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The first aim of this paper is to introduce an operation between some graphs, called base
graphs and a skeleton graph for the creation of a new combined graph. We ¢all this operation a
partial joining of graphs. The second aim is to analyze some distance properties related to the
combined graph, base graphs, and the skeleton graph. Finally, some minimization problems
concerning the distance sum of the cornbined graph are alse considered for the special case in

which the skeleton graph is a tree.

Keywords : Graph, Network, (GGraph Join, Distance

1 Introduction

Iu a natural way, graphs or networks can be used for ex-
pressing some kinds of binary relations, where vertices or
nodes represent processors, system components, or individ-
ual people. On the other hand, edges represent some refa-
tionship among vertices or nodes. In these circumstances,
it is often beneficial to define a new relationship among
estallished networks, in order to combine them into a new
network, In this paper we model such cases and analyze
such combined graphs or networks. To achieve this we in-
troduce an operation between certain graphs, called base
graphs, and another graph, called a skeleton graph, which
creates a new, combined graph. We call this operation a
partial joining of graphs. We also analyze the properties
of graphical distance related to the combined graph, base
graphs and the skeleton graph.

Let ¢ = (V, E) denote a simple connected undirected
graph with a vertex set V and an edge set E. For the
graph theoretic notation and terminology used in this pa-
per, see Foulds(1994). An edge between u and v is denoted
as uv. The distance d(iz, y) between vertices » and y is the
length of a shortest path in ¢ Letween vertices & and y
expressed as the number of edges. The eccentricity e(x)
of a vertex « is defined as e(«) = maea{d{i,y} : y € V).
The radius, denoted by r{(¥}, and the diameter, denoted by
diam((), of G are defined as follows: r(() = min{e(r) :

r €V}, diamiG) = max{e(a) 1z € V).
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** Department of Management Systems, University of Waikato

A vertex « of (7 iy called & center pertez if e(x) = r((7)
and a peripheral vertex if e{xr) = diam((7) (See Buck-
ley and Harary(1990).) The distance sum{ distsnm for
short) of a vertex x, denoted by d(r), is defined Ly d(x) =
TAdle,y) 2 y € VY, and the distsum of &, denoted hy
d{G), is defived Ly d{(7) = {d{x,y) : ¢,y € V}. Tor
asubset I7 OV, let d{o,[7) = min{d{x,n) : v € {7}, and
A7) = T{d(x, V) : & € V}. The eccentricity e({7) of a ver-
tex subset [/ is defined as e({/) = mae{d(x, ) : x £ ¥}.
The path between vertices x and y is called the @ — i path
and the » — {7 path is meant to represent an & — u path
such that d{z,u) = dix, /) and w € T/,

This paper is organized as follows: In Section 2, we
present the definition of the partial joining of graphs. Sec-
tion 3 contains some distance properties related to the com-
bined grapl, base graphs, and the skeleton graph. Section
4 rontains the minimization problems of distance sum of
the comtbined graph, for the special case in which the skele-
ton graph is a tree,

2 The Partial Joining of Graphs

2.1 The Definition of The Partial Joining
of Graphs

Let Gy = (Vi ENi = 1,2,..., k) be graphs with disjoint
vertex sets, and U; be a subsel of V(i = 1,2,... k). A
graph § = (Ny, Es); Ns = {1,2,...,k} is also given. When
L) € Ay end ij € Es |, By is assumed given, where
Ey, CUx U ={uv:ueUjvell;}. Now we define
a new praph (7, called a combined graph as follows:
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G = (Vi Br), where Vi, = US|V, and E; = UL B U
E where E' = Uyep. Eij.
This operation for creating of the combined graph is called
the partial joining of graphs, and the G;’s, S, and the ele-
ments of £’ are called base graphs, a skeleton graph, and
newly added edges(added edges for short), respectively.

Example : Let (7, = (7, = (3 = Ky{the complete graph
with four vertices) be base graphs. Let § be the path P
{the path with three vertices) as a skeleton graph. The
subsets are given by: Uy = {a},Us = {b},and U3 = {¢,d}.
Refer to Figure 1. Let F|y = {ab} and Ey = {be,bd}. The
combined graph is shown in Figure 1.

Fig. 1.
Examples of : Base graphs, a skeleton graph,
and a combined graph.

2.2 Distances of Newly Added Edges

The length of the newly added edge uv € Ey; is considered
as follows:

Case 1 d{u,v) =10,

Case 2 ¢ d{u,v) =1, and

Case 3 : d{u,v) depends on v and .

