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We consider the problems of identifying subgraphs which are centres, medians, or
centroids of a given simple, connected graph. The case where the subgraph com-
prises a discrete set of vertices is well known. However concepts which measure
centrality in a graph, such as: eccentricity, distance, and subset cardinality, can
be extended to connected subgraphs such as: paths, trees, and cycles. Methods
have been reported which deal with the requirement that the subgraph is a path
or a constrained tree. In this paper we extend this work to the case where the
subgraph is required to be a cycle. We first examine the case where the underly-
ing graph is a grid-graph. We then report on a tabu search-based heuristic and
on randomized exchange methods for the identification of cycle centres, medians

and centroids in general graphs.

Keywords : Graph, Network, Cycle, Loction Problern

1 Introduction

This paper introduces some cycle location problems on
graphs. Concepts which measure the centrality of a ver-
tex in a graph (such as : eccentricity, distance and com-
ponent cardinality) are extended to a cycle in a graph.
Locating cycles with minimum eccentricity, distance and
compounent cardinality may be viewed as multicentre, mul-
timedian, and multicentroid problems respectively, where
the facilities are located on vertices that must constitute
a cycle. These problems are related to the traveling sales-
man and Hamiltonian cycle problems on graphs. We now
introduce some notation and terminology.

Let G = (V, E) denote a simple, connected, undirected
grapli with vertex set V (with |V| = n), and edge set E.
I'or the graph theoretic notation and terminology used in
this paper, see Foulds(1998). An edge between u and v
is denoted by uv. The distance between vertices x and v,
denoted by d(z,y), is defined to be the length of a short-
est path in (¢ between vertices x and y, expressed as the
number of edges.
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The eccentricity of a vertex z, denoted by e(x), is de-
fined to be e{x) = max{d(z,y) : y € V}. The diameter
of G, denoted by diam(G), is defined to be diam(G) =
max{e(z) : z € V}. The radius of G, denoted by rad(G),
is defined to be rad(G) = min{e(x) : ¢ € V}. A vertex ¢
of G is called a centre if e(x) = rad(G). The distance of a
vertex i, denoted by d(z), is defined by d(z) = S {d(«,y) :
y € V}. The distance of G, denoted by d(G), is defined by
d(G) = T{d(z,y) : 2,y € VY.

We now extend these concepts from a single vertex
to subsets of vertices, and also to cycles. Tor any sub-
set U C V,and any z € V, let d(z,U) = min{d(z,u) :
u € U}. The eccentricity e(U) of U is defined by e(U) =
max{d(z,U) : £ € V}, and the distance d(U) of U is de-
fined by d(U) = T{d(x,U) : x € V}. The weight w(U/) is
the largest number of vertices in a component of G — [/,

We denote the vertex set of any cycle C in G by V(C).
Then e(C) = e(V(()),d(C) = d(V(C)) and w(C) = w(V(C))
are called the eccentricity, the distance and the weight of
the cycle C, respectively.

The length of a cycle € is the number of edges of C. A
cycle with the length p is called by p-cycle.

Definition 1

A cycle C ol G is:
(1) A p-cyele center of G if e(C) < e(C’) for auy p—cycle

— 93 —



Tadashy YAMAGUCHI, Les FOULDS and John.LAMB

C.
(2) A p-eycle median of Gif d(C) < d{C*) for any p—rcycle
.
(3) A p—rcycle centroid of G if w(C) > w(C’) for any

i

p—cycle (77,
Definition 2

A cycle C of (7 is:
(1) A cycle centre if C has minimun eccentricity among a..
cycles of G and has minimum length among cycles «f 77
having minimum eccentricity.
(il) A eyecle median if C Las mmimum discailce among «wi
cycles of G and has minimum length among all ¢sclee of
having minimum distance.
(iit) A cycle centroid if C has minimum weight among ail
cycles of (7 and has minimum length among ali cycies ot
having minimum weight.

We now discuss applications of these ideas, beginning
with some which are well-known for original concepts o.
centre. median, and centroid. In general, the theory of
facilities location, well known in operations research and
industrial engineering, is concerned with the location of
one or more facilities which are sited so as to service a
number of given clients. We confine our attention here tc
the location of facilities on grapls or networks, rather than
in the plane.

