db$	(cm)	Q(×δE)	(cm)	(cm) (cm)	$Q(\times \delta E)$ (cm)	(cm) (cm)
$\bullet 45 \times 60 - 45 \times 45$	420	0.14686	10.1	10.1 (0.)	0.13831 5.9	$6.4 \left(-0.5 \right)$
• -60×45	870 420	0.01626 0.15089	10.0 12.0	(-0.1) 11.6 (0.4)	0.01580 5.8 0.14324 8.3	(-0.6) 7.9 (0.4)
• -80 × 45	420	0.15157	12.3	13.0 \ -0.7 \	0.14418 8.8	9.4 (-0.6)
 -45 × 60 	420	0.15917	15.6	15.5 (0.1)	0.14607 9.7	10.3 (-0.6)
-60×60	420 870	0.16488 0.01721	18.0 18.2	$17.3 \left\{ \begin{array}{c} 0.7 \\ 0.9 \end{array} \right\}$	0.15321 13.0 0.01663 13.3	12.2 (0.8)
• -80×60	420	0.16627	18.5	19.1 (-0.6)	0.15531 13.9	14.3 (-0.4)
• -45 × 80	420	0.17997	23.7	23.9 (-0.2)	0.15980 15.9	16.5 (-0.6)
-60×80 -80×80	420 420	0.18800 0.19064	26.6 27.4	26.1 (0.5) 28.1 (-0.7)	0.16993 20.0 0.17409 21.6	19.0 (1.0) 21.5 (0.1)
-00 ^ 00	870	0.13004	27.9	(-0.2)	0.01771 22.2	21.3 (0.7)
45×80-45×45	420	0.32327	8.5	9.0 (-0.5)	0.30675 4.7	5.4 (-0.7)
	870	0.03706	8.2	(-0.8) 15.4 (0.6)	0.03615 4.6 0.33641 11.4	(-0.8) 10.5 (0.9)
• -60×60	420 870	0.35952	16.0 15.9	$15.4 \{ 0.6 \} $	0.33641 11.4 0.03790 11.4	(0.9)
-80×80	420	0.41042	25.0	25.5 (-0.5)	0.37664 19.2	19.0 (0.2)
45×110-45×45	870 420	0.04169	24.9 7.2	$\frac{(-0.6)}{8.0(-0.8)}$	0.04009 19.5 0.72317 3.8	$\frac{(0.5)}{4.6(-0.8)}$
40 4 110-40 4 40	870	0.75547	6.6	(-1.4)	0.72317 3.6	(-1.0)
-60×60	420	0.83086	14.3	13.7 (0.6)	0.78510 10.1	8.9 (1.2)
-80×80	870 420	0.09710	$\begin{array}{c} 13.8 \\ 22.8 \end{array}$	$22.8 \begin{pmatrix} 0.1 \\ 0. \end{pmatrix}$	0.09456 10.0 0.86571 17.3	(1.1)
-00 ^ 00	870	0.33372	22.2	(-0.6)	0.09941 17.2	(0.7)
$\cdot 40 \times 60 - 45 \times 45$	420	0.13264	11.2	10.7 (0.5)	0.12546 7.3	7.0 (0.3)
• -60×60	870 420	0.01457	11.2 18.5	(0.5) 17.3 (0.7)	0.01419 7.4 0.13781 13.8	
-00 × 00	870	0.01536	18.7	(0.9)	0.01487 14.2	
• -80×80	420	0.17063	27.9	28.9 (-1.0)	0.15650 22.3	22.5 (-0.2)
40×80-45×45	870 420	0.01645	28.4 9.8	9.6(0.2)	0.01582 22.9 0.27845 6.3	$\frac{(0.4)}{6.0(0.3)}$
	870	0.03325	9.5	(-0.1)	0.03250 6.2	(0.2)
-60×45	420	0.29759	11.0	11.0 (0.)	0.28484 7.9	
-80×45 -45×60	420	0.29849	11.3 14.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.28597 8.2 0.29217 9.7	
· -60×60	420	0.32252	16.7	16.2 (0.5)	0.30286 12.3	
	870	0.03491	16.5	(0.3)	0.03391 12.4	
-80×60 -45×80	420	0.32457	17.1 22.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30579 13.0 0.31549 15.2	
· -60×80	420	0.36329	24.8	24.2 (0.6)	0.33214 18.7	17.4 (1.3)
• -80 × 80	420	0.36786	25.6	26.4 (-0.8)	0.33899 20.1	20.1 (0.)
40×110-45×45	870 420	0.03721	25.5 8.5	(-0.9) 8.6 (-0.1)	0.03586 20.3 0.65644 5.4	
40 / 110 40 / 40	870	0.08300	8.1	(-0.5)	0.08142 5.3	
-60×60	420	0.74602	15.0	14.5 (0.5)	0.70706 11.1	
-80×80	870 420	0.08678	14.6 23.5	(0.1) 23.9 (-0.4)	0.08463 11.0 0.77973 18.3	
	870	0.09197	22.9	(-1.0)	0.08896 18.2	(0.6)
$\bullet 30 \times 60 - 45 \times 45$	420	0.10165	12.7	12.1 (0.6)	0.09690 9.4	
• -60×60	870 420	0.01105	12.8 19.5	(0.7)	0.01081 9.6 0.10574 15.4	
	870	0.01160	19.8	(0.)	0.01128 15.8	(0.7)
• -80×80	420 870	0.13039	29.1	30.7 (-1.6)	0.12085 24.2 0.01204 24.9	
$30\times80-45\times45$	420	0.01245	29.6 11.5	11.0 (0.5)	0.01204 24.3	7 2 (1 9)
	870	0.02525	11.3	11.0 (0.5)	0.02476 8.5	(1.2)
-60×60	420 870	0.24613	17.9 17.8	$18.1 \left(\begin{array}{c} -0.2 \\ -0.3 \end{array} \right)$	0.23282 14.0 0.02575 14.1	
• -80×80	420	0.02041	27.1	28.5 (-1.4)	0.26257 22.3	
	870	0.02822	27.1	(-1.4)	0.02732 22.6	(-0.3)
$30\times110-45\times45$	420 870	0.52587	10.4 10.1	10.1 (0.3)	0.50783 7.8 0.06208 7.7	
-60×60	420	0.57038	16.4	16.5 (-0.1)	0.54402 13.0	11.7 (1.3)
	870	0.06575	16.1	(-0.4)	0.06431 12.9	(1.2)
-80×80	420 870	0.64421	25.2 24.7	$26.2 \begin{pmatrix} -1.0 \\ -1.5 \end{pmatrix}$	0.60493 20.7	
		1 0.0000	41.1			