One interpretation of Case 1 concerns the identification of
two end vertices of added edge. Case 2 treats edges of the
base graph and the added edges at the same level. (lase
3 is the most natural in practical networks. The authors
plan to present results on Case 3 elsewhere.

3 The distance properties of com-
bined graphs

In this section, some distance properties are derived. Case
1, mentioned in subsection 2.2, is considered, and some
properties of Case 2 are noted.

Let G; = (V,, B, U; C V(i = 1,...,k), and § be a tree
with & vertices, Let the combined graph G = (Vq, Eg)
be as defined in subsection 2.1. Further, assume that each
graph (V;UV], £;;) is connected for all ij € Eg, and assume
that the length of each edge in each E; is 1 and the length
of added edge of Ej; is 0. Moreover, di(z,y), e:i{z) and
d;(r) mean the distance between vertices, the eccentricity
and the distance in (4; | respectively. In Case 1, we note
d{x,y) =0, il z,y € UL, UL

Property 1.
(L.I)f 2,y € ¥, then

d(ie,y) = min{di{e, y), i, )+ ) Wi = 1,2, 008,

(L2)ITz e Vi,y €V, for i # j, then

die,y) = di(e, 1) + d, (U, ).

Proof:(1.1) By definition, the length of the & — y shortest
path i Gy is di{z, ¥). On the other hand, the length of the
x — y path through vertices of U; in the combined graph
is di{x, U) + d;(I7L ). So d{e,y) is the smaller of d;(x, y)
and (di{x, U)) + &I, ).

(1.2) It follows from the fact that any z—y shortest path
between & € (7, and y € (5 is constructed by concatenating
the o — U; path, the o' — ' path (consisting of only newly
added edges for some &' € U; and 3’ € U/;) and the I/; — y
path. However the length of this second path is zero. Thus
Property (1.2) follows. O

The distance d(x,y) does not satisfy one of axioms of
a metric. That is, the first axiom should be changed, such
that d{x,y) =0 il x =y or x,y € UI/;. But the symmetry
and triangle inequality are satisfied. Because of that, the
length of the added edge is zero, which means that the two
end vertices of the edge are one and the same. And d(z,y)
is considered as if it is the distance of so-called condensed
graph, which is derived by identifving all end vertices of
the newly added edpes.

3.1 The Diameter of Combined Graphs

The following property about the diameter of combined
graph is established:

Property 2.
diem((7) € 2max{e;(I)) i =1,2,...,k}.

Proof: By the definition of diameter, diam((+) = max{d(x,y} :

o,y € Vgl
Two cases are considered separately:
(2.1) x,y € Vi, and (22) e V,y € V(i # 4}
Case{2.1) : When &,y € V;, by Property(1.1),

It

dle,y) min{d:{c,y), di{z, 1) + ({0, 9)}
di(, U5) + di (1, )

2e, (1),

1A IA

Case (2.2) :
Property(1.2),

When © € Vi, and y € Vi(i £ j}, by

dle,y) = e, )+ 4 (0, )
e (05Y 4 e, (175
2maw{e (7)), 6,173}

FANR VAN

By combining the above, Property 2 follows. O

The bound in this property is sharp as can be seen
in the example in Figure 2, where e(I/;} = e({/2) = 3 and
diam{(+} = 6. From Property 2 it can be seen that, in order
to minimize diam{(7), it is desirable to keep o{(U;}, e;{U))
as small as possible. Thus the problem is reduced to the
nulti-center problem of each (3.
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Fig. 2.
An example which shows that the mequality of
Property 2 is sharp,

In particular, when || = L let Iy = {u;, i = 1,2, ..., &).

Property 1'.
(L.V) o,y € Vi, then d(z,y) = di(ie, )i = 1,2,... k).
{12Y 2z e V,y eV for i £ j, then
dlz,y) = di(x,w) + d;(uj, ).

Property 2'.
diam(F) = mar; ;{diam{G;), dlam (), e;(u)+e;(u, b}

So far we have treated only the case in which the length
of the added edge is zero. When this length is 1 and the
number of base graphs is two, we obtain :

Property 1”.

(1) Iz, y € V., then

d(e,y) = min{d;(x,y),d.(x,U) + 2 + (. )} =
1,2).