The first application is concerned with the location of
emergency facilities ( e.g. emergency clinics, police sta-
tions, or fire stations) on a network. The objective is to
minimize the greatest distance between any of the facilities
and any of the clients. In terms of what we have discussed
previously, this corresponds to the identification of the set
of centres of the underlying graph, which will represent the
locations of the facilities.

The second application is concerned with the location
of non-emergency facilities (e.g. libraries, post offices, or
government bureaus). The objective is to minimize the
total distance between each client and the facility closest
to it. In terms of what we have discussed previously, this
corresponds to the identification of the set of medians of
the underlying graph.

The third application is concerned with the location of
special facilities (e.g. distribution, or communication cen-
tres). The objective is to minimize the size of any identifi-
able neighborhood of connected clients which is not part of
the facility. In terms of what we have discussed previously,
this corresponds to the identification of the set of centroids
of the underlying graph.

Most facility location models assume that the facili-
ties to be located can be represented Ly a disconnected
set of vertices, possibly a singleton. However it is some-
times productive for the set of vertices to have a given
structure within the underlying graph. For instance, the
circumstance when the set constitutes a path or tree has
Leen studied by Buckley and Harary(1990), Richey(1990),
Hakimi(1993) and Slater(1980,1981,1982 and 1983). There

are applications when the vertex set is a tree, such as: the
design of systems for gas reticulation. irrigation pipelines,
or freeway systems. There are also applications when the
vertex set is a path (a special type of tree), such as: the
design of a new superhighway or a new subway line. We
are concerned m this paper with the new special case in
which the vertex set is a cycle. Examples of applications of
this scenario include: the design of circular human comny

- ation networks in organizationai structures ~ircular bt

routes, and the creation of express ring roads in «n trban

vjronment.

Observation :

The following are equivalent:
{1} ¢+ has a Hamiltonian cycle C.
2} G has a p-cycie cenue
3} & has a p-cycle median C witl d(C) = 6
(4) & has a p-cycle centroid C with w(<") == 0.

G el =
win €10 U

The problem of deternuning whetlier a given gray.. . .-
tains a Hamiltonian cycle is NP-complete(Tiarcy anc Tohn-
son(1979)). Therefore, the problem of determining whether
{2}, (3), or (4} arc true for a given graph are also N/*-
complete.

In the next two sections we discuss p-cycle centres and
p-cycle medians in grid-graphs. In Section 4 some prop-
erties of the eccentricity, the distance and the weight of a
cycle in general graphs will be established. In Section 5
we report on a tabu search technique which can be used
for the same purpose. We «uminarize our findings, presen!
some conclusions on them, and suggest directions for fur-
ther research in Section 7.

2 Cycle centres in grid-graphs

For given positive integers n; > 1,n, > 1, a grid-graph
Gy xna (V) E) is defined as follows:

V o= {v;=(4,y):0< 1< n,,0< 5 <ng,t, 7 integers},
E Hviyvoa}  {lE = kL =0} ={0,1}}.

Theorem 1
(1) 1 at least one of n,, 1, are odd, there exists a [Tamil-
ton cycle C with ¢(C) = 0.
(2) If the numbers ny,n, are both even, there exists a
cycle C with e(C) = 1.
Now we restrict the problem to smaller cycles:

Problem 1

Among cycles with the rectangular form:

C: P(p1,p2), @(pr + mu,p2), R(p1 + my, pa + 1my)
and S(py,py + my)

of Gy xn,(V, E), how can one characterize all my,my, p,
and p, with mine(C) such that L(C) is least among all
such cycles?

Here, ny,n,,m,m, are positive integers and 1 < m; <

n;(i=1,2). -

That is, the rectangle C': PQRS on G, «., (V, E) with
minimuin eccentricity is to be characterized .
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Let 0O(0,0),
G'm Xng*

Then d(v,C)(v =
4(0,C) = d(

X (n,0),Y(ny,n,), Z(0,n,) be vertices of

0,X,Y,Z) are the following:
0,P) =p1 +p2,

(X C) (XaQ)=nl~(pl+ml)+p‘lv
d(Y,C) =d(Y,R) =n; — (p1 + my) + ny, — (p2 + m,), and
d(Z,C) = d(Z,5) = p + n2 — (p2 + ma).
Without loss of generality, we may assume that
p<ni=(pm+my), pr <ng—(p2+ms).
Thus
maxd(v,C) = d(Y,C) = n; — (p1 + m1) + ny — (p2 + ma).
Let €,(C) = max{d(z,C) : zis inside C}. Note that
€in(C) is independent of the location of C and is constant.
Let €54 (C) = max{d(z,C): z is outside C}.
Note that e,,:(C) = max{d(O, P),d(X,Q),d(Y, R),
By symunetry, e...(C) = d(O, P) = py + pa.
This is so because, by (2.1):

(2.1)

d(O,P) = pi+p
2 dX,@Q)=m—(m+m)+m
> d(Y,R)=n;— (p1+m)+ny— (p2+my)
> d(Z,5)=pi+n—(p2+my).

