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Materials with a periodic structure have photonic bandgaps (PBGs), in which light
can not be guided within certain wavelength ranges; thus light can be confined
within a low-index region by the bandgap effect. In this paper, rectangular-shaped
hollow waveguides having waveguide-walls (claddings) using the PBG have been
discussed. The design principle for HE modes of hollow-core rectangular PBG
waveguides with a Bragg cladding consisting of alternating high- and low-index
layers, based on a 1D periodic multilayer approximation for the Bragg cladd-
ing, is established and then a novel single-polarization hollow-core square PBG
waveguide using the bandgap difference between two polarized waves is proposed.
Our results demonstrated that a single-polarization guiding can be achieved by
using the square Bragg cladding structure with different layer thickness ratios
in the mutually orthogonal directions and the transmission loss of the guided
mode in a designed hollow-core square PBG waveguide is numerically estimated
to be 0.04 dB/cm. C 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4960426]

I. INTRODUCTION

Photonic crystal waveguides with periodic structures in the cladding and/or core regions have
the potential of achieving various novel properties that are quite impossible in conventional wave-
guides, and have been studied actively from the mid 1990s.1 In particular, photonic bandgap (PBG)
effects caused by a periodic modulation of refractive index prohibit the propagation of light of
certain frequencies, and thus PBG fibers/waveguides based on the PBG confinement2 can open up
a possibility for trapping light in low-index regions and enable air-guiding that is impossible in
conventional waveguides relying on index guiding. The air-guiding is attractive for ultra-low loss
transmission because it can ultimately reduce the core material loss. In addition, because of the high
heat resistance and extremely low nonlinearity of the core material (i.e., air), the PBG waveguides
are suitable for high power delivery. They have also been applied to the field of optofluidics.

Various hollow-core PBG fibers with a coaxial periodic cladding3–5 and two-dimensional (2D)
periodic cladding6–8 have been reported to date. Additionally, absolutely single-polarization PBG fi-
bers, which can guide only one polarization state of the doubly degenerate fundamental mode, have
been proposed.9–12 Polarization-maintaining or single-polarization fibers are required in the fields
of telecommunication, measurement, and sensing, such as polarization multiplexing/polarization
multiplexed bi-directional transmissions, optical interferometric systems (e.g., interferometric fiber-
optic sensors), and connections to polarization strongly dependent photonic integrated circuits.
Compared to axisymmetric circular fibers and photonic crystal fibers with sixfold rotational sym-
metry13 consisting of air holes arranged in a triangular lattice, in which the fundamental mode

aElectronic mail: Corresponding author: megu@ieee.org
bElectronic mail: y-tsuji@mmm.muroran-it.ac.jp
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is doubly degenerate, waveguides with a rectangular cross-section are excellent in polarization-
preserving capability.

In this work, we establish the design principle of hollow-core rectangular PBG waveguides
with a Bragg cladding consisting of one-dimensional (1D) periodically stratified dielectric films,
whose design for HE modes has not been reported in detail to date, demonstrate its effectiveness by
designing hollow-core rectangular PBG waveguides, and then propose a novel single-polarization
hollow-core square PBG waveguide using the bandgap difference between two polarized waves. A
kind of rectangular waveguides using the Bragg reflection caused by periodically stratified dielectric
films have already been reported in Refs. 14–17; these waveguides are implemented on photonic
integrated circuits. The hollow waveguides presented in Ref. 14 have a hollow core, to be sure,
but they have a Bragg confinement structure only in the vertical direction and not in the horizontal
direction, and thus seem to be close to slab waveguides in terms of spatial light confinement. By
contrast, although those in Refs. 15 and 16 have a rectangular cladding with a multilayer-like
structure, their cores are made of a solid material, not hollow. In all these papers, TE and TM
modes are considered as their guided modes, but such waveguide structures with a rectangular-like
core surrounded by Bragg stacks do not support pure TE and TM modes but hybrid modes. In
Ref. 17, a hollow-core Bragg waveguide with a cladding shape close to a rectangular was fabricated.
However, the design of hollow-core circular Bragg fibers has been discussed there; these fibers have
been regarded as an air-guiding layer slab waveguide with a Bragg stack cladding by assuming a
large diameter and their modal properties have been predicted using the TE and TM modes of the
approximated slab waveguide. In addition, to the best of our knowledge, square core waveguides
supporting single-polarization guiding have never been reported before.

