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In this paper, we give a recursion formula of local densities with congruence conditions.
As an application we give another proof for the recursion formula of local densities n (J.
Number Theory, 64, 1997, 183-210) for a special case. Further we define a certain formal
power series which is a generalization of the one in (Proc. Jopun Acad. 70, 1904, 208-211),
and determine an explicit formn of its denominator.
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1 INTRODUCTION

Local densities of quadratic formns over the p-adic field
are very hnportant invariants in the aritlunetic theory of
guadratic fors, and various types of recursion formulas for
them lave been studied by several anthors. They all give
inportant® information on local densities. Among others, in
[Kil] aud [Ki2], IKitacka have given an explicit fornmla for a
special case. Iu [ICal], we Liave defined the local densities with
congruence condition, and in [I{a2], obtained several recur-
sion formulas for them to give the denominator of a certain
power series attached to local densities for p # 2. They are
very effective to compute the local densities, and give an ex-
plicit form of all local densities of quadartic forms over the
p—adic field for p # 2 in principle. Howerver they are rather
complicated and not all of them can be generalized to all the
cases including p == 2 (see the remark ab the end of section
3). In this paper, we give a formula expressiug o locol density
with congruence condition as a linear combiuation of usual
local deusities for a special but important case (¢f. Theorem
3.3). It is rvather simpler than the ones in {[{a2], and Lolds
for all p including 2. As a corollary, we give a new proof to
[K11, Theorem 4.1} for a special case.

LGotston Subject Division
2Deparlinent of Mathematics Faculty of Stience, Uokkaido University

2 LOCAL DENSITIES WITH CONGRUENCE CON-
DITIONS

In this section, we recall the uotion of the local deusities
with congruence conditions and a recursion foriuta for them
following [Ka2] and [His] with a slight modification. For a
conumubative ring I, we denote by M, (1) the set of (1, n)-
matrices with entries in ft. Here we understaud My () the
set of the empty matriz if m = 0 or n = 0. We also make
the couvention that diag(lV, V) = V if U is the ewnpty matrix.
For an (m,n) matrix X and an (m,m) mabrix 4, we write
A[X] =* XAX, where 'X denotes the transposition of X. Let
a be an element of R, Then for an element X of M, (&) we
often use the same symbol X to denote the class of X mod
aM,..{R). Pui

'l

GLyn(R) = {A € Muu(R);det 4 € B},

where det 4 denotes the determinant of a square watrix A,
and I denotes the unit group of R, Further tet 5,{R) denote
the seb of symuetric wairices of degree n with entyies in .
We abbreviate au (m, n}—matrix whuse components are all
1 (zesp. 0) as 1,,, (vesp. ). We often simply write 1 =
1. and 0 = 0, if no confusion arises. Remark that 1 is
differeut frown the unit wmatrix. For square matrices X and
Y we write diag(X, V) = ( ':; 3 ) . Let Qp be the field of
p-adic numbers, and {0,1} the ﬁu;te set with two integers
0 and L. Let m,n and { be non-negative intezers such that
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mlznzl Fodeb,(4,),Te 50(Z,),U & S(Z,),] =
{7i;) € Mi1=({0,1}), and a non-negative integer e, pus

Ac(Tv (Sa U)l I) = {X = (‘Tij) € lvfm-H.n(Zp)/pe-ﬂ/-{m+l,n(zp);

diag(S, U)[X] = T mod p® and 2,upi; € P92,
forany 1 £i50L1< 7 <0},
and
ac(T, (S, UN 1) = £ AT, (S, U); 1),
We then define a,(T, (5, U/); 1) by

(XJ;(T, (S, U)| I) = pm(l) cl_i}go p(—[m+f]u+n{n+l)/z}LaC(T, (S, U}, I).,
where for I = (ry;) € M.({0,1}) we write

w(l) = Z T4y
101 <s<s

I diag( S, U) aad T are nou-degenerate, the above Linit exists.