(2) If & ¢ Vi,y € W, then d(w,y) = dy(x, 1) + 1 +
da(Uy, y)

(3) diem(G) < 2maxie(U) + 1, e2(1,) 4+ 1}

(4) When [l/}] = i3] =1,

diam((7) = mar{diam((), diam(Gy), e, (V) +e3(113)+1}.

3.2 The Distance Sum(Transmission Num-
ber) of Combined Graphs

In this subsection, a relation bhetween the distance sim
of the combined graph and base graphs is derived. Let a
graph (@ be defined in this section, and the assumptions
about the lengths of edges be as given in the heginning of
Section 3.

Then let :

()= T dle,y)i= 1,2, k),

oyEV,
diGy = Y dlae,y)i=1.2,... k)
EXS A
and

A, Gy) =

>, dizy)

zEV, yeV;

(i # 4}

The distance sum(transmission number) of (¢ can be ex-
pressed as the following:

(I(G) = Z (l((;z) -+ Z (l((;x,(:r'j)

1<igh 1<iZ <k

By Property (1.1), for &,y € W,
A, y) = dife,y) —d{a,y)
= Ao, gy {die, U + UL )i = 1,2, k),

a—0 ifa>b,

where a—b = { 0 ifa<bh

Then we have:

Property 3.
Al = (G — Z Ao, y¥i=1,2,.. k).

ryeV

Next, for » € V.,y € V;, using the relation d{r,y) =
di(w, ) 4 d5 (U5, y), we have:

d(G, 0 = Z dlz,yl
26V, eV,
= Do dile U+ S (U
eV eV, z€V, ¥EV,
= WS dile, U+ VLSS dy(07,,m)
rel, yeV,
= [Vldi(17) + Vi1, (7).
By sumiming up these, we obtain :
Property 4.
ll-'
d(GYy = {di(G) - > Aoy}
=1 ryev,
+ DAV + Vil (175},
i#7

This provides a guide as to how to choose the /% in
order to make the distance sum as small as possible:
(4.1) Choose [7; so that (1)) are as small as passible, and
{(4.2) take each Ai(x,y) as large as possible. That is, if
the cardinalities of {/; are given, a vealization of (4.1) is
reduced to so-called multi-median problem. Moreover, in
order Lo realize (4.2), it is necessary to make the radius of
tllf bali B}-, the hall of u; in (7}, as small as possible, where
By ={re Vi d(e,u!) < d(z,u}) forall h # j}, and w, i,
are the vertices of (7.
We conjecture that the realization of (4.1} contributes to
the realization of (4.2).

4 Some Minimization Problems

We now assmme that for any base graphs {¢7;} and each
singleton I = {u,}(i = 1,2, ..., k), the leugth of any newly
added edge is one, and the skeleton grapl is a tree with &
vertices. Each distance sum d{(7,, ;) between (7, and ;
for 1 5 § is described as follows:

d(G ) = V() + [V 1) -+ [Vild, (o).

Let DS be the summation of these. That s,

DS = 3 d{G,G)).
1<iz <k
Moreover, let |V = w,(i = 1,2,....k), and rewrite the

above as:

A(Go G} = i (1) 4 wieyd{u, 4wy,
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and

D5 = Z wsd (u )+ Z wyety el (1 oy )+ Z wyd ().

Rty I<igzgh 1SiEy <k

These the first and third terms are equivalent, and do
not depend on the form of the skeleton graph or the corre-
spondence of vertices between the skeleton graph and the
base graphs. In order to make DS small, we have to con-
sider the second term.

5o we now analyze the following two problems:

Problem 1: Minimize the value of D5 by changing the
correspotdence beiween the vertices of the skeleton graph
and the base graphs.,

Problem 2: Find the form{type) of the skeleton graph
among trees with & vertices, such that 25 is minimized.

4.1 Minimizing of the value of DS

For the first and third terms in 9, it is necessary to min-
imize d;(u;). That is, it is enough to choose u; 23 a median
of (7;. Let W be the summation of the second terms. That
is,
W = Z wiwry (v, ;).
1<i# sk

We now consider the minimization of W. In other
words, we wish to assign weights {w;} to the vertices of the
skeleton graph S so that W is minimized. This problem
can be modelled as a quadratic assignnent problem(QAP)
as follows.

Definition: Let ¢, = wowd(u;, u,) and
r = L if the weight w, is assigned to the vertex 1,
"7 1 0 otherwise,

where 4., s,t=1,2,.. k.