3. 有限要素法解析結果に基づく剛域長の適合性について

3. 1 解析モデルおよび解析方法

ここではラーメン架構を2次元有限要素法解析し、その結果と剛域を取入れた既往の解析法との比較を行い、有限要素法解析結果に基づいて求められる剛域長さの適合性について検討する。

解析モデルは図-6に示すような左右対称な3スパンで、1, 3, 5, 7, 9層の平面ラーメンで ある。スパン長は415cm -600cm -415cm としたもの (4.15-6. -4.15モデル)と全スパン600cm としたもの (6.-6.-6. モデル)の2種で、前者では柱断面 55×55 cm²、梁断面 36×75 cm²、基礎梁 断面 36×80 cm²とし、後者では柱断面 80×80 cm²、梁断面は総て 40×110 cm²とした。階高(梁材軸中心間距離)はいずれも360 cm とした。

(1) 有限要素法による解析

有限要素法解析では基礎梁材軸(図-6のB-B'線上)の全節点のX方向およびY方向変位を拘束し、各階梁材軸(図-6のA-A'線上)に単位の水平力を作用させた。なお、水平力は各節点の負担幅に応じて節点力として配分した。単位要素は自由度8の長方形要素を用い、分割は表-10のようにした。要素剛性は部材の厚さに比例するとした。ヤング係数Eは単位とし、ポアソン比は1/6とした。

(2) たわみ角法による解析

たわみ角法による解析ではラーメン線を材軸に取り、水平力は各階とも単位 (P=1) とし、1階柱脚を固定とした。この解法では通常の曲げ変形のみを考慮した場合と、RC規準式による剛域を取入れ、曲げおよびせん断変形を考慮した場合について解析した。解析に用いた材端モーメントと回転角および部材角との関係式は次のようである。

$$M_{AB} = k \left(a\varphi_A + b\varphi_B + c\psi \right)$$

$$M_{BA} = k \left(b\varphi_A + a'\varphi_B + c'\psi \right)$$
(8)

ここに φ_A , φ_B : A端およびB端の回転角 (2EK。 θ_A) および (2EK。 θ_B)

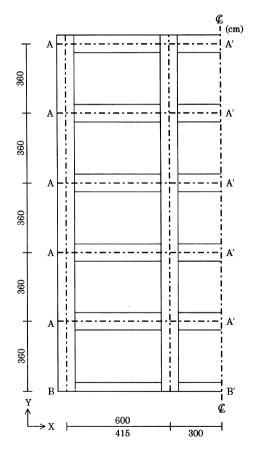
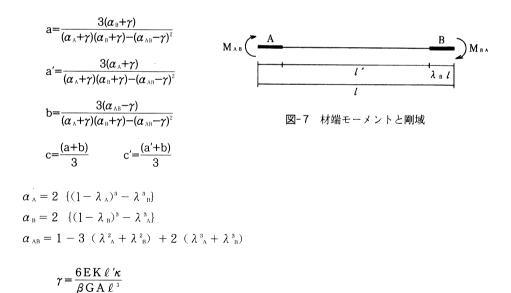


図-6 ラーメンモデル

表-10 要素分割一覧

(要素長さcm×分割数)


モデノ	レ名及び部位	4.15-64.15 モデル	666.モデル		
X方向	柱	$9. \times 1, 9.25 \times 4, 9. \times 1$	10.×8		
分割	4.15スパン内法	18.×20			
	6.00 スパン内法	18.×10, 18.5×10, 18.×10	$18. \times 9$, 19.6×10 , $18. \times 9$		
Y方向	基礎梁	10.×4	11.×5		
分割	1~9階梁	9.35×2, 14.25×10, 14.×5	10.×11		
	1階梁間内法	14.×5, 14.25×10, 14.×5	$15. \times 4$, 16.25×8 , $14. \times 5$		
	2~9階梁間内法	14.×5, 14.5×10, 14.×5	15.×4, 16.25×8, 14.×5		

ψ:部材角 (-6EK₀R) k:剛比 K₀:標準剛度

剛域を考慮しない場合

$$a = a' = 2$$
. $b = b' = c = c' = 1$.

剛域を考慮した場合

 $\lambda_{\Lambda} \cdot \ell$, $\lambda_{B} \cdot \ell$: 材端 A および B の 剛域長さ , β : せん断剛性低減比 (本論 1.0) κ : せん断変形に関する形状係数 (本論 1.2) , ℓ : 材長 , ℓ ': 剛域を除いた材長 ,

 $E: \forall \nu$ 任人を表し、 $G: \forall \nu$ を表し、 $G = E/2(1 + \nu)$

ν: ポアソン比(本論 1/6), I: 断面二次モーメント, A: 断面積

(3) 剛性法による解析

剛性法による解析では部材伸縮,せん断変形および剛域を考慮し,水平力は各柱の負担幅に応じて配分し,各階毎に単位の水平力 (P=1) となるように作用させた。剛域としてはRC規準式による剛域および有限要素法解析結果に基づく剛域を用いた。その他の解析条件はたわみ角法の場合と同様である。解析に用いた単位部材の剛性マトリックスは次のようである。