By (2.1) again, p; < |(n; — m;)/2](i = 1,2).(Here and in
the following |« is the largest integer smaller than or equal
to z.)

Then the minimum of py + p; is [(ny — my)/2] + |(n2 —
my) /2|, which is €oue(C). Then,

_ C,’.,(C),
e(C) - { f:o‘ut(c’)a

if € (C) > €out(C)
lf C,'"(C) < eout(c)'

That is,

e(C) = max{e;n(C), €-u:(C)}.
Thus
em(C) = min{|m,/2],|m./2]}.

Theorem 2

When €;,(C) > €,u(C), e(C) does not depend on the
position of C. When €;,(C) < €,,:(C), the minimization
of €(C) is realized when p; = |n;/2 —m;/2](i = 1,2).

3 Cycle medians in grid-graphs

Problem 2

Characterize the rectangular cycle with minimum dis-
tance.
Consider a grid-graph G, x.,(V, E) with cycle C of size
my X my. Let:

V={0,1,...,m} x {0,1,...,n,},
P(pi,p2); 0 <pi<mi(i=1,2), and
Ce={m+ip:+7):0<i<m,0 <5< my} (The
inside of C).

- In order to treat the distance of cycles in more detail,
we define:

din(C; P) = din(C) =

Yuec, 4(u,C), and
out(C P) - dout(c)

Euev Cp d(uv C)

Using these we have:

d(Z,9)}.

Figure 1: An extremal graph for inequality (4.1).

d(C; P) = di,(C; P) + dowt(C; P), and
d(C) = minp d(C; P).

Here, d;,(C; P) is independent of the position of C. So
it is enough to consider the term d,,:(C; P). We first con-
sider the grid-graph G.y,.

Let d(z,y,y') be ¥ Sev’ a((z,), P) where V' is the ver-
tex set of G, and P’ is the boundary path : {(z, )|y’ <
j7 < y}. By an elementary calculation, we obtain:

dz,y,y) = (= + 1)S(Y) + (v + 1)S(x), where S(t) =
Ht+1)/2.

Let d; = n; —m;,q; = d; — p:(i = 1,2).

Then

Aout(C) = d(p1,pa + my — 1,pa) + d(q2y p1 + my —
dlqyna—p2— 1, q) +dpz,ny — 1 — L,q).
Thus,

1apl) +

dout(C) = n2{S(p) + S(a1)} + 1 {S(p2) + S(q2)}.

Theorem 3
The minimization of d,y(C) is also realized when p; =

/2 — my/2(i = 1,2).

4 Centrality measures of general
graphs

In this section, we present some properties concerning with
the eccentricity, the distance and the weight of a cycle in
general graphs. Let L(C) be the length of any cycle C and
diam(C) = max{d(z,y) : z,y € C}.

First we state a simple property.
Theorem 4

diam(G) < 2¢(C) + diam(C). (4.1)

The above hound is sharp, as shown for the graph in

Figure 1, where diam(G) = 4, diam(C) = 2, and €(C) = 1.

Corollary
If L(C) < then e(C) > {diam(G) —1/2}/2. (4.2)
That is, a cycle C, for which L(C) = I, diam(C) = /2,
and e(C) = {diam(G) —1/2}/2, is a cycle centre.

Of course, such a cycle does not exist in certain graphs.

We now state a relationship between e(C) and d(C).
Recall that the number of vertices in the underlying graph
G, is denoted by n.
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Figure 2: An extremal graph for inequality (4.3).

Theorem 5
d(C) < (n — L(C))e(C). (4.3)

The above bound is sharp, as shown for the graph in

Figure 2, where d(C) =1,n =4,L(C) = 3, and ¢(C) = 1.