We write ap,(T, (5, U); [) as ap (T, (5,0), I) oras o, (T, (0, U); )
according as deg U == 0 or deg § = 0. Note that o, (T, (5, 1); I)
coincides with the usual local density a,(7,5) if | = 0 and

with o, (T, diag(5, U)) if T = 0, For an (I,n)-matrix [ =

{ri), and permutations ¢ and 7 of degree { and n respec-

tively, we put 0 J o T = (r,0.(5)). We say that an (I,n)—

matrix I is standard if

”’l L T?,_.,_.l Ty
1 0 0 o Hi
I= |1 1 0 0 %
1 1 1 0 Mooy
1 1 1 1 Y,

with non-negative integers 4y, - -+, L, oy 10y, - -y g1, 10 such
that [y -+ oo+ by =l and iy 4o g+, =n. An
({,n)— matrix I is called guasi-standard if [ = oo [y o 7 with
a standard matrix I, and permutations o and 7 of degrees !
and 7, respectively, We denote by Sdi,({0,1}) the subset of
M1a({0.1}} consisting of all quasi-standard matrices.

Now let A be an even unimedular matrix with entries in
Z,. That is, let A be a symmetric unimodular matrix with
eutries in Z, wlhose diagonal components beloug to 2Z,. We
remark that it means merely a symmetric unimodular matrix
with entries in Z if p 5 2. As is well known, A is equivalent,
over Z,, to & matrix of the following type:

r

e
diag{H, ..., H,U),

01 . . ; .
where H = ( 10 ) ,and U Is an anisotropic even unimod-

ular matrix of degree not greater than 2. The above » is the
Witt index of A, which will be denoted by #(A4). Here we make
the convention that diag{H, ..., H,U) = U or = diag(H, ..., H)
according as r = 0 or deg I/ = 0. Then we define A® by
r—k
k) — 3
A® = diag(H, ... H,U).

This 4% is uniquely determined oniy by A and k up to
equivalence over Zy. As is well known, the value ap{B, 4)

k
for an evenr matrix B of degree n aud 4 = diag(m)
is closely connected with the Fourier coefficient of Siegel-
Eisenstein scries of degree n and of weight & {for example,
see [IK],[Ka5],[Ka6],[Ki2], and [M].) So it is impertant prob-
lers to find a reasonable expression of o,(B,A4) when A is
even uiimodular.

PROPOSITION 2.1. Let m,i,n be non-negative integers
such thot m +1 > n > 1. Let A be non-degenerate even
unimodular matriz of degree m with entries in Z,, and let
biy by ey eeg o be cleinents of 22,\{0} such that by € 2)°Z,.
Further let I' be an (I, n}-modriz with entries i {0,1}. Put
B = diag(bs, .., be), B = diag(by, ... b), and C = diag(ey, ..., ¢r)-
(1) Let n > 2. Then we have

a,,(diag(p%l, é), (A,C) Ly, I'N

= p Mg (diag (b, B), (4, C); (04, 17)
+8,(0, A)ep( B, (diag(AW), —p*by), C), '),

where (141, I') is the (I, n)-matriz whose k-th column is 1y, or
the k — 1-th column of I' according as k = 1 or not, and
others. Here we understand the right-hand side is @ if the
Witt index of A 15 0.

(2} Let n = 1. Then we hove

a(p®hi, {4, C) 1n) = p7" o (bs, (A, C); 0n) = By(0, A).

PROPOSITION 2.2, Let A, B, Cy and Cy be non-degencrate
symmetric matrices of degree m,n, l; and ly, vespectively, with
entries i Zy, such that m+4-1, +1; > n, and I an (ly, n)-matriz
with entries in {0, 1}. Assume that B, C, and Cy are diegonal.
Then we have

{1) (B, (diag( A, p*Cy), C2); )
Py (l‘p(B, (A,dia,g(chcz))’ ( 1t}.n ))
(2) ai’)(B, (A, diag(pzchc_z); ( Ol}m )

= Gip(B, (A,diag(cl!cz)); ( 11}.11 ))