$\begin{bmatrix} f_{x_1} \end{bmatrix}$	$\left\{\begin{array}{c} AE \\ \ell \end{array}\right.$	0	0	$\frac{-AE}{\ell}$	0	0	$\int \int $	
f _{y1}	0	$\frac{6\mathrm{EI}(\mathrm{c+c'})}{\ell^{3}}$	$\frac{-6EI}{\ell^{\frac{2}{}}}$	0	$\frac{-6\mathrm{EI}(\mathrm{c+c'})}{\ell^3}$	$\frac{-6 \text{EIc'}}{\ell^{\frac{2}{3}}}$	\mathbf{U}_{y_1}	
M ₁	0	$\frac{-6 \mathrm{EIc}}{\ell^{2}}$	$\frac{2\mathrm{EIa}}{\ell}$	0	$\frac{6 \mathrm{EIc}}{\ell^{2}}$	$\frac{2 \text{EIb}}{\ell}$	θ_1	(0)
f _{x 2}	$\frac{-AE}{\ell}$	0	0	$rac{ ext{AE}}{\ell}$	0	0	$\int_{\mathbb{R}^2}$	(9)
f _{y1}	0	$\frac{-6\mathrm{EI}(\mathrm{c+c'})}{\ell^3}$	$\frac{6 \mathrm{EIc}}{\ell^{\frac{2}{2}}}$	0	$\frac{-6EI(c+c')}{\ell^3}$	$\frac{6EIc'}{\ell^2}$	U_{y_2}	
$\left[\begin{array}{c} M_{\circ} \end{array}\right]$	0	$\frac{-6 \mathrm{EIc}'}{\ell^{2}}$	$\frac{2\mathrm{Eb}}{\ell}$	0	$\frac{6 \mathrm{Elc}'}{\ell^{2}}$	$\frac{2 \mathrm{EIa'}}{\ell}$	$\left\ _{\theta_{2}} \right\ $	

ここに,

f:力

 $M: \mathtt{E} - \mathtt{V} \mathtt{V} \mathsf{h}$

u:変位 θ:回転角

x, y: 方向

1, 2: 材端位置

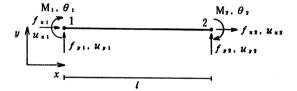


図-8 節点力と節点変位の関係

その他は前述(2)の場合と同様である。(図-8参照)

上記のラーメン解析に用いた剛域長さを提案式の値と共に表-11に示す。表中,提案式の欄は前章で導いた式による値,FEM値の欄は前章で述べたと同様にして,それぞれの部材について有限要素法解析結果に基づいて求めた値,RC規準の欄はRC規準式によって求めた値である。これによるとラーメン解析に用いたFEM値と提案式の値との差は極めて小さいことから,ここではFEM値を用いてラーメン解析を行っているが,提案式による値を用いた場合にもそれと大差ない結果が得られると考える。

FEM 値とRC 規準式の値を比べると両モデル共、梁材ではFEM 値の方が大きく、逆に柱材で

表-11 ラーメン解析に用いた剛域長さ

[cm]

	直交部材両側にあり			直交部	直交部材片側にあり		
モデル名及び部位	提案式	FEM値	RC規準	提案式	FEN値	RC規準	
4.15-64.15モデル							
梁 材長 415cm	14.8	15.0	8.8	10.4	11.1	8.8	
600cm	14.8	14.7	8.8	10.4	11.0	8.8	
柱 最下階柱脚以外	19.5	19.0	23.8	12.6	12.2	23.8	
最下階柱脚	21.7	21.0	26.3	14.2	13.8	26.3	
666.モデル							
梁 材長 600cm	23.9	23.1	12.5	17.6	18.2	12.5	
柱 全階	25.8	25.6	35.0	15.9	16.1	35.0	

ものと思われる。また、両モデル共、外柱の剛域長さがFEM値とRC規準式の値で大きく異ることから、両剛域を用いた場合の解析結果の差異は外柱に現れることが予想される。

3.2 解析結果の検討

(1) 水平変位について

表-12に各階梁材軸と内柱材軸交点の水平変位を示す。FEMの欄は有限要素法解析値,その他の欄はそれぞれの解法による値である。たわみ角法の値は各階の部材角に階高を乗じ,下階から上階に向って和を取ったものである。() 内はFEM値に対する各解法による値の比である。

先ず,たわみ角法で剛域を考慮しない場合の比について見ると,両モデル共ラーメンの層数に 拘らず1.0より相当大きく,また $5\sim9$ 層のものでは階によって比の値は変化し,その変化の仕方 は4.15-6.-4.15モデルと6.-6.-6.-6.

たわみ角法でRC 規準式による剛域を取入れた場合の比について見ると, 前述の剛域を考慮しないものよりも1.0に近い値となっているが, モデルの違い, 層数の違いあるいは同じラーメンであっても階の違いによって差が見られる。

このようにたわみ角法で求められる水平変位とFEM値との比はラーメン部材の諸元の違いによって変動する。従って、たわみ角法で水平変位(水平剛性)を精度良く求めることは難かしいと言える。

一方,部材伸縮等を考慮した剛性法による解析結果について見ると、RC規準式による剛域を取入れたものでは1階部分を除けば、両モデル共、層数が変ってもFEM値との比の値は1.04~1.09と近似している。また、モデルの違いによって比の値に若干の差も見られるが、全体的に見るとたわみ角法の場合よりもFEM値に近似していると言える。しかし、1階とそれ以外の階で比の値に幾分差が見られることから、RC規準の剛域の取り方に問題があると思われる。