In order to obtain the PBG guidance of the HE modes of hollow-core rectangular PBG wave-
guides with a Bragg stack cladding, we devise the design principle based on the bandgap estimation
of their rectangular Bragg claddings using the approximated 1D periodic dielectric films. Thus,
first the polarization-dependent property of the PBG of 1D periodic multilayer media, which is
required for the bandgap estimation, is systematically studied for the conditions of wave propaga-
tion and the structural parameters in detail. Next, a hollow-core rectangular PBG waveguide using
the omnidirectional Bragg reflection caused by the multilayer cladding wall is designed based on
the results. Finally, by using the polarization anisotropy in the PBG of periodic multilayers, a novel
single-polarization hollow-core square PBG waveguide with relatively low loss that supports only
one polarization state is designed.

II. HOLLOW-CORE RECTANGULAR PHOTONIC BANDGAP WAVEGUIDE
AND THE BRAGG CLADDING

A hollow-core rectangular PBG waveguide is a rectangular waveguide having Bragg stack
waveguide-walls, which consist of periodically stratified dielectric films as shown in Fig. 1(a).
Figure 1(b) shows the structure of the Bragg cladding consisting of alternating layers of low and
high refractive indices. Since this cladding structure does not have an exactly periodic structure for
z-directed waves as a whole 2D cross section, the hollow-core rectangular PBG waveguide shown
in Fig. 1 does not rigorously support eigen-modes. Nevertheless, guided modes with strong light
confinement can be designed depending on the waveguide structure and the propagation angle of
waves.

Periodically stratified dielectric films possess a PBG effect, by which light can not be guided
within certain wavelength ranges, and the bandgap difference between two polarized waves occurs
for obliquely propagating waves. Many research efforts have thus far been devoted to 1D multilayer
dielectric stacks; most of them have focused on attaining broadband, polarization-independent, and
omnidirectional reflections for low loss multilayer dielectric mirrors and interference filters. In
order to make use of the Bragg reflection caused by the PBG, it is desirable that the bandgap width
be as large as possible. In addition, a large polarization anisotropy of the bandgap is required for
designing the hollow-core PBG waveguides discussed here. In this section, to design hollow-core
PBG waveguides with a rectangular Bragg stack waveguide-wall, the bandgap properties, especially
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FIG. 1. Hollow-core rectangular photonic bandgap waveguide. (a) Waveguide structure. (b) Bragg cladding.

bandgap width and polarization-dependent property, of the PBG of periodic multilayer media are
systematically investigated and summarized.

Our structural design for hollow-core rectangular PBG waveguides, which is presented in
Section III, is based on the bandgap properties of periodic multilayer structures. An ideal bandgap
is obtained only in infinite periodic structures as shown in Fig. 2(a), while only a finite number of
periodic layers as shown in Fig. 2(b) are practically available to us. Hence, the bandgap analysis of
finite periodic multilayer structures is required for accurately designing these waveguides. However,
the approximate estimation of the bandgaps will be obtained from the bandgap calculations using
infinite periodic structures. The wave propagation in infinite or finite periodic multilayer media can
be calculated by a transfer matrix method.18–20 Nevertheless, since this calculation constitutes the
core of our design principle, an overview of the method is given in Appendix.

A. BANDGAP PROPERTY OF PERIODIC STRATIFIED MEDIA: OBLIQUELY
PROPAGATING WAVES

We begin by considering the bandgap property of periodic multilayer stacks with a period
of length Λ = d1 + d2 with a uniform layer thickness (d1 : d2 = 1 : 1), as shown in Fig. 2(a). The
refractive indices of the alternating low- and high-index layers are assumed to be n1 = 1.45 and
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FIG. 2. 1D multilayer structure. (a) Unit cell of an infinite periodic multilayer structure. (b) Multilayer structure with a finite
number of layers composed of 2N layers.

