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Firstly, intelligent control (diagnosis by system identification) for a small-scaled
system using computational intelligence (soft computing and numerical processing)
is described. A novel fuzzy neural network with general parameter learning is devel-
oped, which needs remarkably less computational time resulting in realizing real time
fault detection of an automobile transmission gear with a DSP-integrated RISC pro-
cessor. Then, for a large-scaled and complex system, contemporary intelligent control
using extended soft computing is proposed. Extended soft computing (ESC) which is
the fusion/combination of fuzzy, neuro, genetic and chaotic computings and immune
network theory in order to explain, what they call, complex systems and cognitive
and reactive Als is introduced. Then, contemporary intelligent system concept is
discussed while the ESC is promising to realize it. Finally, a decision making robot
with multi-agents (immune networks), fuzzy inference and reinforcement learning is
described, as an example. It is confirmed that the ESC plays an important role in
constructing intelligent robots.

Keywords: Computational Intelligence, Soft Computing, Intelligent Control, Fuzzy
System, Neural Network, Immune Network

1 INTRODUCTION

Soft  computing is  proposed by Dr.
L.A.ZadehV®®) o construct new generation
Al (machine intelligence quatient) and to solve
nonlinear and mathematically un-modelled systems
problems (tractability). It is the fusion or com-
bination of fuzzy, neuro and evolutional (genetic
algorithm) computings. The advantages of soft
computing (computational intelligence) for control
and diagnosis of systems are

1. Nonlinear and comblicated problems, problems

for which mathematical models are defficult to

"Department of Computer Science and Systems Engineer-
ing
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obtain.

2. Human knowledge (recognition, understanding,
learning, inference and other human intelli-
gence) can be introduced. Therefore intelligent
systems such as autonomous (self-organizing
controllers), self-tuning systems and automated
designed systems can be constructed.

Now, only the combination of fuzzy systems and
neural networks are considered. It has been proved
that any nonlinear mappings obtained by neural net-
works can be approximated, to any accuracy, by
fuzzy systems using Stone-Weierstrass’s approxima-
tion theory®. From the application point of view,
each approach has some advantages. Since a neural
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Human Being like Al

Cognitive Distributed Al
(static)

Reactive Distributed Al
(dynamic)

Behavir—based Al

Fig. 1. Soft computing in Al

network has learning capabilities, it is easy to design
automatically controllers.

On the other hand, for fine-tuning, in using neural
networks, it is difficult, since it is difficult to explain
logically the cause and the result in the input-output
relation ships. Due to these difficulties, a novel lo-
cal based function neural network with a general
parameter learning algorithm was developed®. It
is experimentally applied to fault detection of auto-
mobile transmission gears by nonlinear system iden-
tification in Section 2.

Then, in Section 3 by adding chaos computing
and immune network theory, extended soft comput-
ing (ESC) is defined for explaining, what they call,
complex systems and cognitive and reactive Als as
shown in Fig.1. In Section 4, contemporary intelli-
gent control for a large-scaled and complex system
is considered from the view point of bioinformatics
and cognitive and reactive distributed AIs while the
ESC is promising to realize it. Especially, cognitive
and reactive distributed artificial Als are discussed.

In Section 5, control of an intelligent agent robot
is described. Robots can behave more intellectually
in a group even though each robot has a little
intelligence, since they can interact in cooperation
with each other. The following methods using
soft computing to construct intelligent multi agent
robot systems have been reported.

1. Immune networks, fuzzy inference and GA (re-
active distributed AI, IFAR)(®)()

2. Neural networks and evolutional computing (re-
active and cognitive distributed AI)(perception
and motion are non separable, IFAR)(®)

3. Fuzzy associate memories, chaos computings
and evolutional computoings (cognitive dis-
tributed Al)(each agent has intelligence in this
case, IFAR)(®)

4. Fuzzy inference and random parameter search
method (reactive distributed AT, MAIR)(10)(11)
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An artificial decision making robot behaving as in-
teractions(fuzzy inferences) among antibodies in an
artificial immune network with perceptions of anti-
gens is described. It is confirmed that the ESC is
promising to realize intelligent agent robots like this.