以上のものに比べて、有限要素法解析結果に基づいて求めたFEM剛域を用いたものではRC

表-12 水平変位

					単位(×P/Ec)[1/cm]
層	階		たわみり	4.15-64.15 モラ も 法	デル 剛性 法
数	数	FEM	M域なし(/FEM)	RC剛域(/FEM)	RC剛域(/FEM) FEM剛域(/FEM)
1	1	1.2	1.6 (1.33)	1.2 (1.00)	1.2 (1.00) 1.3 (1.08)
3	1 2 3	4.2 8.3 10.6	5.4 (1.29) 10.5 (1.27) 13.2 (1.25)	4.1 (0.98) 8.3 (1.00) 10.6 (1.00)	4.2 (1.00) 4.5 (1.07) 8.6 (1.04) 9.0 (1.08) 11.1 (1.05) 11.5 (1.08)
5	1 2 3 4 5	7.2 15.7 22.5 27.3 30.2	9.2 (1.28) 19.5 (1.24) 27.4 (1.22) 32.7 (1.20) 35.4 (1.17)	7.1 (0.99) 15.6 (0.99) 22.2 (0.99) 26.7 (0.98) 29.0 (0.96)	7.2 (1.00) 7.7 (1.07) 16.3 (1.04) 16.9 (1.08) 23.5 (1.04) 24.3 (1.08) 28.7 (1.05) 29.5 (1.08) 31.7 (1.05) 32.5 (1.08)
7	1 2 3 4 5 6 7	10.3 23.2 34.7 44.4 52.0 57.9 61.7	13.0 (1.26) 28.5 (1.23) 41.7 (1.20) 52.3 (1.18) 60.3 (1.16) 65.6 (1.13) 68.3 (1.11)	10.0 (0.97) 22.9 (0.99) 34.0 (0.98) 42.8 (0.96) 49.5 (0.95) 53.9 (0.93) 56.2 (0.91)	10.3 (1.00) 11.0 (1.07) 24.1 (1.04) 25.0 (1.08) 36.4 (1.05) 37.5 (1.08) 46.8 (1.05) 47.9 (1.08) 55.0 (1.06) 56.2 (1.08) 61.0 (1.05) 62.4 (1.08) 65.1 (1.06) 66.3 (1.07)
9	1 2 3 4 5 6 7 8	13.4 30.8 47.2 62.0 75.0 86.1 95.7 102.3	16.8 (1.25) 37.5 (1.22) 56.0 (1.19) 71.9 (1.16) 85.2 (1.14) 95.8 (1.11) 103.7 (1.08) 109.0 (1.07) 111.7 (1.04)	13.0 (0.97) 30.2 (0.98) 45.7 (0.97) 59.0 (0.95) 70.1 (0.93) 79.0 (0.92) 85.6 (0.89) 90.1 (0.88) 92.3 (0.86)	13.5 (1.01) 14.4 (1.07) 32.1 (1.04) 33.2 (1.08) 49.6 (1.05) 50.9 (1.08) 65.4 (1.05) 66.9 (1.08) 79.2 (1.06) 80.8 (1.08) 91.0 (1.06) 92.7 (1.08) 100.7 (1.05) 102.4 (1.07) 108.1 (1.06) 109.8 (1.07) 113.4 (1.06) 115.1 (1.07)
				666. モデノ	
1	1	0.31	0.40 (1.29)	0.29 (0.94)	0.29 (0.95) 0.34 (1.09)
3	1 2 3	1.08 2.22 2.85	1.39 (1.29) 2.88 (1.30) 3.70 (1.30)	1.04 (0.96) 2.26 (1.02) 2.96 (1.04)	1.06 (0.98) 1.17 (1.08) 2.30 (1.04) 2.43 (1.10) 3.03 (1.06) 3.16 (1.11)
5	1 2 3 4 5	1.88 4.20 6.07 7.37 8.11	2.42 (1.29) 5.43 (1.29) 7.80 (1.29) 9.40 (1.28) 10.23 (1.26)	1.83 (0.97) 4.31 (1.03) 6.30 (1.04) 7.64 (1.04) 8.36 (1.03)	1.87 (0.99) 2.04 (1.08) 4.42 (1.05) 4.63 (1.10) 6.50 (1.07) 6.71 (1.11) 7.96 (1.08) 8.17 (1.11) 8.80 (1.09) 9.00 (1.11)
7	1 2 3 4 5 6 7	2.69 6.23 9.39 12.02 14.08 15.56	3.44 (1.28) 7.98 (1.28) 11.94 (1.27) 15.12 (1.26) 17.52 (1.24) 19.11 (1.23) 19.95 (1.21)	2.62 (0.97) 6.37 (1.02) 9,68 (1.03) 12.36 (1.03) 14.37 (1.02) 15.72 (1.01) 16.43 (1.00)	2.69 (1.00) 2.92 (1.08) 6.57 (1.05) 6.86 (1.10) 10.10 (1.08) 10.39 (1.11) 13.03 (1.08) 13.31 (1.11) 15.33 (1.09) 15.60 (1.11) 16.98 (1.09) 17.25 (1.11) 18.00 (1.09) 18.26 (1.11)
9	1 2 3 4 5 6 7 8	3.51 8.29 12.79 16.80 20.28 23.21 25.57 27.35 28.56	4.47 (1.27) 10.54 (1.27) 16.08 (1.26) 20.86 (1.24) 24.84 (1.22) 28.03 (1.21) 30.42 (1.19) 32.01 (1.17) 32.85 (1.15)	3.41 (0.97) 8.43 (1.02) 13.07 (1.02) 17.09 (1.02) 20.44 (1.01) 23.12 (1.00) 25.13 (0.98) 26.47 (0.97) 27.19 (0.95)	3.51 (1.00) 3.80 (1.08) 8.76 (1.06) 9.12 (1.10) 13.77 (1.08) 14.13 (1.11) 18.25 (1.09) 18.60 (1.11) 22.12 (1.09) 22.46 (1.11) 25.37 (1.09) 25.70 (1.11) 27.98 (1.09) 28.30 (1.11) 29.94 (1.09) 30.25 (1.11) 31.26 (1.09) 31.57 (1.11)

剛域を用いた場合と同様、モデルの違いによって比の値に若干差も見られるが、同じモデル毎では層数が変ってもあるいは階が違っても比の値は1.07~1.08, 1.08~1.11と安定した値となっている。なお、ラーメンの有限要素法解析は二次元で行っているため柱と梁接合部での剛性が必ずしも適切に評価されず幾分過大に見積もられていること、有限要素法解析値の変位は分割の影響を受け易いこと等を考えると、本論のFEM値は実際のものより数%小さく算出されているものと考えられる。従って、実際のものとの比は上記のものより小さくなり、FEM剛域を取入れた剛性法では表中の比の値以上に精解を与えていると考えられる。

(2) 柱端モーメントについて

表-13~16に柱端モーメントを示す。有限要素法解析の曲げモーメント(FEMの欄)は各断面において節点力と材軸までの距離の積和として求められ、表の値は柱・梁接合フェイスの値から直線補間して求めた柱・梁材軸交点の値である。()内はFEM値に対する各解法による値の比である。

先ず剛域を考慮しないたわみ角法の値について見ると、表-13, 15に見られるように外柱では FEM 値との比はいずれも1.0より大きく、かつモデル、ラーメンの層数、同一ラーメンであっても階によって比の値は大きく変動している。この傾向は特に5層以上のラーメンで顕著に見られる。また、内柱について示した表-14, 16について見ると、比の値はいずれも1.0より小さく、かつ同一ラーメンであっても階によって比の値は異っている。RC 規準式の剛域を取入れたたわみ角法の値について見ると、剛域を考慮しない場合に比べ幾分 FEM 値に近づいてはいるが全体的には剛域を考慮しない場合と同様のことが言える。