n2 = 3.4, respectively, throughout in this paper. These values correspond to a refractive index of sil-
ica and silicon, respectively. For the finite periodic structure shown in Fig. 2(b), (n1,d1) and (n2,d2)
correspond to layers with odd and even indices i, respectively (see Eq. (A20)). The plane waves
propagating in the xz plane of the multilayer medium, as shown in Figs. 2(a) and 2(b), are classified
as TE (s) and TM (p) waves, which have only one electric-field and magnetic-field components,
respectively, in the plane of the films. While the polarization anisotropy of bandgap between TE and
TM waves does not exist for vertical propagation (θ0 = θ1 = θ2 = 0), it occurs for oblique propaga-
tion. Here, we clarify the polarization anisotropy in the bandgap of periodic multilayer structures for
obliquely propagating waves. In infinite periodic structures, the bandgap for obliquely propagating
waves is obtained from Eq. (B3) and shown in Fig. 3. The light- and dark-shaded regions indicate
the bandgaps for TE, and both TE and TM waves, respectively, the vertical axis represents the
normalized wavenumber kz/k0 tangential to the layer surfaces (see Appendix for kz and k0), and λ
is the free-space wavelength. The bandgap for the TE (s) wave contains that for the TM (p) wave
and thus, this is used in Bragg mirrors to achieve omnidirectional reflections.21–23 The wavenumbers
at which the bandgaps for TM waves close correspond to Brewster’s angle (kz/k0 = 1.3338). How-
ever, for waves incident from a low-index external material, the tangential wavenumber components

FIG. 3. Bandgap for oblique propagation waves in an infinite periodic multilayer stack with n1= 1.45, n2= 3.4, and
d1 : d2= 1 : 1. The light- and dark-shaded regions indicate the PBGs for TE, and both TE and TM waves, respectively.
Red-colored solid line: Λ/λ = 0.2381, blue-colored dashed line: Λ/λ = 0.2703.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  157.19.148.5 On: Tue, 08 Nov

2016 05:09:54



075322-5 M. Eguchi and Y. Tsuji AIP Advances 6, 075322 (2016)

FIG. 4. Transmission coefficient of finite periodic multilayer films with 15 periods (d1 : d2= 1 : 1, n1= 1.45, and n2= 3.4)
for oblique incident waves. (a) kz/k0= 0.5. (b) 0.75. (c) 0.995.

satisfying the Brewster condition for the multilayer structure are beyond their range limited by the
critical angle for the interface between the external and first layer materials, e.g., 0 ≤ kz/k0 ≤ 1 for
incident waves from the air.

Next, in Fig. 4, we show the transmission coefficient for the propagation of waves obliquely
incident on finite periodic multilayer films. Since an increase in the number of layer periods leads
to the forbidden band (or stopband) close to that of infinite periodic structure, here the number of
periods was considered to be N = 15. Figures 4(a), 4(b), and 4(c) display the transmission coeffi-
cients in normalized tangential wavenumbers of 0.5, 0.75, and 0.995, respectively, corresponding
to θ0 = 30, 48.59, and 84.27◦. The dashed and solid curves in these figures correspond to TE and
TM waves, respectively. Forbidden bands corresponding to the PBG of infinite periodic structures
appear in the transmission coefficient. We can see that, as with the infinite periodic structure, the
bandgap difference between the two polarized waves increases with the tangential wavenumber
kz/k0 corresponding to the propagation angle. The bandgap for TE waves increases with the tangen-
tial wavenumber, whereas that for TM waves gets narrower. We also see that the bandgaps for both
polarized waves shift toward the blue side with an increase in the tangential wavenumber and the
transmission coefficients in their passbands are found to drop.21,22,24 Additionally, the oscillation in
the passbands originates from the Fresnel reflections at each layer interface.

