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We introduce the conception of C-reducibility in Cartan space, and show that a
Cartan space endowed with (o, 8)— metric is C-reducible, if and only if the metric
is only of Randers’ or Kropina’s type. This is the main theorem in this paper.
Moreover, we consider C-reducibility in Cartan space endowed with a generalized
Randers metric which derived from a usual Cartan metric by f—change. We prove
that the space with the generalized metric is C-reducible if the space with original
metric is C-reducible, and that the converse is true.
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1. PRELIMINARIES

In this paper,we consider two remarkable classes of Cartan
spaces, that is, a C-reducible type and a generalized Randers
type.

Let M be a real n-dimensional manifold, (T*M, 7™, M)
the cotangent bundle of M and H : U* — R aregular Hamil-
tonian (i.e. real smooth function on a domain U* C T*M
positively homogeneous of degree two in p). The pair of
H™ = (M, H(z,p)) is called a Hamilton space and the func-
tion H(z,p) is fundamental (metric) function such that the
nondegenerate matrix with the entries

g (z,p) =0V H (1)

is defined on U=, hereafter in this paper, we denote & = 62-’
Pi

while g; = - and indices 4,7,--- run over 1,2,---n. Of

course, g% igxcomponent of a contravariant d-tensor field,
named as metric d-tensor of H", which is symmetric, pos-
itive definite and its reciprocal component g;;(z,p) is given
by g g;x = 6.

In this paper, the term d-tensor field T(z,p) of H*, for
instance, of type (1,1), means a collection of n? functions
Tj(;t,p) of variables z' and p; which obey the usual transfor-
mation law of components of tensor of M
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such that 8% a
Tp(2.5) = 553 T3(2.P)
under the coordinate transformation z* — z°. .

We can construct the operators & = &; + N;;0’ which
form a local basis of horizontal distribution N supplementary
to the vertical distribution V of T*M, i.e. T,(T*M)= N, &
Ve, veT"M.

We can obtain on a domain U of the tangent bundle
(TM,n, M) of M, a regular Lagrangian L(z,y) by Legendre
transformation

L(z,y) = piy' — H(z,p)

of H, where p; is the solution of the system y* = 8'H(z,p).
L(z,y) is positively homogeneous of degree two and be-
haves as the fundamental function of Lagrange space L™
(M, L(z,y)), which is seemed the dual of Hamilton space
(ref. to [4]). More precisely, the geometric structure of the
cotangent bundle T*M or of Hamilton space is reffered to our
previous papers[1][2] or R. Miron’s[6].

A Cartan space C* = (M, F(z,p)) is a special Hamilton

space with H = =F?, where F is called (fundamental) metric

function of C* and positively homogeneous of degree one in

p=(p)-
A canonical nonlinear connection in C, is given by

l ."
Nij = %5 = 57749 gii
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where
V= Veon, Voo = 759" P
and
Vi = ‘;’gih(ajghk + Okgin — Ongjx)-

A canonical d-connection CI'(N) = ( ;k,C;jk) in Cy, is
defined by [7] as follows:

1 1 thy
* =359 M(8;9" + Srgin — Sngse),

C* = —ggih(alghk + 0k ghh — 0" g’%).

By the differentiability and homogeneity of ~F‘(x,p), we
can easily show properties about the d-tensor C%* = g (7
such that

O = — 158 GFZ), Cok = Cikp = 0. (2)

The torsion tensor C¥* is completely symmetric in in-

dices, so we consider the case it splits in the form:

(71]1: — A:]Qk + Aiji + Akin (3)

for some symmetric tensor A and vector Q°. By reason of

Ciikp, = 0, which follows from the homogeneity of funda-
mental function F(z,p), we have

AP =0, Q°=0
for non-Riemannian (C** # 0) Cartan space, where the index
o means the result of contracting by p. Thus, we put the
angular metric tensor

K = FOPF = g7~ 'V, I' = §'F (4)

as most suitable one for A¥, because this tensor is symmetric
and has the properties such that

hp; =0, hVg; =n—1, ie rank(h”)=0. (3)

Therefore, on account of (3}, we can easily prove;

Proposition 1. If the tensor CV* satisfies the relation

CYk = hiij + h“‘Q" + hkin,

then the vector @* has the form @Q* = TC‘, where C* =
n

g;+C** is non-zero vector.