Proposition 2.2 for p # 2 is nothing but [Ka2, Proposition
3.4] and it also holds for p = 2 without any change. (1) of
Proposition 2.1 for p # 2 is a special case of {Ka2, Proposition
3.6, 3.7] and it can be proved with slight modification for
2 = 2. Now let n, be positive integers. Let

ny Tyt un
60 0 0 H:
I= 11 0 0 9 I
1 1 0 0 Hot
1 1 1 0

Hs
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with non-negative integers Iy, -+, L,_y, fy, 79, - Mgy, 1ty such
that loy gy may ey > Qand & b b Lol 4l =y &
st o, = n. For an iuteger § such that 5y 4. 4 np, +
1< <np+. e put I[f] = L +... 4. Here we understand
ng = 0. For each integer 1 < %k < s put nfi] = ny+...4+np. For
tlie above I and cacl integers 1 < & < s define an element fk

of M,{{0,1}) by

1) Mgl g e g
¢ ¢ 0 1 1 1 1
1 0 0 1 1 3 }
1 1 0 1 1 i Hio
11 1 1 11 A
o0 0 1 0 0 }
6 6 0 1 1 0 M,

We note that f; = I if {y == 0. Next, for each integer j such
that nfk — 1] +1 < j < [k — 1] + n, define an clement I, of
M ({0,1}) by

ny . oy Jenfk—1 wlkl -5 .. a,
0 0 0 0 1 11y M,
10 0 0 1 11|
L1 o 0 1 1 1] Y
11 1 0 1 11 Ha
0 0 0 0 1 0 0] }
0 0 0 0 1 10/

that is, [; is the matrix obtained from I, by replacing (o, 8)-
components of [, by 0 for o = njk—1]4+1,n[k=1]42, ..., 7~1,7
and § = 1,...,1. Purther put Iy = I. We note that [, = I,
aud Iy is the matrix obtained from Loty by replacing (o, 5)-
components of Lp_y by 1fora=1,.,nand S =10+ ... +
bt + 1y by F o+ Ly + L {see example below).
EXAMPLE. Let n = 4, = 4,5 = 3 and n; = 2,0, =
Lns=1,04 =105 =2l3=1 Theun{l] = 2,n2] = 3,n[3] =

G 00O
1100
40 =12 =1,1[3) = 3,l[4] = 4, and [ = i 100
111606
By coustruction we have
1111 0011
= 110090 = 1111
. = ,
d 1100 1111
1110 0010,
and
0 00 1
I = 1 101
1101
1111
Further we have
0111 9 011
0100 0000
o I = s
d 0100 | 0000
01 1¢ 00140

and
¢ Q01
I = 11061
1101
G000

PROPOSITION 2.5, Let L, n be non-negative integers
such thal m 4+ 1> nw > 1. Let A be an even animoduler ma-
tris of degree e with entries in Z, and by, ..., b, € 27\ {0}.
Further let e, .., 00 € 22,\{0} and I be as above if we have
I>0.

(L) Letn>2 Then for 1 <i<n we heve

ap(diag(p®by, ..., p?bn), (4, diag(p®es, ....p?a); I)
—pmtnt g (diag(h,, s D PPbiggy o, R0, (A, G 5}

= (0, A) 3o pUIE I g By (AW diag(—p2b,, C)); 1)
j=1

where B, = diag(by, ..., byo1,p2541, o, pPby), €, = diag(cy, ...,
CJ{]]!]JQCHJ]-}-I: o P, and Il is w certain (I -+ 1,n — 1)-quas:-
standard matriz determined by I and j. Here we understand
the right-hand side of the above equation is 0 if the Witt indez
of A is 0.

(2) Let n = 1. Then we hove

ap(pzbl, {4, diag(p?e;, o Pled); I

= pm e by, {4, O 1) 4 6p{0, 4).

Proaf. (1} First et I > 0 and § = ny - ... 4 ng_y + 3’ with
1 < 3" € ng. By (2) of Proposition 2.2 we have

o (diag(p®hy, ..., p20,.), (A, diag(pPc,, cepte)h )

= ap{diag(pPhy, ..., p20,), (A, <) fl).

for any 1 < j < n;. Thus the assertion for £ = 1 can be
proved by using Proposition 2.1 repeatedly. Let & > 2 and
assuine that the assertion holds for & — 1. Then we have

opidiag{p®hi, ..., 720, (A, diaglper, ... p" ah);
__pn[k-w 1](—m+u+l)

X U'p(diug{blv ceeg bn{k—l}v I"Zbu[knl]-}-li "'a])gbn)) (A! Cn[k—l]); In{k»-i]) .

nEk—-l} .
= fp(0,4) 37 pumEminta (B (AW, diag(~p?b,, G 1)