B. BANDGAP PROPERTY OF PERIODIC STRATIFIED MEDIA: LAYER THICKNESS RATIO

The bandgap property of 1D periodic multilayer structures can be controlled by their struc-
tural parameters, including the refractive index and thickness of layers. The layer thickness gener-
ally allows more flexibility in the design than the refractive index of layer. In this section, the
polarization-dependent bandgap for layer thickness ratios is elucidated. Figures 5(a), 5(b), 5(c),
and 5(d) display the bandgap properties for kz/k0 = 0.995 of periodic multilayer films with 15
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FIG. 5. Transmission coefficient of finite periodic multilayer films with 15 periods for the thickness of low-index layer for
kz/k0= 0.995. (a) d1 : d2= 2 : 1. (b) d1 : d2= 3 : 1. (c) d1 : d2= 4 : 1. (d) d1 : d2= 5 : 1.

periods for layer thickness ratios of d1 : d2 = 2 : 1, 3 : 1, 4 : 1, and 5 : 1, respectively. Here, the
period length Λ is assumed to be a constant value. Since d1 and d2 correspond to the thicknesses of
low- and high-index layers, respectively, the bandgap shifts toward the blue side, and the bandgap
width for TE waves and the bandgap difference between both polarizations gradually increase as the
low-index layer thickness increases. In addition, when approximately d1 : d2 = 4 : 1, the bandgap
for TM waves is completely deviated from that for d1 : d2 = 1 : 1 shown in Fig. 4(c). In using
bandgap effects, since it is desirable that the bandgap width is larger, the thickness of low-index
layer should be larger than that of high-index layer.

Finally, the polarization-dependent bandgap of infinite periodic multilayer media for the layer
thickness ratio is shown in Fig. 6. The dashed curve indicates the relative PBG width difference of
the primary PBG defined as the difference in PBG width between TE and TM waves divided by
the center frequency of PBG for TE waves. The bandgap property for the low-index layer thickness
similar to the finite periodic multilayer stacks is observed and the maximum bandgap width can
be seen to be located around d1 : d2 = 4 : 1 (more precisely, d1/Λ = 0.76). In addition, regardless
of polarization state, the higher-order bandgaps are observed to disappear for certain thickness
ratios in the range of propagation angles smaller than Brewster’s angle. A similar phenomenon can
also be seen in the transmission property of a finite periodic multilayer stack with d1 : d2 = 3 : 1
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FIG. 6. Bandgap and relative PBG width difference of the primary PBG (dashed curve) of infinite periodic multilayer media
as a function of the thickness of low-index layer for kz/k0= 0.995. Red-colored solid line: Λ/λ = 0.24.

in Fig. 5(b), in which the second bandgap is observed to disappear. This is because, even under
the Bragg condition, the reflected waves from the front face and the intermediate interface within
a period segment are in opposite phase and thus cancel each other out. For instance, this layer
thickness ratio for the second bandgap is given by

d1

Λ
=


1 +


n2

1 − (kz/k0)2
n2

2 − (kz/k0)2



−1

, (1)

is thus estimated to be 0.7550, and this is found to be in good agreement with that in the bandgap
diagram shown in Fig. 6.

From the above results, it is apparent that the bandgap difference between both polarizations
becomes larger as the low-index layer thickness increases relative to the high-index layer thickness.
In addition, there is an optimum value of thickness ratio that maximizes the bandgap width. In the
present study, since the refractive indices of the alternating low- and high-index layers are assumed
to be n1 = 1.45 and n2 = 3.4, respectively, the bandgap width will reach its maximum at about
d1 : d2 = 4 : 1.

III. DESIGN PRINCIPLE OF HOLLOW-CORE RECTANGULAR PHOTONIC
BANDGAP WAVEGUIDE

The hollow-core rectangular PBG waveguides shown in Fig. 1(a) support the hybrid modes,
referred to as HE modes. Here, we first present the design principle for HE modes of hollow-core
rectangular PBG waveguides with a Bragg cladding, based on a 1D periodic multilayer approxima-
tion for the Bragg cladding, and attempt to design a hollow-core rectangular PBG waveguide using
the omnidirectional Bragg reflection caused by its cladding.