2 REAL TIME FAULT DIAGNOSIS

2.1 Nonlinear Model Identification

A necessary basis for any diagnostics approach
is a reliable and accurate model of the operational
process. Therefore, fault detection/diagnostics pro-
cedures typically consist of the following two steps:

1. Off-line determination of the model structure
and its parameters under normal operation con-
ditions.

2. On-line determination of operational faults by
using the identified model.

We use the GP-approach for both of the above steps.
The nonlinear time-series model is first expressed as:

z(n) = Flz(n—=1),--- ,z(n— N)]+n(n) (1)

where F[-] is a nonlinear function and n(n) repre-
sents the modeling error.

In the identification stage, the general parameter
(B) expectation and variance are indicators of the
current accuracy of the normal process model. In
the diagnostics stage, the mentioned values are in-
dicators of process normality. The GP-based model
identification procedure is described below

1. Model initialization:
w;(0) =0; B(0)=0
E{f}=0; Dg=0

2. Sample z(k),k € [1, N]

3. Caluculate the one-step-ahead predictive GP-
RBFN output z(k + 1)

4. Sample z(k + 1)
5. Adapt B with the algorithm(®

6. Compute general parameter’s
E{B(k)} and variance Dg(k)

expectation

7. Determine expectation’s and variance’s possible

stability:
AE{B}) = |E{B(k+ 1)} - E{B(k)}| < 6,
ADﬁ = IDg(k-rl)——D[j(k‘” <(52

where, 61,d2 are appropriate threshold levels.

8. If stability is achieved in Step 7, then go to Step
10, else continue.

9. k=k+1, go to Step 3.
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10. w; = E{B(k)}

11. k=k+1

12. Caluculate the new GP-RBFN output.
13. Sample z(k + 1)

14. Accuracy justification:

ek+1) = zk+1)—2(k+1)
D(k+1) = E%De(k)+ki162(k+1)

15. If D, < é. = const > 0, then go to Step 18, else
continue.

16. Individual adaptation of RBFN weights.
17. Go to Step 11.

18. Memorizing of the new weight values
’1121'0 = lb,(k)

19. Zeroing of the general parameter value 8 = 0.

2.2 Process Abnormality Detection

After identifying the model structure and its pa-
rameters of the plant for normal operation condi-
tions, the fault detection problem can be solved us-
ing the following procedure: n

1. Initialization:

w;(0) = ;o = const

B(0) =0; E{f} =0;D3 =0
2. Sample z(k),k € [1, N].
3. Calculate GP-RBFN output.

4. Sample z(k + 1).

(21

Adapt (8 with the algorithm(?).

6. Estimate the general parameter expection
E{p(k)} and variance Dg(k).

7. Justification of operation normality:
|[E{B(k)}] < Ay,Dg(k) < Ay, where
Ay,Ay = const > 0 are predetermined

threshold values.

8. If the conditions of Step 7 are not satisfied, then
fault is detected, else continue.

9. k=k+1, go to Step 3.
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2.3 Fault Detection Experiment

We consider a fault detection problem of automo-
bile transmission gears by means of acoustic data
modeling. The input data was collected using a
sound level meter. First, the normal model was
identified by the conventional RBFN and then by
the new GP-RBFN (fuzzy neural network). Both
networks were trained off-line. Fig. 3 illustrates
the approximation errors of the RBFN and GP-
RBFN after an equal number of training steps. It
is seen from these plots that the prediction error
is significantly lower and more consistent with the
GP-RBFN. This is due to the considerably faster
learning rate of the GP-RBFN.

During the on-line fault detection stage, the reg-
ular weights of the GP-RBFN were fixed, while the
scalar general parameter was adapted. In Fig. 4,
illustrative results are shown, where the general pa-
rameter expectation value allows to easily recognize
an abnormal condition in the automobile transmis-
sion system. This experiment was carried out us-
ing the following parameters (Fig. 2): the number
of delay elements was 10, the number of Gaussian
functions was 7, and the width of each Gaussian
function from the center was 0.2.

h + X

R, (V)

Rz (U)

Rx (U)

Fig. 2. Nonlinear time series identification system

3 EXTENDED SOFT COMPUTING

Soft  computing is proposed by Dr.
L.A.Zadeh®W® ) {5 construct new generation
AT (machine intelligence quatient) and to solve
nonlinear and mathematically unmodelled systems
problems (tractability) especially for cognitive
artificial intelligence by adding chaos computing
and immune network theory.

