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A fault diagnosis scheme for nonlinear time series recorded in normal and abnormal
conditions is proposed. The fault is first detected from regression lines plotted for the
raw time series. Model for the normal time series is estimated using a Finite Impulse
Response (FIR) neural network. The trained network is then used for inverse filtering
of abnormal time series. The fault is further confirmed/analyzed using the regression
lines of the predicted normal and inverse-filtered abnormal conditions time series.

The proposed scheme is tested with a fault diagnosis problem using acoustic data

obtained from moving parts of an automobile.

Keywords: Fault diagnosis, linear regression, neural network.

1 INTRODUCTION

In many scientific, economic, and engineering ap-
plications there arises the problem of system identi-
fication and modeling of nonlinear time series. Once
the model is made it can be used either for predic-
tion, fault diagnosis, pattern recognition, or pattern
classification.

The information about a dynamic process is of-
ten only partial and incomplete. In many real-world
problems, data are masked by noise and some dy-
namic processes are described by chaotic time series
in which the data seem to be random without appar-
ent periodicity (). The Neural Network (NN), be-
ing able to acquire knowledge by a learning process
and store in massively parallel /distributed synaptic
weights, can solve complex problems that are in-
tractable. The NNs are successfully used in fields
like modeling, time series analysis, pattern recogni-
tion, signal processing, and control.

A kind of neural network, that has short-term
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memory in the form of tapped delay lines, known as
time delay neural network (TDNN) has been used in
speech processing (* ) A class of TDNN, that uses
finite-duration impulse response (FIR) filters in its
synaptic connections between the layers, known as
FIR network has been used in time series prediction
(4, 5), System identification is also performed using
general parameter (GP) neural networks (& 7).

In this paper a fault diagnosis scheme for nonlin-
ear time series data is proposed. The fault is de-
tected from regression lines of the raw and filtered
time series where FIR network is used for modeling
and inverse filtering of the time series. The proposed
scheme is applied to a fault diagnosis problem using
acoustic data obtained in normal and abnormal con-
ditions from moving parts of an automobile.

The paper is organized as follows: Details of linear
regression modeling are given in Section 2. Section
3 introduces neural networks and its type FIR net-
work used in this study. Section 4 elaborates the
scheme of fault diagnosis using FIR network and
its application to acoustic data recorded from mov-



M.Shafique SHAIKH, Daouren AKHMETOV and Yasuhiko DOTE

ing parts of an automobile. Section 5 concludes the
paper after discussing the results and future work.
Finally, Section 6 summarizes the whole study.

2 LINEAR REGRESSION MODEL

In many problems two or more variables are in-
herently related, and it is necessary to explore the
nature of this relationship. Regression analysis is
a statistical technique for modeling and investigat-
ing the relationship between two or more variables.
In the case of simple linear regression a single re-
gressor or predictor x and a dependent or response
variable y is considered. Supposing true relationship
between y and z as a straight line and that the ob-
servation y at each level of z is a random variable,
the observation y can be described by the model

Y=Bo+B1T+€ i (1)
where intercept G and the slope (; are unknown
regression coeflicients, and € is a random error with
mean zero and variance o2. The criterion for esti-
mating the regression coefficients is called as method
of least squares. The fitted or estimated regression
line or trend from ® is therefore

_ where Bo=7 - Bz,

B = [0 ws = 2)2)/[ 0 (2~ £)2), 4 is the es-
timated linear regression line values, § = % > o Yis
and 2 =1 Y0 | ;.

3 NEURAL NETWORKS APPROACH

Neural networks are typically used in pattern
recognition, where a collection of features (such as
an image) is presented to the network, and the task
is to assign the input feature to one or more classes.
Another typical use for NN is (nonlinear) regres-
sion, where the task is to find a smooth interpola-
tion between points. The time series modeling in-
volves processing of patterns that evolve over time,
i.e. the appropriate response at a particular point
in time depends not only on the current value of the
observable but also on the past.

The main advantage of the neural network is that
it enables us to approximate or reconstruct any non-
linear continuous function F'(.), therefore such a
model is more general and flexible. A general view
of a neural network is given in Fig. 1. Many re-
searchers (® !9 have used NN for time series pre-
diction. In all these cases, temporal information is
presented spatially to the network by a time-lagged
vector (also called tapped delay line).