このようにたわみ角法では有限要素法解析に比べて外柱に過大な応力を負担させること になり、かつ階によってもその負担割合が異る。従って、たわみ角法を用いた場合、ラーメンの 形状によっては大きな誤りを招く恐れがあると考えられる。

RC 規準式による剛域を取入れた剛性法の値について見ると表-13, 15に見られるように外柱の柱頭では上層階ほど FEM 解析値との比は大きくなり、逆に外柱の柱脚では小さくなって、最下階柱および上層階の柱の一部で FEM 解析値に近似しない。内柱では最上階および最下階を除けば比の値は殆んど1.0に近い値となっている。

このようにRC規準式による剛域を取入れた剛性法による値は概ねFEM解析値と良い対応を示すが、最上階および最下階の一部で両者間に差も見られる。

これらに対してFEM剛域を取入れた剛性法の値は、表-13~16に見られるように、応力の極端に小さい部位を除けばFEM解析値との比は殆んどの材端で1±0.05の範囲内にあり、有限要素法解析結果に基づいて求めた剛域は十分適合性を有していると言える。また、先に述べたように有限要素法解析結果に基づいて求められる剛域長さと本論で提案した剛域長さ推定式の値は十分近似していることから、その推定式は実用に耐え得るものと考える。

77

層	階	· · · · · ·			 た わ み						单位(×P)[cm]	
数数	数数	F	ЕМ	剛域な	L(/FEM)		(/FEM)	RC剛垣			剛域(/FEM)	
*	**	柱頭	柱脚	柱頭	住脚	柱頭	柱脚	柱頭	柱脚	柱頭	柱脚	
1	1	34.7	43.6	36.5(1.05)	46.5(1.07)	35.2(1.01)	46,4(1.07)	34.7(1.00)	46,2(1.06)	34,2(0,99)	44.0(1.01)	
3	1 2 3	97.7 77.0 38.8	136.5 64.4 26.0	102.2(1.05) 81.3(1.06) 44.2(1.14)	145.9(1.07) 65.4(1.02) 28.0(1.08)	98.4(1.01) 79.9(1.04) 43.8(1.13)	146.7(1.07) 63.5(0.99) 26.8(1.03)	96.0(0.98) 77.8(1.01) 40.1(1.03)	146.5(1.07) 62.4(0.97) 24.0(0.92)	95.7(0.98) 76.5(0.99) 38.8(1.00)	138.3(1.01) 63.5(0.99) 25.4(0.98)	
5	1 2 3 4 5	158.3 144.9 109.4 73.3 31.2	229.0 134.9 94.7 57.2 19.4	153.7(1.06)	245.2(1.07) 139.7(1.04) 101.9(1.08) 64.4(1.13) 27.6(1.42)	159.2(1.01) 150.5(1.04) 118.5(1.08) 82.5(1.13) 43.9(1.41)	246.7(1.08) 136.3(1.01) 99.3(1.05) 62.2(1.09) 26.2(1.35)	153.6(0.97) 143.9(0.99) 110.6(1.01) 75.3(1.03) 32.6(1.04)	246.9(1.08) 133.5(0.99) 93.3(0.99) 55.4(0.97) 17.5(0.90)	154.0(0.97) 142.8(0.99) 108.6(0.99) 73.2(1.00) 31.7(1.02)	233.0(1.02) 134.4(1.00) 93.9(0.99) 56.5(0.99) 19.2(0.99)	
7	1 2 3 4 5 6	218.6 212.3 176.1 138.4 101.3 66.3 21.1	321.2 205.0 162.1 122.9 85.6 49.5 11.2	226.3(1.07)	344.5(1.07) 214.0(1.04) 175.9(1.09) 138.1(1.12) 101.2(1.18) 64.4(1.30) 27.6(2.46)	219.9(1.01) 221.3(1.04) 190.8(1.08) 154.6(1.12) 118.5(1.17) 82.6(1.25) 43.9(2.08)	346.7(1.08) 209.3(1.02) 172.0(1.06) 134.4(1.09) 98.3(1.15) 62.3(1.26) 26.1(2.33)	210.3(0.96) 209.1(0.98) 176.0(1.00) 139.3(1.01) 103.0(1.02) 68.9(1.04) 22.6(1.07)	347.6(1.08) 204.7(1.00) 161.7(1.00) 121.6(0.99) 84.0(0.98) 48.0(0.97) 9.5(0.85)	211.5(0.97) 208.2(0.98) 173.7(0.99) 137.1(0.99) 101.1(1.00) 66.6(1.00) 22.2(1.05)	328.0(1.02) 205.3(1.00) 161.9(1.00) 122.5(1.00) 85.1(0.99) 49,1(0.99) 11.4(1.02)	
9	1 2 3 4 5 6 7 8	278.7 279.3 242.1 203.0 165.5 129.1 93.0 59.1 10.7	413.1 274.6 228.8 187.8 149.5 112.6 76.6 41.6	298.9(1.07) 267.5(1.10) 230.7(1.14) 193.9(1.17) 157.0(1.22)	443.9(1.07) 288.3(1.05) 249.9(1.09) 211.8(1.13) 175.0(1.17) 138.1(1.23) 101.2(1.32) 64.4(1.55) 27.6(10.22)	263.1(1.09) 226.9(1.12)	446.7(1.08) 282.2(1.03) 244.6(1.07) 206.6(1.10) 170.7(1.14) 134.5(1.19) 98.3(1.28) 62.3(1.50) 26.1(9.67)	266.5(0.96) 273.4(0.98) 240.2(0.99) 202.5(1.00) 166.1(1.00) 130.5(1.01) 95.0(1.02) 62.1(1.05) 12.0(1.12)	448.7(1.09) 276.1(1.01) 230.0(1.01) 187.7(1.00) 149.0(1.00) 111.6(0.99) 75.2(0.98) 40.3(0.97) 1.1(0.41)	268.5(0.96) 272.7(0.98) 237.7(0.98) 237.7(0.99) 163.9(0.99) 128.4(0.99) 93.2(1.00) 59.8(1.01) 12.4(1.16)	423.3(1.02) 276.2(1.01) 229.7(1.00) 188.2(1.00) 149.6(1.00) 76.4(1.00) 41.4(1.00) 3.3(1.22)	