Extended soft computing is defined for explain-
ing, what they call, complex systems, cognitive and



Yasuhiko DOTE
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Fig. 3. Prediction with RBFN
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Fig. 4. Fault detection with general parameter

reactive Als. Immune networks are promising ap-
proaches to construct reactive artificial intelligence
and as illustrated in Fig.1. Industrial and commer-
cial applications of NN/FS/GA/Chaos in 1990s is
discussed in (1203,

3.1 Reactive Distributed Al

Reactivity is a behavior-based model of activity,
as opposed to the symbol manipulation model used
in planning. This leads to the notion of cognitive
cost, i.e., the complexity of the over architecture
needed to achieve a task.

Cognitive agents support a complex architecture
which means that their cognitive cost is high. Cogni-
tive agents have internal representation of the world
which must be in adequation with the world itself.
The process of relating the internal representation
and the world is considered as a complex task.

On the other hand, reactive agents are simple,
easy to understand and do not support internal rep-
resentation of the world. Thus, their cognitive cost
is low, and tend to what is called cognitive economy,
the property of being able to perform even complex
actions with simple architectures. Because of their
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complexity, cognitive agents are often considered as
self-sufficient: they can work alone or with a few
other agents.

On the contrary, reactive agents need compan-
ionship. They can not work isolated and they usu-
ally achieve their tasks in groups. Reactive agents
can not work isolated and they usually achieve their
tasks in groups. Reactive agents do not take past
events into account, and can not foresee the future.
Their action is based on what happens now, how
they sense distinguish situations in the world, on
the way they recognize world indexes and react ac-
cordingly.

Thus, reactive agents cannot plan ahead what
they will do. But, what can be considered as a weak-
ness is one of their strengths because they do not
have to revise their world model when perturbations
change the world in an unexpected way. Robustness
and fault tolerance are two of the main properties of
reactive agent systems. A group of reactive agents
can complete tasks even when one of them breaks
down. The loss of one agent does not prohibit the
completion of the whole task, because allocation of
roles is achieved locally by perception of the envi-
ronmental needs. Thus, reactive agent systems are
considered as very flexible and adaptive ('),

4 CONTEMPORARY INTELLIGENT
SYSTEMS

This section introduces contemporary intelligent
systems using the extended soft computing de-
scribed in the previous section and bioinformatic
knowledge.

It is interactive among human beings, environ-
ment and artificial intelligence. The relations among
each method of the extended soft computing are
important rather than the methods themselves. It
should be self-organized emergent intelligence rather
than embeded by a designer. It is emergent, self-
organized and reflective in each granularity level like
bioiformatic processing. Learning should be embe-
ded by situated cognition and situated action. Per-
ception and motion are not separable!!®{16)  Thig
is illustrated in Fig.5.

To explain this, bioinformatic cybernetic is com-
pared with conventional cybernetics in Table 1.

Table 1. Comparison of conventional and bioinfor-
matics ¢ybernetics
Conventional cybernetic
Expicit (Object & observa-
tion are separated)

Bioinformatic
Implicit (perception & mo-
tion are not separated)

Homeostasis (stability) Diversity

Topdown Bottomup

Close system (feedback) Open (feedforward)
Determinstic Emergent

Optimization (product) Adaptive learning

Evolution (process)
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Learning is achieved as shown in Fig.6 and Fig7.
Human beings is sometimes in intelligent
systems!7).

Kansei information processing is now popular in

Japan.

Fuzzy, Neuro

and Genetic Comlzgglgi

Reactive Distributed Al Immune Network

and Chaos Computing

Fig. 5. Contemporary intelligent system concept

Self-referential System

l Others-referential System a

Fig. 6. Bi-referential model

Behavior Learning

Fig. 7. Learning algorithm

5 DESISION MAKING ROBOT WITH
MULTI-AGENTS (ANTIBODY) AND
PERCEPTION (ANTIGENS) IN
IMMUNE NETWORK USING FUZZY
INFERENCE AND
REINFORCEMENT LEARNING(#)

‘immunoid’ by interactions among antibodies in
artificial immune networks is considered. In this
simulated environment, there are following three k
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An artificial decision making robot inds of objects:
1)predator 2) obstacles 3) food. It is assumed that
prespecified quantity of initial energy is given to the
immunoid at the beginning of each simulation. For
quantitative evaluation, the following assumptions
are made.