And we set;

Definition 1. A Cartan space of dimensin n > 2 is called
C-reducible, if the torsion tensor C*7* is expressed in the form

1

C¥F = — (hVCH 4 WO+ RHCY)

Cartan space of dimension two is always C-reducible, be-

cause there exists a scalar I such that FCY* = Im‘mim*,

where m' is orthogonal to the unit vector /.
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In the previous paper[3], we introduced an (a,8) metric
in Cartan space, as analogous one in Finsler space (ref. to
[5]). Its outline is as follows:

Definition 2. We call a Cartan space C* = (M, F(z,p))
endowed with (a,3)—metric, if its metric function F(z,p) is
a function of a(z,p). B(z, p) only;

F(z,p) = Pv’(a(:z,p),ﬁ(:c,p)),

a(z,p) = (a”(2)pip;)?, B(z,p) = b'(2)p,
where a¥(r) is a Riemannian metric on the base manifold
M and b(z) is a vector fleld on M such that 8 # 0 on a

domain of T*M\{0}. The space (M,a) is called associated
Riemannian space of C™.

with

We need in this paper two special Cartan space with
{(a, B)— metric, that is as follows:

Definition 3. A metric function F(z,p) of Cartan space is
called of Randers’ type if it is given by

F(z,p) = \/a¥(z)pip; + b'p; = a + B

and of Kropina’s type if given by

(6)

a(z)Pp; a®
Ple,p) = S0 _ 2

(7)

These metrics were introduced by R. Miron[7] into Cartan
space analogously to the case of Finsler space (ref. to [5]).
Clearly, the function F(a, B) in Definition 2 should satisfy the
conditions imposed to the function F(z,p) as a fundamental
one for C*, so it is positively homogeneous of degree one in
a and 3. By this reason, there would be no confusion if we
adopt the notation F(a,8) instead of Fi(a,3). Putting H =
F?/2, for convenience, we remark the following homogeneities
of H{z,p):

aH, + 0Hz; =2H

aHora + /HHaﬂ = Haa aHaﬁ +ﬁH3ﬁ = Hﬁ

o’H,o + 2a0H 4 +,32Hgﬁ =2H

aHaaa + ﬁHﬁaa = aHaaﬂ + ﬁHapg
=aH.,s+ BHpss =0

(8)

where the subscripts a,8 of H mean its partial derivatives
with respect to them. In the previous paper[3], we obtained
the concrete expression for the metric tensor ¢/(z, p) and its
reciprocal component g;; in Cartan space with («,3) metric
such that

9" = pat’+pob't +py (' PY +6 P')+ p PP’
9i; = 0ai;—00B;Bj +01(Bip;+ Bjpi) +o2pip;
and also for the tensor C/*,
Ci* = —E[rlb'bjbk + Gir{p1a’b* + pya’ P
+rob't P* 4 r3b' P P¥} 4 r PPPI PR,
In the above three expressions, the notation

P(z,p) = a’(z)p;, Bi(z) = a”(2)¥(z) }
Bz(z) = a,'jb'bJ = a'JB,'B]'
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are used and the coeflicients p’s, ¢’s and r’s are certain func-
tions of partial derivatives of H(a, ), at most, of third or-
der, and the operator &;;ji; plays the role of abbreviation of
completely symmetric summation with respect to the indices
1,7,k for each term in the brackets, for example,

S { A Q)

.AiJQk-"-AJinﬁ'Akin (10)

in place of the right hand of (3).
In the next chapter, however, we use more direct calcula-
tion without above formulas for g, g;; and C"*.

2. MAIN THEOREM
Partial differentiation of a(z, p) and ((z, p) yields
da=a 'P', &P =0b(z).
The vector Pi(z,p) in (9) satisfies the relation
Pp=a?, PP =a’(z), PP =0.
P&a=a taV(z) = a P PI).
By means of the quantitie
kY =a" —a”' PP,

the partial derivative of alpha of third order is expressed such

that o _
o a = ~a436ijk{k”Pk}- (11)

Direct differentiation of H(z, p) gives expressions for the met-
ric tensor such that

gv = YoOH
= Hooo(0'0)(H7 Q) + Hog{(8' )V + (8 )b’}
FHph't + Hy(0'9 )
=o' H k" 4+ Hpab'? + o Ho3(b'P? + b PY)