表-14 4.15-6.-4.15モデル内柱材端モーメント

単位(×P)[cm]

		r	Т					半	位(×P)[cm]	
層	階		たわ	み角法		剛性法				
数	数	FEM	剛域なし(/FEM)	RC剛地	RC剛域(/FEM)		RC剛域(/FEM)		FEM剛域(/FEM)	
		柱頭 柱脚	柱頭 柱旗	柱頭	柱脚	柱頭	柱脚	柱頭	柱脚	
1	1	47.6 54.1	45,8(0.96) 51.2(0.	95) 45.8(0.96)	52.6(0.97)	46.1(0.97)	53.0(0.98)	47.5(1.00)	54.3(1.00)	
3	1 2 3	136.5 169.3 113.5 105.0 64.0 51.2	131.4(0.96) 160.5(0. 111.1(0.98) 102.2(0. 60.3(0.94) 47.5(0.	97) 113.1(1.00)	103.4(0.98)	130.5(0.96) 114.4(1.01) 65.3(1.02)	167.0(0.99) 105.4(1.00) 50.6(0.99)	136.2(1.00) 114.4(1.01) 64.4(1.01)	169.8(1.00) 105.5(1.00) 51.4(1.00)	
5	1 2 3 4 5	225.9 286.8 222.5 217.7 173.8 162.1 120.9 108.6 71.8 57.6	217.7(0.96) 271.2(0. 216.6(0.97) 210.0(0. 165.7(0.95) 152.4(0. 112.9(0.93) 99.5(0. 60.5(0.84) 47.6(0.	96) 220.0(0.99) 94) 168.7(0.97) 92) 115.1(0.95)	153.6(0.95) 100.1(0.92)	215.8(0.96) 223.5(1.00) 175.0(1.01) 121.8(1.01) 73.0(1.02)	219.1(1.01) 161.2(0.99)	225.3(1.00) 224.0(1.01) 174.9(1.01) 121.6(1.01) 71.7(1.00)	218.8(1.01) 162.6(1.00)	
7	1 2 3 4 5 6 7	315.2 405.1 331.4 331.3 285.7 276.1 235.0 223.7 182.7 170.3 128.2 115.9 81.7 666.0	304.1(0.96) 381.9(0.321.9(0.97) 317.8(0.271.7(0.95) 258.6(0.219.2(0.93) 205.8(0.166.1(0.91) 152.6(0.112.8(0.88) 99.5(0.60.5(0.74) 47.6(0.	96) 326.6(0.99) 94) 276.1(0.97) 92) 223.1(0.95) 90) 169.3(0.93) 86) 115.1(0.90)		286.9(1.00) 236.2(1.01)	333.7(1.01) 275.4(1.00) 222.9(1.00) 169.2(0.99)	333.4(1.01)	170.4(1.00)	
9	1 2 3 4 5 6 7 8 9	404.3 523.9 440.3 445.8 397.9 391.2 345.6 340.0 297.8 287.1 245.1 233.2 191.7 178.8 135.8 123.5 91.9 74.6	390.5(0.97) 492.6(0.427.2(0.97) 425.6(0.377.8(0.95) 364.7(0.325.4(0.94) 312.1(0.272.3(0.91) 258.8(0.219.2(0.89) 205.7(0.166.1(0.87) 152.6(0.112.8(0.83) 99.5(0.60.5(0.66) 47.6(0.	35) 433.1(0.98) 33) 383.6(0.96) 32) 330.9(0.96) 36) 276.9(0.93) 38) 223.1(0.91) 35) 169.3(0.88) 31) 115.1(0.85)	507.6(0.97) 432.6(0.97) 368.7(0.94) 315.6(0.93) 261.5(0.91) 207.7(0.89) 153.9(0.86) 100.0(0.81) 47.7(0.64)	399.2(1.00) 350.4(1.01) 298.9(1.00) 245.9(1.00) 192.4(1.00)	519.2(0.99) 449.2(1.01) 390.6(1.00) 339.4(1.00) 286.1(1.00) 232.0(0.99) 177.4(0.99) 121.7(0.99) 73.8(0.99)	442.9(1.01) 4 400.1(1.01) 3 350.7(1.01) 3 299.0(1.00) 2 245.8(1.00) 1 192.0(1.00) 1 135.9(1.00) 1	525.5(1.00) 148.2(1.01) 392.6(1.00) 340.9(1.00) 287.6(1.00) 133.3(1.00) 178.5(1.00) 22.9(1.00) 73.6(0.99)	

6.-6.-6.モデル外柱材端モーメント

単位(×P)[cm]