In order to obtain a light confinement structure, the Bragg cladding must satisfy the PBG
condition for propagation waves in the z direction shown in Fig. 1(a). While the rectangular Bragg
cladding shown in Fig. 1(b) can be regarded as a 1D periodic structure in each of the x and y
directions, it does not have an exactly periodic structure as a whole 2D cross section and thus a com-
plete bandgap as in well-known 2D periodic air-hole lattice claddings can not be achieved for the
cladding region. Nevertheless, it seems that adequate Bragg reflections can be obtained depending
on the waveguide structure and the propagation angle of waves. Therefore, in this study, we regard
the rectangular Bragg cladding as the respective 1D periodic multilayer films, which are stacked in
each of the x and y directions, as shown in Figs. 7(a) and 7(b), and then estimate its quasi-bandgap
using the respective bandgap properties in each direction. In Fig. 7, E, H , and k represent the
electric, magnetic field vectors, and wavevector, respectively. Rectangular metallic waveguides used
in the microwave and millimeter-wave bands support only TE and TM modes, which have no longi-
tudinal electric- and magnetic-field components, respectively. (It should be noted that the TE and
TM modes in metallic waveguides are different from those in 1D layered structures.) On the other
hand, the hollow-core rectangular waveguides with a periodic multilayer dielectric cladding shown
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FIG. 7. Approximated 1D periodic multilayer films for Bragg cladding and TE- and TM-wave approximation. (a) TE(s)-
wave approximation. (b) TM(p)-wave approximation.

in Fig. 1 can not guide pure TE and TM waves but hybrid waves being combinations of these waves,
which have two polarized modes: x- and y-polarized modes having two dominant components Ex

and Hy, and Ey and Hx, respectively. Here, we approximate the 2D rectangular Bragg cladding
by the respective 1D periodic multilayer stacks along each axis and then, based on the dominant
components, estimate the quasi-bandgap by approximating each polarized mode by either TE (s)
or TM (p) wave for each direction, as shown in Fig. 7. For example, the x-polarized mode is
approximated by the TM and TE waves, which have a magnetic- and electric-field components,
respectively, in the plane of the films, corresponding to (ξ,η) = (x, y) in Fig. 7(b) for the x-axis
direction and (ξ,η) = (y, x) in Fig. 7(a) for the y-axis direction, respectively, and vice versa for the
y-polarized mode.

In Section II, we demonstrated the bandgap of an infinite periodic multilayer stack with a layer
thickness ratio of d1 : d2 = 1 : 1 (Fig. 3). The vertical axis kz/k0 corresponds to the normalized
wavenumber in the propagation direction, which is referred to as the effective index; thus kz/k0 = 0
indicates the bandgap for waves propagating perpendicular to the layer surfaces. As mentioned
in Section II A, the bandgap for TE waves completely contains that for TM waves, and thus the
complete bandgaps common to both TE and TM waves can be obtained within the frequency ranges
satisfying the bandgaps for TM waves.

Here, we consider a hollow-core PBG waveguide with a square core with a = b = 40Λ. The
number of guided modes (e.g., single-mode or few-mode or multi-mode guiding) can be approx-
imately designed by the core size estimated based on the metallic waveguide theory. In order to
calculate the guided modes, a 2D vector finite-element method25 based on curvilinear edge/nodal
hybrid elements is applied to one-quarter of the waveguide cross section, taking twofold symmetry
into account. Figures 8(a) and 8(b) show the modal field distributions of the x- and y-polarized
fundamental modes, respectively, which are denoted as HEx

11 and HEy
11 in the Marcatili notation,26 at

FIG. 8. Modal field of a hollow-core square PBG waveguide consisting of a core with a = b = 40Λ and a Bragg cladding
with N = 8 and d1 : d2= 1 : 1 at Λ/λ = 0.2381. (a) x-polarized mode. (b) y-polarized mode.
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Λ/λ = 0.2381. In these figures, the results for a Bragg cladding with the number of periods N = 8,
in which a good light confinement was observed, have been displayed. As can be seen from the
red-colored solid line in Fig. 3 corresponding to Λ/λ = 0.2381, the bandgap for TM wave is satis-
fied. Since, in a square core waveguide, the two polarized modes are degenerate, the fundamental
mode can be seen to be well confined to the core region in both polarized modes. The effective
indices of the x- and y-polarized modes were both 0.996691. The effective index of the TE11 mode
in a square metallic waveguide with the same core size is given by

neff =


1 − 1

2
λ2

a2 = 0.997240. (2)

There is a little difference between the effective indices of the hollow-core PBG and metallic
waveguides. Figure 9 shows the modal field distribution at Λ/λ = 0.2703. As can be seen from
the blue-colored dashed line in Fig. 3, this wave frequency is mostly out of the bandgaps for both
polarized waves with an effective index below 1. Thus, outgoing radiation waves passing through
the Bragg cladding are observed for Λ/λ = 0.2703 and the modes no longer are confined within the
core.

