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We study the cyclic advantage model with three states so-called Paper-Scissors-Stone (PSS} game
on tree-structured lattice space with & fixed nmimber of branehes on each lattice site. Each particle
on a site interacts only with the nearest neighboring particles. In general "Pair Approximation
{PA)” as one of the analytical methods which introduces the information of nearest neighboring
cotrelation is expecied to be the more useful fool than "Mean-Field Approximation {MFAY'. How-
cver, in the case of PSS game on two-dimensional sguare lattice it was reported that PA gives
thie worse result than MFA for the stability of internal equitibria by Tainaka’?. In this paper we
obtain the similar results about stability of internal equilibria of PSS game on trees contrary to the

expectation,
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1 INTRODUCTION

In biclogical systems, we can recognize several kinds of relationships
between species through competition or predation. Since Lotka™ and
Votterral® mathematical models are well known to be usefnl to study
the dynamics of these biolegical systems. Their original models are too
simple to describe real world, but have an important role to understand
the basic mechanism for it.

May and Leonard'! reveal that Lotka-Volterra competition model
with three species shows the heteroclinic dynamics and cannet explain
the mechanism of coexistence of them. As a competition between three
species in nature, we can examplify that the stock abundance of pelagic
fishes usvally fluctuates and species replacement occurs forever, This
cyclic advantage relationship was modeled by Matsuda ef ol (51~(8
Takeuchi et &) and Takeuchi®, They tell us that only the introduction
aof refuges cannot avoid the extinction of some kind of species.

On the other hand, Thainaka'®! considered more simple ¢yclic advan-
tage model, say, Paper-Scissors-Stone (P55) game without density cffect
an population growth rate on two-dimensional square lattice space. He
assumed that every Individual belongs to either three species, and the
weaker individual is replaced by the stronger at a constant rate for ran-
domly chosen nearest neighboring two individuals sit on the lattice space.
He showed that papulation dynramics gives the global stablity by Monte
Carlo simulation. This result differs from that without spatial structure
in population; when we choose two individuals for an interaction these
two are not necessarily adjacent each other. The latter shows the neutral
stablity.

" Department of Systems Engineering, Shizuoka University
** Department of Applied Mathematics, Yokohama National Universily
=**Common Subject Division (Mathematics] Science)

Interacting particle systems (or lattice models) introduced mathe-
matically by Harris™® have been studied for various kinds of models,
but we cannot get enough mathematical results because of much dif-
ficuities. Ewven in one of the simplest models, basic contact processes,
for example, critical values or critical exponents for phase transition
are not known (e.g. Konno''l)), Then we often depend on approxi-
mation methods; Mean-Field Approximation {(MFA) as the first order
or Pair Approximation {PA) as the second. MFA corresponds to the
non-spatial structured model, namely, considers no correlation between
sites. On the other hand, PA pursues the correlation only between two
nearest neighboring sites. Therefore it is plausible that PA gives better
results not only quantitatively but also qualitatively and various studies
on various lattice models support it (Matsuda e ol (1?); Sato et al(13);
Tainakal*4); Satulovsky and Tomé!!®); Harada et al'®; Harada and
Iwasal!?; Sato and Konno®'®Y; Kube ef gL.0%; Nakamaru et al.¢20; Iwasa
et 0Lt Konno®2y, However, for PSS game PA and MFA conjecture
that the internal equilibria behave unstably and neutrally stably, respec-
tively {Tainaka'"?}. If these both conjectures turn to be affirmative, the
stability of internal equilibria will not be satisfied and PA will be worse
than MFA.

In this paper we consider PSS game on trecs in expectation of the
improvement of the conjecture by PA. Tretyshov and Konno®¥ studied
basic contact processes on binary tree with an intial condition of only
ene particle on the root by Monte Carlo simulation, When we start the
system with random distribution as an initial configuration, we should
decide the boundary condition of the system, Unfortunately, however,
we fail to meet our expectation by PSS game on trees. We can remark
that the special assumption in PA on two-dimensional square Jattice does
not affect the results.