+07%H,, PP (12)

using (11) and for the torsion tensor C'** such that
72(/Vx_]l\’ _ (jkgtj
=G {(0 Hyo — aPHOK PN 4 a7 H, 5k bE
07 Hogs POV + 07 Haag PYPIB}
4" Hoo PP PP 4 Hagsb' b5
Substituting the new quantity @* = & — o7 23P' and using

the homogeneity (8) for the above expression, we have a very

simple form;
=20 = a7 Hap® i (kY Q) + HpssQ'Q° Q"

[f we put here

(13)

a ' Hogk + 3Hpg3Q'Q7 = —2A4Y,
then (13) vields the equation
COF = AVQ + AFQT 4+ AR QY
which is nothing but (3), hence we get

Proposition 2.
the torsion tensor C

In the Cartan space with («,3)—metric,
Y% splits in the form (3).

On the other hand, if we use the unit vector

=0 F=(V2H) " (a™'HoP' + Hgb'") (14)

of C,, the angular metric tensor in (4) is rewritten as
(13)

where we also substituted the above quantity @' and using
the homogeneity (8). Therefore, by means of

h9 = o™ HokV + (Hps — (2H) "' HE)Q'Q,

kY = a_xHa{hiJ — (H;ap - (QH)_IHﬁZ)QiQ]}

which follows from (15}, the expression (11) is changed to the
final form;

- H, o 3H,
—2C”k = HgGij]c{hJQk} + {Hﬁ[gg — i A X
_ L g ooigior
(Hos — 5 Ha")}Q' Q' Q" (16)
Picking up the last term, we put
_ 3Hup 1 2
Q = Hppp — 7. (Hop — 57 Hs")- (17)

We are interested in the case @ = 0, that is,

CY* = &, {hV A*}
with A*p, = 0. Contracting g, to the bothside of the above
equation, we have

1
n+1

A= ct

C' = guC* = (n+1)4,

t€.,
by means of (5), which implies
3 1 y
C¥* = ——6;;,{h7C*}.
ntl ik{ }
On account of Proposition 2, we can conclude

Proposition 3. When the quantity Q in (17) vanishes the
space is C-reducible.

Obviously, for the cases of Randers’ and Kropina’s metric
presented in last section the quantity ¢ vanishes, because,
for the former H = (o + 5)%/2,

Ho=Hs=a+f, Hap=0, Hpgg=1 Hpps =0,
and for the later metric H = o*/(28%),

Ha = 2&35_2, Hﬁ = —014[3—3, HQ@ = —40:36_3,
H@g = 30‘4/3—4, Hﬁﬁlg = —120’4,6_5,

hence in both cases ) = 0 holds.

Proposition 4. The Cartan spaces with Randers’ and

Kropina’s type metric are both C-reducible.

Let us obtain the necessary condition for @ to vanish. In
order to replace H and its partial derivatives in the quantity
@ by F and its ones, we use the relations

Hos = FF,5+ F,F3, Hps= FFs+ Fj*
Hpss = =3 Hpao = =0 B73(F Foga + 3FuFou)
and the homogeneity about F(z,p) such that
abo+0Fs=F
aF oo + BFup = aF,5+ BFss = 0.

Therefore, (17) is rewritten as

o’ (3Fa, Foo®
-—=F Faaa_ B
SF (24 pn o)
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We start from @ = 0, then case

(1) F,e = 0 reduces to the metric of Randers’ type, because
Fy=c and F = ¢; + ¢(8) = ci + ¢28, by the homogeneity
of ¢(3) of degree one in 5. The case

(i) Faa # 0 follows a differential equation such that

FC(OQ 3F(XQ’

Faa Fa

3
4 = 0.
a
Paying attention to logarithmic differentiation, we obtain at
first,

a®F,y

F,?
where the coefficient €¥(¥) = ¢82%, ¢ = const. # 0 is caused
by that the left side of the first expression is homogeneous of
degree two in p, then we have
Foo _ cB?