Constraints:

k
Yoea=1lor i=12000k
g=1

[Each vertex 7 is assigned exactly one weight ]
k
Z-rsz =1 ; s=1.2.... k.
i=1

[Each weight w, is assigued exactly one vertex.]

ry=0 or | ; si=12 ..k

[Each weight w, is either assigned to the vertex i, or it is
not.]

Objective:

k kK kK

W= Z Z Z Z CiystliaiLyy.

=1 j=1 s=} =1

Minhnize

Algorithms that guarantee optimality for the QAP have
been reported by Gilmore(1962) and Lawler(1963}. Recent
refinements have been discussed by Liet al. (1994). How-
ever the problem is NP-hard. which reinforces the quest for
efficient heuristics for it. Kellyet al. (1994) have recently

investigated the feasibility of emploving tabu search, ge-
netic algorithms and simulated annealing to provide a ba-
sic effective QAP heuristics. However a simple heuristic
approach can be developed as follows,

Let an assignment, X = {x; }uxx, be given. Note that the
vertices of S are numbered @ 1,2, .. k. In this assignment,
let the weight of vertex i be wy;. If necessary we change
numbering of vertices. Let di; = d(uy, uy) for the sake of
simplicity and let the summation of products of weights
and distances be :

W, = > uyd;(i=1.2,.,k).

1555k

Now cousider a new assipnment X', which is the saine as
X except for the fact that the weights of vertices p and ¢
are interchanged. Let the values of W Ly the assignments
X and X' be W(X) and W(X"), respectively.

Then we have :

Property 5.
WX)~WXT) = 20w, =y ) % {{Wo—wydpy )~ (W —wpdyp) }.

Proofl: Let m be a columm vector of weights {w;} as its
components, and ¢ be a vector obtained by exchanging the
pth component and the gth component of @. Moreover, let
D) be the distance matrix of the skeleton graph S. Then,
we get the relation:

W{X) = 2Dz,

W(X) =y Dy.
Note
y =&+ (u, — wy)z,

where z is a vector in which the pth component is —1, gth
component is 1, and others are 0. By combining these three
equations we obtain the result. O

By this result, when w, > w, and W, — W, > (w, —
' Jelpg, we can improve W if the weights of the pth veriex
and the gth vertex are interchanged. Roughly speaking,
il we assign relatively large weights to the vertices of the
central part of S and relatively small weights to the vertices
at the peripheral part of 5, we obtain a relatively suzall W,

4.2 The optimal form of the skeleton

In this subsection, we wish to identify the forn: of the skele-
ton grapl for minimizing W. We consider any tree with
k vertices, and any assignment of weights {us} to vertices
of 5. Now, for ur € E of tree S, let Ti» be the maximal
subtree containing u but not containing v, and 7y, be the
maximal subtree containing ¢ but not containing «. More-
over, let the sum of weights of Ty, and Ty, be bhwn{u\v)
and b(i\u) | respectively. Then the following result is
derived,

Property 6.

Assume that the diameter of the skeleton graph § is
greater than two. Then there exists an edge uv and a vertex
v with an adjacent leal vertex x, such that buw(u\z) >
buw(v\u) = 10, where w, is the weight of the vertex .
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Proof: We consider an edge b where the vertices ¢ and b
are not leaves of 5 and bw(a\b) > bw(b\a). There exists
such an edge because the diameter is greater than two. Let
z be the oue of leaves of Ty, and the adjacent vertex of
be w. (It might be .) Moreover, let the adjacent vertex of
v on the ¢ — v path be w. (It might be a.) Then:

b (u\v) 2 bw(a\b) = buw(b\a) = bw(v\u) > bw{v\u) —w,.

Hence the result follows, O

By this result, the value W can be improved if an edge
v is removed and an edge wr is added : Let &' be the tree
obtained by removing ve from S and adding v to S, and
let Wy be the distance sum of 5, and Wy be the distance
sum of 8. Then we obtain the relation:

W Wy = bw{u\e) — (b(v\u) — ;) > 0.

By repealing this deleting and adding procedure, we
obtain a tree with diameter two (the so-called star graph.)
Moreover, if we assign the largest weight to the center of
the star, we obtain the required tree and the assigmnent.

5 Summary

An operation, the partial joining, is proposed, and some
properties concerning the graphical distance of the com-
bined graph and base graphs are established. The instance
of zero distance of edge being added is 2 means of identi-
[ying the end vertices of the edge.

Guide lines for decreasing the diameter and the distance
sum of the combined graph are derived, By restricting
the skeleton graph to a tree, a strategy for decreasing the
distance sum between base graphs is established.
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