2 MODEL AND APPROXIMATIONS

PSS game on lattice includes the following model assumptions:
(1) The whole system has infinitely large particles each of which sits on
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cach site of lattice space. In this section we assume two-dimensional
square lattice space. The space offers the homogeneous environmests to
particles for interactions.

(2) The states of particles change to stronger particle at the proportional
rafe to Lthe number of those stronger particles in z nearest neighbors. The
slrength between three stales is defined eyelic such ns PSS game, ic. the
slate 24 1 is stronger @han n, where o= 0,1 or 2 pad 0+ 1 s given
by moduius 3. When we do Monte carlo simulations in a system large
enougl, this process corresponds to the procedure by choosing adjoint
two particles spatially vandomly and changing states. The rates of this
process is defined by the expected number of events in unit time interval.
In this paper we assume the same absolute values of strengtls in every
interactive combination, so we can choose the Lransition rates of the
processes such as #{e}/z in which n{o) means the mumber of the sites
witis o € {0,1,2} in z nearest neighbors,

We can describe this model by the following master equations:

dp
"'C'I"él = fu—in " P, (1}
dﬁ!l,ﬂ §1

= (1-1 +(1-1 !
! = P -1 ndl z Panntl an,n+i

1 1
(l - ;) Putlnntl = (1 - ;) Puniln-1y (2}

Where pa. pagr floggn for oo’ o € {0, 1,2} are called as singlet densi-
ties, doublet densitics and triplet densities, respectively, which are de-
fined as the probabilities of randomly chosen one site of the state o,
randomly chosen one pair of nearest neighboring sites of the states o-
o' and randomly chosen one triplet sequence of neighbering sites of the
states g-o'-o”, respectively.

In Eq.(1} the first term corresponds to the birth process, and the
second te the death. For the occurence of the birth process the nearest
neighboring site should have the weaker state, so the site of the state n
needs the nearest seighboring site of the n— 1. On the other hand, when
the nearest neighboring site is the stronger state this site is absorbed to
Lhat strenger stale; the site of the n changes by the effeet of the nearest
neighboring site of the n -+ 1. The madel does not assume the spatial
direction of the interactions, and it means pyor = porg.

Similatly Eq.{2) includes two birth terms and tluee death terms.
There are triplet densities, and we suppoese that the offect of the dif-
ferent configurations of Lhe neighboring three sites (Lg. either straight
or bent sequences) on population dynamics may not be serious on two-
dimensional square latlice space. However, when the next nearest neigh-
boring sites do not have unimportant roles comparative Lo nearest neigh-
boring sites, we shouid treat that difference carefully.

The model requires the time evolution of higher order densities be-
cause Egs.(1) and (2) does not constitute a closed set of equations; Eeq.(2},
the dillerential equation for doublet densities, includes triplet densities.
However, when we deseribe the time evolution of tripiet densities it must
depend on the higher order densities, quartet deusitics. PA is an analyti-
cal method in order to close a set of equations by decoupling triplet den-
sities such a8 puargr = PoorPoror{Por- Equation (2) should be changed
as:

dﬂn.rﬁl - (} _ l) Prn-1Pn+ln-1 + (1 _ _1_) Poanfutln
dt z Pru-1 z fn
1 1 PrilnfPrtlu
) U N PR N A 1L TN
an,u+l 2 P
. 1— _]; Prin+1Pn—Ln+l )
z Pail '

We can interprel PA as an approximation that the effect of the most
far site can be most negligible by the notion of "local densitics” or "en-
viton densities” (Matsuda et al. 1),

By solving a set of closed Eqs.(1) and (2') we can obtain interanal
cquilibrium values of singlet densities snd doublet densities (Tainaka(!})

-t
pllm 3'

. ;jf;‘:l]—)- ifn=m
Prm ﬁﬁ;}% ifn#m

‘The resull of doublet densitics teil us the clumping property of this I’SS
gnlnc.