IV. SINGLE-POLARIZATION HOLLOW-CORE SQUARE PHOTONIC
BANDGAP WAVEGUIDE

A polarization controlled transmission can be achieved by using a rectangular shape even in
the PBG waveguides using the omnidirectional Bragg reflection mentioned in Sec. III (and, of
course, also in simple metallic rectangular waveguides, but they are not suitable for the optical
wave band). However, a square shape is desirable for the waveguide core for practical use such
as low-loss connection to standard fibers, photonic-crystal fibers, and other conventional wave-
guide devices. Therefore, we attempt to develop a hollow-core square PBG waveguide supporting
single-polarization guiding. In 1D periodic multilayer structures, the TE and TM waves that are
degenerate for vertical propagation become nondegenerate for oblique propagation, and thus the
difference in PBG between two polarized waves occurs, as mentioned in Section II A. By making
use of this polarization anisotropy of PBG, the single-polarization guiding that supports only one
polarization state can be achieved. Here, we consider only x-polarized mode guiding and make use
of the primary bandgap. The layer thickness ratios of the Bragg cladding, d1x : d2x and d1y : d2y,
are designed to satisfy the bandgaps for TM waves (corresponding to (ξ,η) = (x, y) in Fig. 7(b))
and only for TE waves excluding that for TM waves (corresponding to (ξ,η) = (y, x) in Fig. 7(a))
for the multilayer cladding walls stacked perpendicular to the x and y axes, respectively, which
correspond to the dark- and light-shaded regions in Fig. 3. In this case, the Bragg condition is
satisfied for the x-polarized modes in both x and y directions, but not for the y-polarized modes
in the y direction, because the y-polarized waves are approximated by TM waves corresponding

FIG. 9. Modal field of a hollow-core square PBG waveguide consisting of a core with a = b = 40Λ and a Bragg cladding
with N = 8 and d1 : d2= 1 : 1 at Λ/λ = 0.2703. (a) x-polarized mode. (b) y-polarized mode.
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FIG. 10. Transmission coefficient T of finite periodic multilayer films with a thickness ratio of d1 : d2= 4 : 1 for kz/k0
= 0.995 in the case of different number of layer periods. (a) N = 5 (b) N = 8 (c) N = 10 (d) N = 15.

to (ξ,η) = (y, x) in Fig. 7(b), in that direction. As a result, only the x-polarized modes can confine
light in the core region. Thus, the periodic multilayer films satisfying the bandgap only for TE
waves act as a polarization filter and, by using this principle, the single-polarization guiding can be
achieved even for a square shaped core, which leads to the polarization mode degeneracy between
the two orthogonally polarized modes in metallic hollow or dielectric waveguides.

For wider bandwidth operation, it is desirable that the difference between the bandgaps for
TE and TM waves and the bandgap widths themselves be as large as possible. As mentioned in
Section II, in periodic multilayer films the thicker low-index layer relative to the high-index layer
and wave propagations with larger tangential wavenumbers lead to wider bandgap widths and larger
bandgap differences between TE and TM waves. Figure 10 shows the transmission coefficient T
of finite periodic multilayer films with a thickness ratio of d1 : d2 = 4 : 1 for wave propagations
with kz/k0 = 0.995 in the case of different number of layer periods N . Sufficiently wide bandgaps
only for TE waves are obtained on both sides of the bandgaps for TM waves, because of the large
propagation angle of traveling waves and the layer thickness ratio that approximately maximizes the
bandgap widths.

Based on these results, the thickness ratio of the Bragg cladding wall stacked in the y direction
is assumed to be d1y : d2y = 4 : 1 and the normalized frequency Λ/λ is chosen to be 0.24, which
is located within the bandgap only for TE waves. Meanwhile, the Bragg cladding wall stacked
in the x direction must satisfy the bandgap for TM waves for the lateral confinement in the x
direction. In Fig. 6, showing the layer thickness ratio dependence of the bandgap of infinite periodic
multilayer stack, the red-colored solid line corresponds to Λ/λ = 0.24. The range of layer thickness
ratio falling within the bandgap for TM waves can be estimated from this figure and here we take
d1x : d2x = 1 : 1.