Let w(G) = min{w(C) : C is a cycle of G}. A cycle C
of G is called a dominating cycle when the vertex set of
G — C (the resultant of removing C from G) is a stable
(independent) set of G. More generally, a cycle C of G is
called a k—dominating cycle when the cardinality of ver-
tices of each component of G — C is less or equal to k.

Theorem 6
(1) If a graph G has a dominating cycle, then w(G) < 1.
(2) If a graph G has a k—dominating cycle, then w(G) < k.

We get the following:

Theorem 7
For any integers k,! such that 0 < & < I, there exists a
graph G which has a eycle CC with 10(C) = kand L(C) = L.

5 A tabu search heuristic

The following two sections are concerned with algorithmic
aspects about central cycles defined by Definition 2. We
now present a heuristic (which does not neccessarily find
the best possible central cycle in any given graph) based
on the tabu search(TS) metaheuristic of Glover(1997). The
same general TS procedure can be used to attempt to find
either the cycle centre, the cycle median or the cycle cen-
troid of any given graph . We provide a simple overview
of the procedure first, followed by a more rigorous descrip-
tion later.

The procedure requires, as input, a spaming tree T of
(. Next the fundamental cycles in G with respect to T are
identified by adding each of the chords in G singly to T If
a cycle is known or suspected to be central, or somewhat
close to being central, then we suggest that 7" should he
chosen so that this cycle is fundamental with respect to
it. If no such information is known then T is chosen at
random.

The method proceeds by transforming T at each itera-
tion by successively dropping one of its edges and adding
a new chord to create a new spanning tree. z(C) (with
the subscript F or D, or W according to the type ol cen-
trality desired) is termed the cost of any cycle in G and
is to be minimized.The edge swap is performed in such a
way so as to produce a fundamental cycle C in the new
spanning tree which is as central as possible, in the sense

e

S Y

&

Figure 3: The initial graph for the Tabu Search : T

that z(C) is as low as possible. The best cycle identified
at each iteration is recorded so as to prevent cycling. Once
an edge is dropped from T, it is tabu (for a certain number
of iterations) to make it part of T again.

The objective functions are:
zg(C) = Me(C) + L(C) [centre],
zp(C) = Md(C) + L(C) [median],
2w (C) = Mw(C) + L(C) [centroid],
where M is a suitably large number. For example, M can
be conveniently chosen as : M = 10[V].

The least cost cycle found so far is recorded and np-
dated.

The Choice Rule:
Make the edge swap in T that produces the new fundamen-
tal eycle with least cost. The edge dropped must be part of
the best cycle identified in the last iteration. Thus adding
the chord that induced the current best fundamental cycle
in the last iteration cannot be added.

Tabu Restriction:
Make tabu adding to T an edge e, dropped from T for
m iterations, where m is chosen appropriately. Tt is often
convenient to begin by setting m = 2.

Aspiration Criterion:
Override the tabu restriction if a different edge swap pro-
duces a new least cost cycle which is the best cycle found
so far.

The TS heuristic will now be illustrated on the graph
G shown in Figures 3 and on. Let M = 100 and m = 2 .
throughout. We begin with the objective of attempting to
find the cycle centre of the graph, i.e. minimizing 2g(C).

The initial spanning tree T' which was chosen at ran-
dom, is shown by the heavy edges: b,c¢,¢, f 1,7, k,n,p,q,
and r in Figure 3. T induces five fundamental cycles of
(7, each constructed by adding exactly one of the chords:
a,d,g,h, and m to T'. We now denote T' by Tj. For ex-
ample the chord & induces the fimdamental cycle C} =<
h,7,7,n >, with eccentricity 3, due to the fact that ver-
tex « is of distance 3 from C}. The superscript 1 indi-
cates that this cycle is fundamental with respect to 5. As
C} has length 4, zg(C}) = 100 x 3 + 4 = 304. However
o) =< mye, fyr,p >, with zg(C)) = 205, is the funda-
mental cycle with respect to TL with the lowest zg value.
Thus it is recorded as the best cycle found so far. The next
step is to drop one of the edges in T3 N CL = {e, f,7,p}
and add another edge to T to produce TZ. This edge swap
must be selected so as to minimize the zg value of the best
of fundamental cycles with respect to TZ. The least cost
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b
O £
k
i
q c
<{tabu>
h " (@]
m d
g
O 0
e

Figure 4: Central cycle search : TZ, T3, and T3,.

b
i o W
i
c
<tabu)
h p
d
8 {tabu>
—O —0

e

Figure 5: Cycle centre search : Ta.

edge swap involves dropping edge p and adding edge a.
This creates the spanning tree T2 shown with heavy lines
in Figure 4.