We compare the results between PA and MFA, whose dynamics can
be obtained by the replacement of the doublet densities to the multipli-
cation of two singlet densities (in other words, the replacement of the
tocal densities to singlet densities, Matsuda et ol0?)) in Bq.(1}%

d
"53““ = Pu—1Pa T Pufugre (J}
I equilibrinm we get:
1
Pn = 5:

and doublel -densities are eqgual Lo the multiplication belween two sin-
glet densities corresponding to two states because the spatial corvelation
between bwo nearest neighboring sites is negnected in MFA:

1
Prum = PuPm = 5 for any n and m.

Notice that there is no difference of singlet densities between two
approximations. The Monte Carlo simulations suggest that Lhis equilib-
riuin vaiue is asymplotically globally stable (Tainaka{®!). On the other
hand, for doublet densites PA gives better equitibrium values than MFA
{see the next section).

Next we calculate the stability around the above internal equilib-
ria. Tainakal") showed that PA gives the instability of singlet densities
analytically and by the numerical caleulalion. Local stability analyses
also supports this results (Appendix). On the othier hand, MFA has
the conservative quantity such as pgp1pz which does not change in the
time development, so we can say that the internal egilibrium of MFA is
nesttrally stable.

3 PSS GAMES ON TREES

it is natural to consider the possibility thal the abave assumption
in PA of the negiection of the configuration in triplet neighboring sites
collapses the correet dynamics. Then we change lattice space on which
cach particle experiences state transition from two-dimensional square
laitice to tree with four branches for each site (Fig. 1). One of the main
characteristics of trees is that all the = sites ab the edge of the branches
from cach site sits on the exactly the same spatial position, then we need
not distinguish the configuration of three neighboring sites on trees and
it seems to rellect the assumption of PA correctly (Fig. 2). So we can
expeet Lhat the disagreemnent between PA and simulations can disappear.

Fig.l. Tree-structured lattice space with z = 4.
Bvery branch elongates from the root infinitely in the model
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(a}

(b}

?

T
-/

'

Fig.2. Comparisen between two lattice spaces with z = 4.

{8} Tree-structured lattice, (b} Two-dimensional square lattice. When we consider
the dynmmnics of nearest neighboring two black sites, the right black site has ather
three nearest neighbering white sites. In the case of (a) the left black site has only
one path to reach either three white sites in the shortest distance. On the other hand,
the laft black site in (b) has two paths to go to the sites labeled '1° and '2" respectively
but only one path te the site *3'.

We can change the number of branches for each site gradually in
order to investigate the diection of the change of dynamics due to the
mimber of nearest neighbors for each site. We do computer simulations
by tree with about 10000 Latiice sites (we cannot choose the sarte number
of the sites for dilfercnt z because of the characteristics of trees, Table
1). When the number of nearest neightboring sites z is equal to two, the
situation is the same as in one-dimensional lincar lattico space. Therelore
throughout this paper we only conerentrate on the tree-structured lattice
space with z > 3, which includes two-dimensional characteristics. While
z = 10000 it indicates the every site connects each other so it agrees with

Notice that we adopt the following boundery condition for doing
Monte Carlo simulations. Each site on the periphery Las her " mother”
site counected Lo her, which has z — 1 "daughters”. The k-th "daugliter”
(A =1,--,2=1) in 2 ~ 1| "daughters” of cvery "mother” sits on the
nearest neighbor of the k-th "daughters” of other "mothers” (Fig. 3).
Our boundary condition does not satisfy spatial uniformity in periphery,
Lut it may not be serious.

Fig.d. Bovadary condition for Moenle Carlo sinndalions,

For the explanation of the periodic boundary condition used in Mente Carla simula-
tions we depict a small system with z = 4. Each "mather” symbolized by black circle
has three "daughters” on the periphery and hatched daughters are neareset neighbors
each other.