Figures 11 and 12 show the modal field distributions of the fundamental modes in hollow-core
square PBG waveguides having a core with a = b = 40Λ and 5-period and 10-period Bragg clad-
dings, respectively, with d1x = d2x = 0.5Λ, d1y = 0.8Λ, and d2y = 0.2Λ. In the 5-period Bragg
cladding, since the bandgap effect is small, the mode field is found not to be sufficiently confined
to the core region not only in the y-polarized mode but also in the x-polarized mode; slight mode
leakage out through the Bragg cladding in the x direction can be seen in the x-polarized mode,
even though it is unclear in the figure. By contrast, the 10-period Bragg cladding provides a good
confinement of the x-polarized mode, but also causes a slight confinement of the y-polarized mode,
as can be seen in Fig. 12(b). This would result from the following reason. An increase in the number
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FIG. 11. Modal field of a single-polarization hollow-core square PBG waveguide consisting of a core with a = b = 40Λ
and a 5-period Bragg cladding (d1x = d2x = 0.5Λ, d1y = 0.8Λ, and d2y = 0.2Λ) at Λ/λ = 0.24. (a) x-polarized mode.
(b) y-polarized mode.

FIG. 12. Modal field of a single-polarization hollow-core square PBG waveguide consisting of a core with a = b = 40Λ
and a 10-period Bragg cladding (d1x = d2x = 0.5Λ, d1y = 0.8Λ, and d2y = 0.2Λ) at Λ/λ = 0.24. (a) x-polarized mode.
(b) y-polarized mode.

FIG. 13. Modal field of a single-polarization hollow-core square PBG waveguide consisting of a core with a = b = 40Λ
and an 8-period Bragg cladding (d1x = d2x = 0.5Λ, d1y = 0.8Λ, and d2y = 0.2Λ) at Λ/λ = 0.24. (a) x-polarized mode.
(b) y-polarized mode.

of layer periods causes the stronger effect of periodic structure and thus leads to stronger Bragg
reflections, but at the same time causes a decrease in the transmittance in the passband. As a result,
even though the TM waves are out of their bandgap, the transmittance decrease would have resulted
in intensifying their reflections in the y direction.

We thus consider decreasing the number of layer periods to 8 to recover the TM wave trans-
mittance in the passband and show the modal field distribution of a single-polarization hollow-core
square PBG waveguide with an 8-period Bragg cladding in Fig. 13. In the x-polarized mode, the
light is well confined in the core, while in the y-polarized mode, the light leaks to the outside of the
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TABLE I. Effective index of single-polarization hollow-core square photonic bandgap waveguides at Λ/λ = 0.24.

Periodic number N = 5 N = 8 N = 10

kz/k0 0.997787 0.997321 0.997322

core through the Bragg cladding. This shows that the hollow-core square PBG waveguide shown in
Fig. 13 provides single-polarization guiding that supports only the x polarization. Table I shows the
effective indices of the x-polarized mode for each number of layer periods. These waveguides are
found to have effective indices close to that of a metallic waveguide with the same size, which is
0.997284, compared with the hollow-core PBG waveguide guiding both polarizations mentioned in
Section III. This seems to be because the x-polarized mode has similar modal field distributions in
the x and y directions, as can be seen in Fig. 13(a).

We finally estimated the transmission loss of the HE11 mode in this hollow-core square PBG
waveguide, using a vector finite-element beam propagation method.27 As a result, the estimated loss
value was approximately 0.04 dB/cm for the x-polarized mode HEx

11 whereas over 8 dB/cm for the
y-polarized mode HEy

11. The y-polarized mode suffers higher attenuation losses than the x-polarized
mode and thus this waveguide was confirmed to be able to guide only x-polarized waves.