The least cost cycle is C% =< d, e, f,r,J,a,b,c > with
zg(C23) = 108. This cycle is recorded as the best (least
cost) cycle found so far. We make it tabu to add edge p to
any spanning tree for 2 iterations.

This above process is now repeated. The least cost edge
swap involves dropping edge e and adding edge m. We
make the addition of edge e tabu for 2 iterations. This
creates the spanning tree Tg, shown in Figure 5. The
least cost new cycle is C? =< e, f,7,j,a,b,k,q,m >, with
zg(C?) = 109(> 108). This is a result of the above choice
rule, which forbids the addition of edge d, as doing this
would merely reproduce cycle C3.

Note that this objective function value is higher than
that found in the previous iteration. Thus the search has
moved to an (intermediate) inferior solution. We now start
the third iteration and bhegin by removing the tabu ban on
adding edge p to the tree.

The least cost edge swap involves dropping edge q and
adding edge d. We make the addition of edge q tabu for
2 iterations. This creates the spanning tree T3 shown in
Figure 6. The least cost cycle is C:, =<p,5,a,b,e,d,;m >,
with 2g(C;) = 107. This cycle has the lowest possible
objective function value of all the cycles in G. Thus we
have identified cycle C3 as the (unique) cycle centre Cj,
and the search is terminated.

We now go on to illustrate the same general tabu search
procedure used above for cycle centre identification to at-
tempt to find the cycle median for the graph in Figure 3,
starting once again with the spanning tree T!, now de-
noted by T}. In this case, the least cost fundamental cycle
is C} =< d,e, f,r,p,q,k,¢ > . The value zp(C}) is calcu-

o—
i
h P
g
-0

) b
=)
k
1
q c
<{tabu>
h D
A m d
£-8
Rl )
v ./
f e

Figure 7: T3 and the cycle median C3.

lated by summing the distances to C of all the vertices
of G not on C}. These are (with their distances in paren-
theses): «(1),8(2),7(1), and 8(1). As C} has length &:
zp(Cl) =100(1 +2 + 1+ 1) + 8 = 508.

The least cost edge swap involves dropping edge p and
adding edge a. We make the addition of edge p tabn for 2
iterations. This creates the spanning tree T3 shown in Fig-
ure 4. The least cost cycleis C2 =< m,e, f,,j,a,b,k,q >,
with zp(C2%) = 309.. This cycle is recorded as the best
found so far.

This process is now repeated. The least cost edge swap
involves dropping edge j and adding edge h. We make the
addition of edge j tabu for 2 iterations. This produces a
new least cost cycle which is the best found so far, as shown
in Figure 7, with T3 and C3 =< m,e, f,r,n,h,1,a,b,k,q >,
and zp(C3?) = 111. As C? is the cycle median, the search
is terminated.

We now go on to illustrate the same general tabu search
procedure, used twice before, to attempt to find the cycle
centroid for the graph in Figure 3, starting once again with
the spanning tree T, now denoted by Tj,. In this case, the
least cost cycle is: C} =< d,e,f,r,p,q,k,c¢ >. The value
zw(C}) is calculated by first identifying the number of ver-
tices in the largest component of G—C}. This is the compo-
nent comprising the path < a,t,h >, which has 4 vertices.
As C] has length 8: 2w (C}) = 100 x 4 + 8 = 408. The
least cost edge swap involves dropping edge p and adding
edge a. We make the addition of edge p tabu for 2 iter-
ations. This creates spanning tree T3, shown in Figure
4. (We have performed the same edge swap as used pre-
viously for centres and medians.) The least cost cycle is
C}=<d,e, f,r,j,a,bc >, with zw(C?) = 208. This cycle
is recorded as the best cycle found so far. This process
is now repeated. The least cost edge swap involves drop-
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b
e o
k
q c
{tabu>
(@]
P

m d
B
O O
e
Figure 8: Cycle centroid search : Tj,.
b
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h D T
m d
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Figure 9: Ty}, and the cycle centroid C4