=i

By (2} of Proposition 2.2 we have
O‘n(diag(bl 3oy b:u'ﬂ-‘— 1) sznlkw 1413 -0 p2 bﬂ): (A’ C“lk““ 1])? I"[L‘_ l])

= ap(diag (b, -y bufeo1) PPOnli 114 1s o 2P0 ), {4, C); Ii)

for any n{k —1}+1 < j < n[k— 1)+ ny. Thus the assertion for
k can be proved by using (1) of Proposition 2.1 repeatedly,
Thus the assertion for I > 0 can be proved by induction, and
that for { = 0 can be proved in the same manner.

{2) The assertion can be proved by using (2) of Proposition
2.1 and Proposition 2.2 in the same manner as {1). 4



Hidenort KATSURADA and Masaki HESASUE

3 PROOF OF MAIN RESULTS

In this section we prove the main result. To do this, we
need some preliminaries. Tor two elements u,v € Z, we write
u ~ v if there exists an element x of Z; such that u = va®
For two symuietric matrices U, V' with eatries in Z, we write
U ~ Vif there exists a unimodular matrix X in Z, such that

U =V[X).

LEMMA 3.1. Let s,t,n, 11, .., 1,1 be non-negative integers
such that ny + ...+ n, = n,ny,..n, > 0 and s > t. Let
Bi € Su(2y) (i = 1,..,5),Y = (Ulj}lSISl.lSJSH € My (%)
andd ¢y € Z0\{0). Pui B = diag(B), By, ..., B,), ' =
diag(Bl, ey Bt), C = Lli'ag{ci, ey C;), ]/1 = (y,‘J)J5,51,15j5,,|+,_,+,,,,
Yy =A{vi;icichni odniricion. Assume that for i=1,.. 5, B;
is ph-wamodular and ord,{ex) = ri42e,+1 fork =1, ..., i =
t+ 1,08 ( for the definition of p™-modular, see [Ki5]).
Then there exists a wnimodular matriz V of degree I indepen-
dent of Y] such that

V = E; mod p,
and

I3 - C[Y’] ~ dld.g(,Br + C[V}/ILBH-l: 7B3)

Prouf. Put ¢ =0yt + Nee1, Z) = (yu)lggsr,lgfsqazz =
(ylj}lgl'sl,q«l-lSJSnsBl = dl‘lg(-Bla B2a '“7B.1—1) and B2 = Ba +
C[Zz]. Then we have

B ClY) = ( B+ Cl2)] ‘2,02, )

lchzl B2
By assmupiion we have
B, = B, med pre¥teetiag (F).

Thus Ly [15, Cor 5.4.4], there exsits a unimodular matrix U/
of degree n, such that we have
(+)  BlU)= B,

Thus we have By ''Y2CY, € Ma_,{Z,) and

(B +CY])

- o
—-ByMz2,0Z, U

(B4 ClZ] - Brtgcz) o
h 0} B, }’

We lLiave

Cl2\) - By ' 2:C 2] = (C — By ' Z:C))| 24},
By assumption aud (%), we have

[ E{l[‘ZQC] = C wodpM EH T AL (7 ),

where M{C) = max;(ord,(¢}). Thus, again by [Ki5, Cor.
5.4.4}], there exists a unimodular matrix V' of degree | inde-
pendent of Z, such that

V' = Fy inod p and C — By '['2,C) = C[V'].

Repeating this process, we complete the proof.

PROPOSITION 3.2. Let m,n,l,¢ be non-negative inte-
gevs such that m -1 > n and n > q. Let A € 5,{(2,),B =
diag(dy, ..., b,),C = diaglcy, ..., ) with by, . by, €1y ey €
ZN0}. Let T = (IL,17) with I € My,({0,1}) and I! €
My ({0,1}). Assumne thet ord,(c;} = ord,(b;) + 2¢, + 1
Jori=1,.,0L,)=q+1,..,n Then an(B,(A,C);I) does not
depend on f,;’. In particular if g = 0 we have

a,(B, (A, C) I} = (B, A).