3.1 Time Delay Neural Network

The neural network having tapped delay lines
placed between the input and hidden layers of a neu-
ral network is generally known as a time delay neural
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Fig. 1. A typical neural network with one hidden
layer.

network (TDNN). The TDNN maintains a history of
its n most recent values, and these values are avail-
able to the next layer. A typical connection between
input and hidden layers of a TDNN is shown in Fig.
2, where u; and h; are the ith and jth neurons of
input and hidden layers respectively, and d,, shows
the nth times delayed input data. For the latest in-
put in time the delay tag is not shown in Fig. 2.
Separate weights are used for each delay line. The
TDNNs have been used in speech recognition 3.

Fig. 2. A typical synaptic connection between input
and hidden layers of a TDNN.

3.2 FIR Network

In case of TDNNs the combination of unit delay
elements and associated weights may be viewed as
a finite-duration impulse response (FIR) filter. The
networks having such filters are called as FIR net-
works. In this section training procedure ) of FIR
network is described.

In order to understand clearly, a single neuron ex-
tracted from the [th layer of an L-layer static feed-
forward neural network is represented in the Fig. 3.
The output of the neuron, zg“, is taken as a sigmoid
function of the weighted sum of its inputs:

:L‘l]»+1 =f (Z u)iy]ﬂ;i—) ................. (3)

)

where ! and wﬁj are inputs and weights of the
neuron, respectively.

A modification of the basic neuron can be accom-
plished by replacing each static synaptic weight by
a FIR linear filter as shown in Fig. 4. By FIR
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we mean that for an input excitation of finite du-
ration, the output of the filter will also be of finite
duration. The most basic FIR filter can be modeled
with a tapped delay line as illustrated in Fig. 5. For
this filter, the output y(k) corresponds to a weighted
sum of the past delayed values of the input:

T

y(k) = > wmz(k—n)............. . (4)

n=0

Fig. 3. Static neuron model (feedforward path).

FIR filters

Fig. 4. FIR neuron model (feedforward path).

It may be noted that this corresponds to the mov-
ing average component of a simple auto-regressive
moving average (ARMA) model 19,

O W gq--9--q

] xk-n I ) S ] *¢-D

x(k)

w(0)

k)

Fig. 5. FIR filter model.

The weight vector for the synaptic filter connect-
ing neuron ¢ to neuron j in layer [ is denoted by
wh; = [wh;(0),w};(1),. .. ,wi;(T")]. Similarly the
vector of delayed inputs along the synaptic filter is
i (k) = [zl;(k),zl;(k — 1),... ,zl;(k — T")]. Hence
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the operation of the filter can be expressed as dot
product w! ;-z(k). The feedforward response of the
FIR network can be written as,

(k) = f (Z wi#:ﬂ(k)) ........... (5)

where m;“ (k) is the output of a neuron in layer !

at time k taken as the sigmoid function of the sum
of all filter outputs that feed the neuron. Compar-
ing Equations (1) and (3) it may be observed that
the scalars are replaced by vectors. As contrast to
standard error backpropagation (1) used in static
feedforward neural networks, temporal backpropaga-
tion is used in FIR networks. The feedback path of
selected static and FIR neurons are shown in Figs. 6
and 7, respectively. The final algorithm of temporal
backpropagation can be summarized as:

wi(k +1) = wl;(k) — nott' (k) - zi(k) .. (6)

0']' l(k) =
—2e (k) (s (k) =L
Nija
frsER)) - Y8 (k) cwim 1<1<L-1

where e;(k) is the error at an output node,
f'() is the derivative of the sigmoid function, and
8L(k) = [0L,(k)SL,(k + 1)...8L (k + T 1)) is a
vector of propagated gradient terms. It may be
noticed that these equations are seen as the vector
generalization of the familiar backpropagation algo-
rithm. Complete derivation of the above algorithm
is given in (4,12),

6|I+I(k)

l
0i(k=T)
6, (k)

. 63/+l(k)

Fig. 6. A static neuron model (feedback path).

4 FAULT DIAGNOSIS SCHEME

A fault diagnosis scheme (13) using nonlinear time
series is proposed in which the fault is first detected
using regression lines of the raw time series recorded
in normal and abnormal conditions. Both of the
time series are then normalized for the range -1 to
+1. The normalized normal condition data are used
to train a FIR network. The trained network is
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Fig. 7. A FIR neuron model (feedback path).

then used for inverse filtering the abnormal condi-
tion data. The regression lines plotted for predicted
normal condition data and inverse-filtered abnormal
condition data are used to further diagnose the fault.