m*

ping edge j and adding edge h. We make the addition

of edge j tabu for 2 iterations. This creates the span-
ning tree T3, shown in Figure 8. The least cost cycle is
2 C3 =< m,e, firyn,h1,a,0,k, q >, with zw(C3) = 111.
This cycle is recorded as the best found so far. We now
repeat the process (as it turns out for the last time) to
identify the cycle centroid. First we must remove the tabu
ban on adding edge p to the tree. The least cost edge swap
involves dropping edge r and adding edge g. We make the
addition of edge 7 tabu for 2 iterations. This creates the
spanuing tree T\, shown in Figure 9. The least cost cycle
is: C3 =< m,e, f,g9,h,1,a,b,k,q >, with zw(C4) = 110.
This cycle has the lowest possible objective function value
of all cycles in G. Thus we have identified the cycle centroid
C}, and the search is terminated.

We now go on to discuss an alternative approach to
identifying central cycles, via randomized edge swapping.

6 Randomized edge swapping

We have also experimented with another procedure for
identifying central cycles, based on random edge swapping
in a spanning tree of G. The process involves the same fun-
damentals as for the tabu search heuristic described in the
previous section. Once again we begin with a spanning tree
of G, and also transform it, at each iteration, by a single
edge swap, identifying the induced fundamental cycles.
However, unlike tabu search, the edge swap is selected
at random at each iteration. This approach was tested
on many large graphs. These graphs were generated by
choosing a number n of vertices and choosing edges inde-
pendently so that each possible edge is contained in the
graph with the same probability p. The method identified

a cycle centre in every case for which it was possible to
check the result exactly. However three points should be
noted.

1. If a Hamiltonian cycle is found then clearly it is a
cycle centre. If the graph was not 2-connected, then
in every case it turned out to be non-Hamiltonian.

2. Hamiltonian cycles appear very suddenly in random
graphs generated by this method. It has been shown
(see Bollobas(1985)) that if w(n) — oo as n. — oo,
then almost every graph generated will be Hamil-
tonian if p = (1/n)(log n + log log n + w(n)) and
amost every graph will be non-Hamiltonian if p =
(1/n)(log n + log log n).

3. The process is wasteful in that it creates the same
spanning tree rather frequently.

4. In real applications, this process is not likely to rep-
resent the kind of networks of interest, which may
be planar or nearly planar, or may not have edges
appearing independently.

We have also tested the same method on graphs gener-
ated by the following randem process, described in Bol-
lobas(1985). Let V = {1,...,n} be a a set of vertices and
define a graph process to be a sequence G = (G)No(N =
(’2‘)) of graphs on V such that:

(i) each graph G, has t edges, and

(ll) GoCG, CGyC ...

We choose a graph process uniformly and randomly and
choose the first t for which G, has minimum degree 2. Bol-
lobds and Thomason(1985) showed that, as n — oo, al-
most every G; chosen by this method is 2-connected. Also
Bollobas(1984) showed that as n — oo almost every G,
chosen by this method is Hamiltonian. Clearly a graph is
2-connected if it is Hamiltonian, and clearly we can restrict
the search for cycle centres to maximal 2-connected sub-
graphs of the graph G' we are investigating. This random
graph process was useful for generating 2-connected graphs
that were not Hamiltonian, and for these the randomised
edge swapping heuristic was very poor at finding cycle cen-
tres for the cases that could be checked exhaustively.

7 Conclusions

Slater(1980,1981,1982 and 1983) analyzed the problems of
finding central restricted trees and central paths in graphs.
We have extended this to analyzing the problem of find-
ing central cycles in graphs. The problems are related to
the covering salesman problem (see Mesa and Boffey(1996)
and Current and Schilling(1989,1994)). These authors for-
mulated the problem as a zero-one integer programming
model and solved it by a heuristic based on solution pro-
cedures for the set covering problem. Note that the set
covering problem for graphs of a special type (i.e. a kind
of chordal graph) can be solved in polynomial time (Kolen
and Tamir(1990)).

We have produced some techniques for the identifica-
tion of central cycles. However much more needs to be done
in this area in order to provide useful results to underpin
techniques which are effective. The importance of this is
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underlined by our efforts to construct an integer program-
ming method upon which to base algorithms which gunar-
antee optimal central cycles. We plan to publish this work
elsewhere.
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