Proof. For cach J = (15} € M, ({0,1}) and Z = (z;) €
My (Zy,), we write Z € p7B, if z; € phiZ, for any 1 <4 <
5,1 < 7 < t. Further put B' = diag(by,...,by) and B" =
diag(Dy1, ..o, by ). Then by Lemuna 3.1 we have

ao(B, (A, CHI) = #A{B+CIY], A)
Y My (Zy )/ poMp(Zp),Y €pt Dy

=33 #A(diag(B' + C[V1], B"), A)

Ve T
= PO S g A, (ding(B' + C[1], B, A),
n
where Y3 (resp. ¥7) runs over elements of M, (Zp}/ p* Mi_yn
(Zp) (vesp. Mya{Z)/p® Myn(Z,)) such that Y5 € pv 2, (vesp.
YV, € pNZ,). Thus pel-teslnintntl/A+elly, (B (A, 0); 1)

does uot depend on I and therefore nor does o, (B, (4,C); I).
Further if ¢ = 0 we have

pc(—(m+t)n+n[n+1]/2}+w(!)ac(B’ (A, c), I)

- pe(wnm-i»n(n+1)/2)#AG(B‘A)'

Thus the second assertion holds. g
Now for each integers ¢, j, &k such that 0 <k <1, put

o k) == 3

0 <LCipLi-1

Pl li—ie) ),

Here we understand that we have (3, 7,0) = 1. We remark
that (¢, j, k) is the k-th coefficient of the polynomial [Ti 4 (1
p("‘k)(”k]:r) in z, that is,

i-1 i

I - plUENT R gy = 3o, g, ke

k=0 k=0
Then our main result is the following, which we can prove by
induction using Propositions 2.5 and 3.2,

THEOREM 3.3. Let t,n,m,l be non-negative integers such
thatm+12n>1 andn >t Let By = diag(by,...,0,), By =
diag{bes1y oo b)) with by, .y by € Z\{0} and C = diag(ey, .., cr)
with ¢, ...,a € ZN\{0}. Let I € M, ,({0,1}). Let ¢ be an in-
teger such that e > ord,(b;) — ordy(be) + 2mg + 2 + 2e, and
e 2 ord,(b;) —ordp{ow )+ 2mp+34-2¢,, for j =41, .. n,k =
1,1,k =1,..,1. Then we have

mg+1

STt —m A n + 1 k)ay(diag(pe By, Ba), (A4, p~*C); 1)
k=0

— 100 —
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g 1 - p(—m-i-n+i+1)(n—i)

= H 1 — pmEndidl QP(B% A("l°+l))ﬁp(os.zo+laA)‘
1=

As a special case of the above theorem we have

COROLLARY. Let m,n and ¢ be positive integers such that
m 2z n 2t Let A be an cven wnimodular matriz of degree
meoand of Witt index r. Let By = ding(by,...,0) and O, =
diag(berr, .., bs) with b € Z\{0}. Put e, = 1 or 0 according
as p = 2 or not, and my = min(t — 1,r). Further let e be an
integer such that e > ord,(b,) — ord, (b} + 2y + 2e, -+ 2 for
F=t+1,.,n,k=1,.,t Then we have

o {diag(p® By, 3,), A)

g1 .
== 3 gt —m A+ 1) o (diag (p° 75 By, Ba), A)
i=1
Ly ]J(l—i)(—n|+n+i+l}

* 1;!:) 1- ])—rn+rl+l+l 'BP(O"HH-U A)a.v(B'lt A(mﬂ'{'l})i

where Onoqy is the zero matriz of degree my + 1. Here we
make the convention that the second term on the right-hand
side is 0 if mo = r, and that we have apy( By, AUty = 1 jf

n=1t.

REMARK 1. The above corollary has been proved in [KH]
under more general setting. However, in that paper, we have
not deal with the local densities with congruence conditions,
that is we liave not proved Theorem 3.3. Thus our result in
this paper is new in this sense.