Monte Carle simulations with about 10000 sites are sterted by an
tuitial random distribution in which each site is oceupied by cither three
state with the equal probability 1/3. The differences between sinnilations
with various z’s are not so clear, but they suggest the possibility that
the dynatsics of PSS game on trees show stable for 3 € z < 10000, and
neutrally stable for 2 = 10000 (Lhe 1eader can consider thal imit cycle
appears in the case of z = 10000, but it may be attributable to the
finite size elfect of the system and short term running; Fig. 4). This
resuld indicates that the branching space hos the cffoct of cscaping from
the extinction of either state and it is independent of the spice either
with loop or without loop. The increase of the number of connections
between sites gives the more unstability, and in extretes the dynamics
settles down to neutral stabitlity.

the dynamics of MFA or ue spatial structure.

z Distance from the root | Total lattice size
3 13 12286
4 9 13121
10 3 8201
100 3 10001
10000 2 10001

Table 1. Total lattice size for various z's

Singlei densities

(n)z=3 hz=4
1.0 1.0%;
—_—
0.8 R o 08
| L = J
046 7 086
&
-}
041 _ . N B 0.4{ -
B o2 5 - -
L]
0.2 w02
0.0 ———d 0.0
0 20 40 60 80 100 0 20 40 80 8¢ 100
Time Time

Total lattice size for various tree-structured lattice spaces with the branching number
of z are used for Mante Carlo simulations. Distance [rom the root is defined as the
weximum aumber of sites in the system frem the origin to the periphery along one

path.

Fig.d. Time development of singlet densities by Monte Carle simulations.
(2) 2=3,(b) z =4, {£) =10, (d) z = 100, (¢} z = 10000. The changes of singlet
densities through time are shown. “The Nuctualions with small amplitudes are caused
by the finile size effect of systems.
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Fig.4. Time development of singiet densities by Monte Carlo simulations

(cont.)

Singlet densities
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{d}z = 100
1.0
— i
Y ) I — p2
pd
0.6
04 .
L SR A
.21
0.0
[ 2 40 60 8 100
Time

Doublet densities
{same staies)

(e) z= 10000

Fig.5. Time development of doublet densities with two same states by
Monte Carlo simulations {cont.)

Simulations on the tree-structured lattice space do not support the
stability anslyses by PA, which shows unstability rather than neutral
stability given by MFA. However, we can obtain better quantitative re-

sults for the equitibrium values of doublet densities by PA than by MEA

{Figs.5 and 6).

{n)z=3

1.0

0.8

0.6

0.4

Doublet densities
(same states)

4.2

LiXi]

20 40 60

Time

86 100

{e)z=10

Doublet densities
{same sintes)

Fig.5. Time development of doublet densitics with two same states by

Time

Mente Carlo simulations.

(2) ==3, (b) z =4, (c) == 10, {d} = = 100, () z = 10000. The changes of doublet

densities with fwo snne states through time are shown.
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by Monte Carle simulations.

densities with twa different states through time are shown.
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4 DISCUSSIONS

Unfortunately it seems that we eannot get the strict result for sta-
bility by PA, and it may be attributed to the clumping property by
juteractions between ncarest neighboring sites, which causes the neees-
sity of the consideration in correlations on the far distanced sites (Iwasa
et al. 1), However, we can say Lhat the neglection of the conligralion of
triplet sequence of siles for two-dimensional square lallice space in PA
does not give the different resubts.

We have another possibility that disagreement between PA and sim-
ulations will be settled by using the more preper boundary condition
which has the spatial uniformity and reflects the feature of trees (i.e. no
loop or exponentially increase of the number of sites Dom the origin to
the periphery). We nced some ideas for daing it.

PA exhibits the powerful usefulness for analyses in scveral latlice
models. Our problem studied in this paper will be one of the trials Lo
understand the properties of PA and improve PA as more applicable tools
to various lattice models.