The proposed scheme is tested with a fault di-
agnosis problem using acoustic data recorded from
moving parts of an automobile.
4.1 Fault Diagnosis
Acoustic Data

The proposed scheme is applied to a fault diagno-
sis problem using normal and abnormal conditions
acoustic data recorded from moving parts of an au-
tomobile. Regression lines of the raw data plotted
using the least square method described in section
2 are shown in Fig. 8. The difference in the ampli-
tude and behavior of these lines clearly indicate the
existence of a fault. ~

Before model estimation, the two time series are
passed through a moving average filter, of window
size 3, to remove the noise without loosing the peaks.
Initial 100 values of raw and filtered normal and
abnormal conditions data are shown in Figs. 9 and
10, respectively. Both of the filtered time series are
then normalized for -1 to +1, as shown in Figs. 11
and 12, respectively.
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Fig. 8. Regression lines of the raw time series.

In this study the FIR network is used to estimate
the model for normal condition data reason being
its short-term dynamic memories available in the
form of FIR filters. While using FIR networks selec-
tion of number of layers and taps per layer is quite
critical. After performing several simulations the
best network structure is selected when the mean
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squared error (MSE) is low and prediction is good
after 10,000 epochs of training.

»
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Fig. 9. Initial 100 values of raw and filtered normal
condition data.
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Fig. 10. Initial 100 values of raw and filtered abnor-
mal condition data.

The selected set of layers/taps for the normal con-
dition data modeling is given in Table 1. The MSE
after 10,000 epochs of training at different set of
taps are shown in Fig. 13 where hidden node taps
are set to 3. The FIR network with the best set of
layer/taps is then trained for up to 30,000 epochs.
Initial 900 points of normal condition data are used
for training and the next 100 data are used for vali-
dation. The input and predicted output of a trained
network for normal condition data are shown in Fig.
14. It can be noticed from this figure that the pre-
dicted data follow the training data but for the vali-
dation data set the error becomes high but it follows
the pattern. Good learning for the training data set
is of prime importance in the proposed scheme. The
trained network is then used to predict the normal
condition data. The trained network is also used
to inverse-filter the abnormal condition data. The
inverse-filtered abnormal condition data are shown
in Fig. 15. The regression lines are plotted for pre-
dicted normal and inverse-filtered abnormal condi-
tions data as shown in Fig. 16. A significant differ-
ence in the two lines confirms the existence of the
fault that is first detected from the observation of
the regression lines for the raw time series (see Fig.
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Fig. 12. The normalized abnormal condition data.

8). The fault is more clearly visible in Fig. 16, so
it can be said that the sensitivity of the fault de-
tection using regression lines increases by the use of
FIR network.

Table 1. FIR Network structure for acoustic normal
condition data

Network Parameters | Value
Layers 2

Input Node 1

Input Taps 10/node
Hidden Nodes 30

Hidden Taps 3/node
Output Node 1

Epochs 30,000
MSE 0.000113998

5 CONCLUSION

A fault diagnosis scheme is proposed where the
fault is first detected from the regression lines of
the raw time series. The fault is then confirmed
and analyzed from the regression lines of the pre-
dicted normal and inverse-filtered abnormal condi-
tions time series. The process of inverse filtering the
abnormal condition data, through the FIR network
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Fig. 13. MSE after 10,000 epochs training of normal
condition data.
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Fig. 14. Input and predicted output of the network
trained with normalized normal condition data.

trained for normal condition data, is adopted in or-
der to make sure that the two available time series
are different from each other. It provides more de-
tailed information about fault.

The selected set of layers and taps for the FIR
network is good for only this application. To esti-
mate model for any other time series new simula-
tions would be needed. Window size 3 for the mov-
ing average pre-filter is selected randomly. A bigger
window size would result in better filtering hence
better modeling.

6 SUMMARY

In this paper a fault diagnosis scheme for nonlin-
ear data set recorded in normal and abnormal condi-
tions is proposed. The fault is first detected from re-
gression lines, plotted using least square method, for
the raw time series. Model for the normal time series
is then estimated using a FIR network. The trained
network is used for predicting the normal condition
data and inverse filtering the abnormal condition
data. The fault is further confirmed/analyzed using
the linear regression lines of the predicted normal
and inverse-filtered abnormal conditions time series.

The proposed scheme is successfully applied to a
fault diagnosis problem using acoustic time series
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15. Inverse-filtered abnormal condition data.
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16. Linear regression lines of the predicted nor-

mal and inverse-filtered abnormal conditions data.

obtained from moving parts of an automobile.
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