層	階		たわる	→ 角 法	剛	生 法	
数	数	FEM		RC剛域(/FEM)	RC剛域(/FEM)	FEM剛域(/FEM)	
		柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	
1	1	30.3 40.2	31.6(1.04) 47.5(1.18)	29.7(0.98) 47.3(1.18)	29.2(0.96) 46.6(1.16)	29.4(0.97) 43.9(1.09)	
3	1 2 3	83.1 138.5 73.6 55.2 39.2 19.4	86.0(1.03) 153.2(1.11) 77.6(1.05) 55.3(1.00) 43.3(1.10) 19.3(0.99)	80.6(0.97) 155.2(1.12) 76.6(1.04) 52.9(0.96) 43.2(1.10) 16.8(0.87)	77.9(0.94) 153.6(1.11) 76.3(1.04) 53.9(0.98) 41.6(1.06) 15.6(0.80)	79.9(0.96) 142.0(1.03) 74.1(1.01) 55.4(1.01) 39.8(1.01) 18.6(0.96)	
5	1 2 3 4 5	132.6 233.5 135.0 120.3 106.0 81.8 74.3 48.7 36.3 16.5	135.9(1.02) 259.1(1.11) 141.0(1.04) 123.7(1.03) 114.1(1.08) 85.6(1.05) 81.8(1.10) 51.0(1.05) 43.6(1.20) 18.2(1.10)	126.1(0.95) 263.3(1.13) 137.2(1.02) 120.0(1.00) 113.4(1.07) 81.7(1.00) 82.2(1.11) 47.2(0.97) 43.6(1.20) 15.2(0.92)	120.7(0.91) 261.5(1.12) 135.5(1.00) 121.9(1.01) 109.8(1.04) 78.9(0.96) 79.1(1.07) 44.8(0.92) 39.0(1.08) 12.3(0.74)	125.8(0.95) 241.0(1.03) 134.3(0.99) 122.3(1.02) 106.6(1.01) 81.4(0.99) 75.3(1.01) 47.9(0.98) 37.2(1.02) 15.8(0.96)	
7	1 2 3 4 5 6 7	182.0 328.1 196.6 185.1 168.4 144.0 135.9 110.2 103.4 77.8 71.7 45.9 32.3 13.6	185.7(1.02) 364.9(1.11) 204.7(1.04) 192.3(1.04) 180.3(1.07) 152.5(1.06) 147.7(1.09) 116.9(1.06) 114.6(1.11) 83.9(1.08) 81.9(1.14) 51.0(1.11) 43.6(1.35) 18.1(1.33)	171.4(0.94) 371.4(1.13) 198.2(1.01) 187.6(1.01) 177.7(1.06) 147.1(1.02) 140.2(1.03) 111.1(1.01) 114.0(1.10) 79.0(1.02) 82.4(1.15) 47.2(1.03) 43.6(1.35) 15.1(1.11)	162.7(0.89) 369.8(1.13) 194.2(0.99) 190.5(1.03) 170.7(1.01) 143.0(0.99) 139.8(1.03) 107.3(0.97) 107.9(1.04) 74.1(0.95) 76.8(1.07) 41.9(0.91) 35.1(1.09) 9.4(0.69)	171.1(0.94) 340.4(1.04) 193.9(0.99) 189.7(1.02) 167.6(1.00) 145.1(1.01) 136.2(1.00) 110.4(1.00) 104.3(1.01) 77.3(0.99) 72.9(1.02) 45.1(0.98) 33.4(1.03) 13.0(0.96)	
9	123456789	231.7 422.6 258.2 249.6 230.6 205.7 197.7 171.2 164.9 138.5 132.5 106.4 100.3 74.6 69.1 43.1 28.4 10.6	235.5(1.02) 470.7(1.11) 268.5(1.04) 261.0(1.05) 246.3(1.07) 219.3(1.07) 213.9(1.08) 183.1(1.07) 180.9(1.10) 150.1(1.08) 147.9(1.12) 116.9(1.10) 114.6(1.14) 83.8(1.12) 81.9(1.19) 51.0(1.18) 43.6(1.54) 18.1(1.71)	216.7(0.94) 479.5(1.13) 259.2(1.00) 255.2(1.02) 241.9(1.05) 212.5(1.03) 210.4(1.06) 175.4(1.02) 178.6(1.08) 143.4(1.04) 146.5(1.11) 111.1(1.04) 114.0(1.14) 78.9(1.06) 82.5(1.19) 47.2(1.10) 43.6(1.54) 15.1(1.42)	204.1(0.88) 478.6(1.13) 252.1(0.98) 259.6(1.04) 230.7(1.00) 207.5(1.01) 199.9(1.01) 170.4(1.00) 168.2(1.02) 136.5(0.99) 136.6(1.03) 103.4(0.97) 105.0(1.05) 70.9(0.95) 74.3(1.08) 39.1(0.91) 31.0(1.09) 6.5(0.61)	215.8(0.93) 440.3(1.04) 252.9(0.98) 257.4(1.03) 227.8(0.99) 209.1(1.02) 196.4(0.99) 173.2(1.01) 164.6(1.00) 139.5(1.01) 133.0(1.00) 106.6(1.00) 101.4(1.01) 74.2(0.99) 70.4(1.02) 42.3(0.98) 29.7(1.05) 10.2(0.96)	

6.-6.-6. 内柱材端モーメント

単位(×P)[cm]