APPENDIX;
LOCAL STABILITY ANALYSES

For the analyses of our closed dynamical systam we need only five
independent equations in Bas. (1) and {2), so we choose the following five
eqquations:

d
*5%.“ = filpor, pao) = pao — par, (A1)
d
'ff = falpor, p12) = po1 — P12, {A2)
d,
_Z?i = faloo, p1, P01, 212, P20)
= (1 -~ l) __ P2 + (1 1 {po = p20 — por)pm
2} 1=py— 21 z 20
i 1
- -I-Pm—(l——)fﬂ_(1__)w (A3)
s z/ Po z P
d .
“*‘—‘2;2 = falpo. p1, por, P12, P20)
1 - — 5
= (1 _ l) porp0 (1 B _) {o1 = po1 — pr2)p12
=P z £1
1
- —p2- 1--l m—(1——) _P12pa (Ad)
# A z) 1-po—~p
d,
3?0' = fslpo, £1> po1, P12, P20)
- (1 - l) M.i_ (1__ l) (1 — o0 — p1 = pr2 — p2a)pao
2A z l-m—p

2
- %pm_(l_l)__ﬂi_ﬂ____(;_l)m (A5)

z/1-pp—p1 z/

where we use the relation pog = po — pao — po1, P11 = 1L~ po1 — P12, P22 =
p2— iz~ pap and pz = 1— pg — p;. Local stability of internal equilibria,
Pn = 1/3, panir = (z— 2)/9z — 1), can be investigated by the five
indepeadont linealized equations derived from Eqs.{AT)~(A5). When
we put py, = By + 2, forn = 0.1 pnnt1 = Pangr + 3 fTorn =0,1,2,
linearlized equations for small z, and v, are:

dzp ah _ fr
i 2 Ealas ; . AG
dd't BP}n (a1, B20) yo + %!?D (or. Fao) 12 {AG)
X1 2 . 2
&, G y 22 X AT
j“’ g?.‘” (Por. P12) yo -+ Fora (Bor,fr2) m {AT)
Lo Bpe oo o
@ " B (o, By, Bor, iz, Pao) o

af;

e o

+ a—l(Pu.Pl.Palnﬂw.Pm) 1

+ Bi(ﬁu,ﬁl.ﬁm,ﬁlz,ﬁzo) o
Iog1

8f; L
+ Efi{ﬁo.ﬁl..ﬂm,ﬂm.mo) un
212

8f o
+ ﬁ{ﬁunﬂlspﬂl,ﬂu,m) ¥ (A8)
n = %(ﬁ F1. fo1, P12. P20} To
7 By PO P P01, Pz,
+ %(ﬁﬂ P11 o1, P12, P} 1
By P00 PLafor, Prz,

Afa o _
-+ ‘a—‘“(ﬂn,m,ﬂm,mz.pzu) Yo
£01

4 — - - - -
+ %(Pmpl..ﬂm,ﬂm.ml 71

+ E"j“(ﬁo.ﬁl,ﬁux,ﬁm:ﬁzu) 1, (AS)
P20
il’v’_'*:af"'(‘——w.w)r
3 Ao 05 214 P01, P12, P20) Lo
Ofs,
+ r’)p: (Pos Br, Por, Pra, fag) oy
B/

+ -(:)P—;(ﬁu.ﬁz,ﬁohﬁu.ﬁzo) Yo

+ m(ﬁn.ﬁl,ﬁm.ﬁm,ﬁm) v

g
+ a—fs‘(ﬁu,ﬁhﬁm.ﬁm,ﬁzu) Y2, (A10)
P20

where notice that, for example, the function f; depends only on two
variables pzg and pgr, so the partial derivatives of f) on other variables
are equal to zero. The above linearlized Eqs.{AG}~(A 10} can be written
down as the form of the following atrix:

2 0 -1 0 1 ”
4 1% 2§z92f __:1;2 7)1 g zy
:EE Yo = gﬁz P : P Yo
2 e VA i
b - 0 0 wzzz|lm

The maximum real part of the eigenvalues of this matrix is

)‘maz:(z) =
= _2)+[z—2) ~4VEr+ IR D[ =3 +8vEe 4 VATT G ED)
£ 24/3(z~1)(z -3}
2z !

which is positive for any z > 3, so the internal equilibria is locally unsta.
ble for z > 3. Notice that Apaz(z) — 0 a8 z — oo, which indicates the
necessary condition of neutral stability.
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