FB2 a3

= e“’m), o®F,, = kB*F.2,

Integration this by a yields

1 et + cya® 2 o? ;
— T =———— ¢ = const.
F,? o? e cf? + c;a?’

where we used the homogeneity of F' again. Hence, the fol-

lowing two cases occur.
(11a) If ¢; # 0, then

1
Fomdt——o  F=t4=\/c0% + cB + coB,
Vot +cf? ¢

(co = const.), F is rewriten as

1 . )
Pla.p) = i\/zc_a” + Cizblb’) pip; + (cob®)pe
1 1

=a+f

which is the metric of Randers’ type.
(1ib) If ¢; = 0, then

O’2 2

la l a
2 = _—— = ——
F, =0 Fa ilcﬁ’ F i'Zkﬁ + k8

(k,k; = const.). F is rewriten as

Lais 4 ke by D ~2
F(z,p) = (zka + kl )PPJ _ aT
+b*py 8

that is, the metric of Kropina's type is obtained.
Summerizing the consideration in this chapter, we con-
clude

Theorem 1. The Cartan space with (a, 3)—metric is C-
reducible if and only if the melric is of Randers’ or Kropina’s

type.

3. C-REDUCIBILITY IN THE GENERALIZED
SPACE

In this chapter, we need to generalize the metric of Ran-
ders’ type as follows:

Definition 4. For a given Cartan metric F(z,p) in C*, a
metric function of F(z,p) of the Cartan space C" is called of
generalized Randers’ type if it has the form such that

F(z,p) = F(z.p) + B(z.p), F*=g"(z,p)p.p;-

It should be remarked here that F(z,p) is not Rieman-
nian metric as a in Chapter 2 and ((z, p) is the same one.
We call the original space C™ as associated Cartan space of
¢ and the deformation of the metric F — F as —change
of metric.

Actually, F(z,p) given above is homogeneous of degree one
in p. We ditinguish the quantities in this section by attach-
ing notation "~” to the top of ones of €™, if there are the
same ones appear in the associated space C*. We take the
quantities such as

¢ =FF(F2) =k + 'V, I'=§F (inC")
G =5 (F2) = kY + D (inC™) (18)
F=8F="0 _I_bi, Fl = Hl = Ff’hij.
And denoting
r=F'F=FYF+8)=1+Fp, (19)
Ri=r1hY, 1 =F(6 - F7'81), ()pi=0 (20)

are obtained. And for the metric tensor &7 in (18) is given
by two manners such that of C*,

G =g + b +HU +VE—FTIgEE (21)
=7g" + [P — 7V =7 R 4 117 . (22)
On account of the useful Proposition 30.1 of Matsumoto[5],

we can obtain the reciprocal component &; of §* in (22) such
that

1 . . "y
g = ~{oij — B — Bl + (B* + BFT)I'P}  (23)

where g;; is the reciprocal component of g* in C™ of (18) and
notations

li=F"'p, Bi=gy;¥, B*=gybtl =¢"B'B

are used instead of (9). In fact, we can verify §7g;x = 6.
using the relations

Zil,' =T, i,‘li = 0, Z',bl = ,@F_l,
I'B; = B* + gF~', bl' = B,l' = BF~1.

We are concerned with the torsion tensor C* (resp. C¥)
in the space C* (resp. C"). Differentiating the both side of
(22), as the followings;

a'kgdj — _2Cn€jk
F-l(blc . ﬂF—llk)gij _ 27_Cu'jk + biF—lhjk
+Y PR 4 F2RG 1 — PR
——F“2ﬂ hiklj _ F—2B lihjk
= —27C"* 4 & RV FH(6" — GF~1F)},

we obtain the relation between C* and C* such that
C9* = 1C09* + Gy {h~*} (24)

with =SB = BF U5, =4 p=0

o=

where quantities (18) and (19) are used.
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At last of this chapter, we consider C-reducibility in this
generalized space. Transvecting the expression (24) by (23),
we have

1

N s X i . 3 1 .
Cv1 — g]kcuk - gJA,Cka + n‘: 71 — Cvz + n + "Y‘

because of (5) and /‘”ik[‘c.:, F-1p° = Q.
Furthermore, we know C'p; =0 as well as Cyp; = 0.
In the other words, if there exists a vector C* in C™ such

that C¥* = &;;;{hC*}/(n + 1), then there also exists a

vector

Ck=ck—ﬁiiwk—aF*ﬁ)

T
in C™ such that C¥% = 6,_”.{/-1’](_7*'}/(71. + 1), and conversely.
Hence, we conclude

Theorem 2. Letn > 2. Cartan space C* with the generalized
Randers’ metric is C-reductble if and only if its associated
Cartan space C* s C-reducible.
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