Now for non-degenerate matrices 4, By, ...., B,_; aud B, of
degree mi,ny, .., n,_; and n,, respectively, witl: eutries in Zy,
deflue a fornnal power series R{{ B, ..., B, Az, e, 2,) by

R{(B:, ... B.), Ay, ey 2,)

>

€12 2,21

ap{diag(p® By, ..., p* B,), A)x .29,
Let A, be the complete set of representatives of Z;/Z;z, and
puk

Ao ={(b1, 0 ba)i b € AL
or
= {(Bh--'u Ba);deg By + ...+ (I(,‘,g B, = n,

01 2 1
B,-—(l 0)’(1 2),01 deg B, = 1 andB; € A}

according as p # 2 or = 2. Then the set of power series
{R((B]_,...,B,),A;Il.'h...,.’17,)}(53'_,_'3‘]5{\"'? gives complete in-
formation on the local densities a,(B, A) for all B of degree
n and A. So it is important to study these power series. The
following is a direct consequence of Corollary to Theorem 3.3:

THEOREM 3.4. Assume that A is cven unimodulur, and
put By = diag(bn, 4 qnioy ety eons bnggogns) (8 = 1,...,s) with
by € ZA{0}. Put my = min{n; + ... + np — 1,7), Further
put by = my + ¢, or = my + ey 4 WA rmuy 1,00 ord,(b;)
ordy(by) —

,,,,,

— Wil 0rdy(B;) eccording as MAX 1=, 44
Milkjoy, m 00d,(8;) <0 or not. Then we hove

ni

[I( = pr—Hemembt D D By L B, Ay, o o)

=0

lo o
=%y > y(n,—m 4 n 41,0 - )

im0 =0

x R({diag{p¥ By, Ba), B3, ..., B,), A; 2120, 23, .., @,

lo i
+ 3 bt Syln—mtbntii—j)

1= =0
s R((diag(p¥ 1 By, By), Ba, .oy B,), As 2129, 13, 0y a,)
LT p(m--n)(wm+u+:+i) . x'ffc'i'?—
" 1:% 1 — promndit] Bo( Oy 44, AJl -z

®R((By, By, ..., B,), A 0y g 2,)

Here we make the convention that the third term on the right-
hand side of the above is 0 if r =y, and that we have
R((diag(p* By, Ba), B3, ., Ba)y A 2122, 83, -0y 2,) = 0op(p* By, A)
fork = 1,2l +1 and R((Bs, Bs, ..., B,), A"+ g2y 25,
oty ))=14s=1.

We remark that if s = 1 and ny = n, our power series
coiucides with the one defined by Kitacka [Kid] and by the
above theorem its denominator is

min(n-1,r)

H (1 _p(rx——l)(—rr1+n+i+l)a:2)(1 _ :L,}m'!

i=0 )
where m' = 1 or = 0 according as r 2 » or not, This is a cer-
tain refinement of the result of [Hirl,[[{i4]. Further Theorem
1.2 shows that if s > 2, the series R((B1,..., Bs), A; 21, ..., 2,
{1~ 2 ITZ(1 — ptmi—omntie a2y can be expressed as a
Q[ ]Hinear combination of the power series in s— 1 variables.
Using this, by induction, we have

THEOREM 3.5. Let the notation and the assumption be as
in Theorem 3.4. Then R{(By, ..., B,), 4,2y, ...,x,) is o ratie-
nal function of x\,...,x, with denominator

sy

H H(l _ p(nl+,,.+nk-i)(~rn+n+a+1)(1:1“",L.k)?.)
k=11=0

3
X H(l - ﬂ:l...:r:k)’";«,
k=1

where my = 1 or = 0 according as r > n; +... +ny ornot. In
particular if m > 2n 4 2, the denominator of the above power
series is

s nwybodng-1 .
(1 _ p{nl+--.+nkwn)(—m+n+t+l}(l.l____,L.k)ﬂ)
k=1 i=0

'l
5

TH1 - 2.

K1
REMARK 2. In {Ka3], we have proved the rationality of
the power series defined by
Q(( By, s Be), Ay oy y)

= 2

€5 yeeiBa b

ap(diag(p™ By, ..., p" B,), A)af, 2%
for arbitrary A, B and p. Further, in [Ka2], we have given an
explicit form of the denominator of it when p # 2. To do this,
we needed a recursion formula similar to Proposition 2.1 for
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an arbitrary matrix A of level p (c¢f. {Ka2 Propesition 3.6
{.20).

alized to the case where p = 2 withoutl auy change. So the

This type of formula seewns diflicuit to be gener-

method of {Ka2} giving an explicit form of the denominator
canuot be applied to p = 2 directly.
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