1. If the immunoid moves, it comsumes energy
E,..

2. If the immunoid is captured by a predator, it
comsumes energy .

3. If the immunoid collides with an obstacle, it
losses energy F,.

4. If the immunoid picks up food once, it obtains
energy Ey.

The predators attack the immunoid if they de-
tect the immunoid within the prespecified detectable
range. Therefore, in order to survive as long as
possible, the immunoid must select a competence
module (antidody) suitable for the current situa-
tion(antigen). The immunoid equipped with exter-
nal and internal detectors. External detectors can
sense eight directions as shown in Fig.8.

front

right front

pre;;ator

left back

Fig. 8. Simulated environment

Each can detect the distance to the objects by
three degrees, near, mid and far. The internal detec-
tor senses the current energy level. The immunoide
moves in his eight directions.

The detected current situation and prepared com-
petence modules work as antigens and antibodies,
respectively. To make a imunoido (antibody) select
a suitable antibody against the current antigen. It is
highly important how the antibodies are described.
Moreover, it is noticed that the immunogical arbi-
tration mechanism selects an antibody in bottom up
manner by communicating among the antibodies.
To realize the above requirements, the description
of antibodies are defined as follows. The identity of
a specific antibody is generally determined by the
structure of its paratope and idiotope.

As shown in this Fig. 9, a pair of precondition
action to paratope, the number of disallowed anti-
bodies and the degree of disallowance to idiotope
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Parat Idiotope
I . i R I ldt of disallowed miji s
Precondition Action -degree of disallowanc:

-Paratope is described -This parameter is modifi
in advam’e‘ during learning process

Definition of Parame
[ Object l Directionl Distance l Action I

Predator Front Near Forward
Food Back Niddle Backward

Obstacle Left Far Right
Energy and etc. Left and etc

Fig. 9. Depicts the representation of antibodies.

are respectively assigned. In addition, the structure
of paratope is divided into four portions: objects,
direction, distance, and action.

For adequate selection of antibodies, one state
variable called concentration is assigned to each an-
tibody. The selection of antibodies is simply carried
out in a winner-take all fashion. Namely, only one
antibody is allowed to activate and act its corre-
sponding its action to the world if its concentration
surpasses the prespecified threshhold. The concen-
tration of the antibody is influenced by the stim-
ulation and suppression from other antibodies, the
stimulation from antigen, and the dissipation factor
(i.e. natural death). The concentration of i-th anti-
body, which is denoted by a;, is calculated by eq(2).
a and f are the rate of interaction among antigens
and antibodies.

dA;(t)

dt
N N
Domiiai() Y maa(t)
J=1 k=1

«a 5 -« ~ + fm; — k; | ai(t)
iji Z mik
i=1 k=1
1
a,—(t + 1) = e L i e . (3)

1+ exp(0.5 — A;(t))

where N is the number of antibodies, and m;
denotes matching ratio between antibody ¢ and
antigen, m;;, that denotes degree of disallowance of
antibody j for anti-body i. The first and second
terms of right hand sidedenote the stimulation and
suppression from other antibodies, respectively.
The third term represents the stimulation from
antigen, and the forth term the natural death.

Simulation results:

100 simulations are carried out with # of predators:
5, # of obstacles:5, # of foods: 10, and # of
antibodies:91.

Average life time:

A. Immunoid’s random walk: 313.14

B. Without interactions among antibodies: 564.86
C. With interactions among antibodies: 621.46

(2)

28

Table 2. # of collides against predators and obsta-
cles and obtaining foods:

predators | obstacles | foods
A 19.91 1.84 0.54
B 9.04 5.92 4.27
C 7.84 5.23 5.02

This approach is promising for decision making
in autonomous mobile robots (one of multi-agent
robots). However, two disadvantages exist. One
is how to cope with environment changes, and the
other is how to design agents. It is required in the
future to devise some real time reinforcement learn-

ing.
6 CONCLUSIONS

This paper proposes a comtemporary intelligent
multi-agent robot using extended soft computing.
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