						中瓜(ハゴ)[Cin]	
層	階		たわれ	角 法		法	
数	数	FEM	剛域なし(/FEM) RC剛域(/FEM)		RC剛域(/FEM)	FEM剛域(/FEM)	
		柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	柱頭 柱脚	
1	1	48.8 57.7	46.1(0.94) 54.8(0.95)	46.1(0.94) 56.9(0.99)	46.6(0.95) 57.6(1.00)	48.3(0.99) 58,5(1.01)	
3	1 2 3	135.9 182.5 121.9 109.5 70.4 51.0			125.3(0.92) 183.2(1.00) 122.0(1.00) 107.8(0.99) 73.8(1.05) 49.1(0.96)	133.6(0.98) 184.5(1.01) 122.1(1.00) 108.4(0.99) 71.2(1.01) 50.4(0.99)	
5	1 2 3 4 5	223.5 310.5 235.7 229.0 185.7 166.4 128.6 108.2 74.0 53.2	209.3(0.94) 295.8(0.95) 231.4(0.98) 223.9(0.98) 181.0(0.97) 159.2(0.96) 124.7(0.97) 102.5(0.95) 69.8(0.94) 48.4(0.91)	202.5(0.91) 308.0(0.99) 235.2(1.00) 227.6(0.99) 185.8(1.00) 159.2(0.96) 128.9(1.00) 101.7(0.94) 73.6(0.99) 47.6(0.89)	204.6(0.92) 313.3(1.01) 234.3(0.99) 228.3(1.00) 188.1(1.01) 163.2(0.98) 131.4(1.02) 104.7(0.97) 77.7(1.05) 51.0(0.96)	219.1(0.98) 314.1(1.01) 235.4(1.00) 228.0(1.00) 186.7(1.01) 156.3(0.99) 129.7(1.01) 107.0(0.99) 74.7(1.01) 52.4(0.98)	
7	1 2 3 4 5 6 7	310.7 439.1 349.0 349.5 302.3 285.4 246.7 227.2 189.7 169.2 131.4 111.0 77.8 56.4	291.6(0.94) 417.8(0.95) 342.4(0.98) 340.6(0.97) 294.3(0.97) 273.0(0.96) 239.0(0.97) 216.3(0.95) 182.3(0.96) 159.3(0.94) 124.8(0.95) 102.4(0.92) 69.9(0.90) 48.4(0.86)	281.5(0.91) 435.7(0.99) 347.1(0.99) 347.1(0.99) 300.6(0.99) 274.6(0.96) 245.4(0.99) 217.4(0.96) 187.8(0.99) 159.2(0.94) 129.0(0.98) 101.3(0.91) 73.7(0.95) 47.6(0.84)	238.5(0.91) 444.0(1.01) 345.6(0.99) 349.7(1.00) 304.0(1.01) 282.2(0.99) 249.4(1.01) 223.5(0.98) 192.7(1.02) 165.4(0.98) 134.1(1.02) 107.3(0.97) 81.6(1.05) 54.0(0.96)	304.1(0.98) 444.4(1.01) 348.0(1.00) 348.4(1.00) 303.0(1.00) 284.3(1.00) 247.6(1.00) 225.8(0.99) 190.6(1.00) 167.7(0.99) 132.4(1.01) 109.6(0.99) 78.3(1.01) 55.3(0.98)	
9	1 2 3 4 5 6 7 8 9	397.5 568.3 461.9 470.4 418.6 405.1 364.1 347.1 307.6 289.1 250.4 230.8 192.9 172.3 134.1 113.7 81.5 59.5	373.9(0.94) 539.9(0.95) 453.4(0.98) 457.2(0.97) 407.6(0.97) 386.8(0.95) 352.8(0.97) 330.2(0.95) 296.0(0.96) 273.0(0.94) 239.1(0.95) 216.1(0.94) 182.3(0.95) 159.3(0.92) 124.8(0.93) 102.4(0.90) 69.9(0.86) 48.4(0.81)	360.4(0.91) 563.4(0.99) 459.0(0.99) 466.6(0.99) 415.4(0.99) 390.2(0.96) 361.0(0.99) 333.1(0.96) 303.3(0.99) 274.7(0.95) 245.5(0.98) 216.9(0.94) 187.9(0.97) 159.2(0.92) 129.0(0.96) 101.3(0.89) 73.7(0.90) 47.6(0.80)	361.9(0.91) 575.4(1.01) 456.5(0.99) 471.8(1.00) 419.7(1.00) 402.0(0.99) 366.4(1.01) 343.3(0.99) 310.2(1.01) 285.1(0.99) 253.2(1.01) 226.8(0.98) 195.8(1.02) 168.4(0.98) 136.7(1.02) 109.9(0.97) 85.4(1.05) 57.1(0.96)	388.7(0.98) 575.1(1.01) 460.3(1.00) 469.4(1.00) 419.2(1.00) 403.9(1.00) 364.9(1.00) 345.6(1.00) 308.4(1.00) 287.5(0.99) 251.1(1.00) 229.1(0.99) 193.7(1.00) 170.7(0.99) 135.0(1.01) 112.3(0.99) 81.9(1.00) 58.3(0.98)	

なお、上記の他に剛性法で剛域を取入れない場合およびD値法による解析も試みた。その結果、剛性法で剛域を取入れない場合は本論の値よりもFEM解析値との近似度は悪くなり、D値法による値はたわみ角法による値に比較的近く、FEM解析値との対応はたわみ角法の場合よりも悪くなる傾向が見られた。

4. む す び

以上,有限要素法解析結果および各種ラーメン解析結果について検討した結果,次の諸点が明らかとなった。

- 1) 既往の剛域長さ算定式による値は部材断面の形状によっては有限要素法解析結果に基づく 値と対応しないものが見られる。
- 2) 有限要素法解析結果に基づいて求めた剛域長さは材端条件によって大きく異る。
- 3) 有限要素法解析結果に基づいて求めた剛域長さを統計的に処理して剛域長さ推定式を導いた。その式は広範囲のものに対して十分な精度で近似する。
- 4) たわみ角法によってラーメン解析を行った場合、剛域を取入れるか否かに拘らず、ラーメンの形状(スパン、階数)によっては大きな誤りを招く恐れがある。
- 5) 部材伸縮等を考慮し、RC規準式による剛域を取入れた剛性法によってラーメン解析を行った結果、有限要素法解析結果との対応において、最上階および最下階の部材応力に幾分問題があった。
- 6) 部材伸縮等を考慮し、FEM剛域を取入れた剛性法によってラーメン解析を行った結果、十 分な精度で有限要素法解析結果に対応した。
- 7) 6)によって本論で提案した剛域推定式は十分有用であることが明らかとなった。 終りに、本論の解析の多くは本学修士修了生橋本論君、北林大明君、大学院生塚野憲君ならびに学部卒業生樫野由貴子さんのご協力のもとに行われたものであることを記し、心から感謝申し上げます。

参考文献

- 1) 武藤:"新訂建築学大系14構造設計法", 彰国社
- 2) 日本建築学会: "鉄筋コンクリート構造計算規準・同解説, (1988)
- 3) 武藤: "耐震設計シリーズ I 耐震設計法", 丸善
- 4) 奥田: "架構材の定数について", 東京大学卒業論文, 昭和2年
- 5) 徳広、佐々木: "たれ壁.腰壁付き柱の弾性剛性に関する研究(I)", 日本建築学会論文報

告集第304号,昭和56年6月

- 6) 大築, 橋本, 土屋: "腰壁・垂壁付き柱の有限要素法解析", 日本建築学会大会学術講演梗概集(近畿), 昭和62年10月
- 7) 大築, 土屋: "腰壁・垂壁付き柱の有限要素法解析 (その 2.片側壁付き柱の場合)", 日本 建築学会大会学術講演梗概集 (関東), 昭和63年10月
- 8) 北林,大築: "平面ラーメンの応力解析",日本建築学会北海道支部研究報告集,No.67,1994.3
- 9) 大築,鈴木,樫野: "有限要素法解析による水平力を受けるRC部材の剛域について",日本建築学会北海道支部研究報告集No.68,1995.3
- 10) 鈴木,大築,塚野:"水平力を受けるRC部材の剛域についての検討(その1有限要素法解析に基づく剛域について)",日本建築学会大会学術講演梗概集,(北海道)1995.8
- 11) 塚野,大築,鈴木: "水平力を受けるRC部材の剛域についての検討(その2提案剛域算定式の適合性について)", 日本建築学会大会学術講演梗概集(北海道)1995.8