V. CONCLUSION

Summarizing, we have discussed hollow-core optical waveguides with a rectangular Bragg
cladding consisting of periodically stratified dielectric films. These waveguides guiding hybrid
modes can be designed based on the bandgap estimation of Bragg cladding using the approximated
1D periodic dielectric films stacked in the respective x and y directions; thus the polarization-
dependent property of the PBG of 1D periodic multilayer structures has been systematically stud-
ied in detail. In order to use the polarization anisotropy of bandgap, the bandgap for TE waves
excluding that for TM waves will be utilized. From the obtained results, we verified that the
thicker low-index layer relative to the high-index layer and wave propagations with larger tangential
wavenumbers lead to larger bandgap differences between the two polarized waves.

A hollow-core rectangular PBG waveguide was designed based on our design principle for the
Bragg cladding and the fundamental mode was confirmed to be well confined in the core region.
Moreover, we also proposed a novel hollow-core square PBG waveguide structure that enables
single-polarization guiding, and demonstrated that the single-polarization guiding can be achieved
by using the square Bragg cladding structure with different layer thickness ratios in the x and y
directions. The BPM simulation demonstrated that the designed waveguide can be achieved with
relatively low loss.

Although, with present-day technology, it would be difficult to precisely fabricate the hollow-
core rectangular PBG waveguide with a Bragg cladding mentioned here, the application of the
MCVD process for optical fiber fabrication to microtubes with micron-scale diameters or future
progress in 3D printer technology will enable us to fabricate more complicated and finer structures.

APPENDIX A: THEORETICAL OVERVIEW: PBG OF FINITE PERIODIC
MULTILAYER STRUCTURE

Let us now consider a multilayer dielectric stack composed of 2N layers, shown in Fig. 2(b).
Each layer has a refractive index ni(i = 1,2, . . . ,2N) and the media adjacent to both sides of the
finite multilayer stack are assumed to be air (n0 = n2N+1 = 1). Then the field components Ey and
Hy for the TE and TM waves, respectively, propagating in the xz plane of the multilayer medium
satisfy the wave equation

∂2

∂x2Ψ + (k2
0n2 − k2

z)Ψ = 0, (A1)
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Ψ =



Ey for TE wave
Hy for TM wave

,

where k0 is the free-space wavenumber, n is the refractive index of medium, kz is the tangential
component of the wavevector k, and each layer is assumed to be homogeneous. The solutions of
Eq. (A1) are of the form exp[ j(ωt − k · r)]. Here the wave traveling in the positive z-direction and
at an angle θi in the ith layer is assumed, and hence the wavevector is written by

ki = (±kx, i,0, kz) = (±k0ni cos θi,0, k0ni sin θi), (A2)

where ±kx, i represents the wavenumber component along the stacking direction in the ith layer, and
the upper and lower signs correspond to forward and backward propagating waves, respectively. kx, i

is given by

kx, i =


k2

0n2
i − k2

z. (A3)

The wave equation (A1) has solutions of the form

Ψi(x) = A cos(kx, ix) + B sin(kx, ix), (A4)

where x = x − xi.
Since the multilayer structure is taken to be uniform in both y and z directions, the tangential

magnetic field component Hz, i for TE (s) waves is obtained from Maxwell’s equations:

Hz, i(x) = kx, i

jωµ0

�
A sin(kx, ix) − B cos(kx, ix)� , (A5)

where A and B are amplitude coefficients. Then, the tangential field components at the interfaces at
x = 0 and di are given by

Ey, i(0) = A, (A6)

Hz, i(0) = − kx, i

jωµ0
B, (A7)

Ey, i(di) = cos φiEy, i(0) − jωµ0

kx, i
sin φiHz, i(0), (A8)

Hz, i(di) = kx, i

jωµ0
sin φiEy, i(0) + cos φiHz, i(0), (A9)

φi = kx, idi = dik0ni cos θi. (A10)

The matrix equation is obtained from Eqs. (A8) and (A9):



Ey, i(0)
Hz, i(0)


=



cos φi
j sin φi

ηs
i

jηs
i sin φi cos φi





Ey, i(di)
Hz, i(di)


, (A11)

ηs
i =

kx, i

ωµ0
=

ni cos θi
Z0

, (A12)

where Z0 and µ0 are the wave impedance and the permeability, respectively, of free space.
For TM waves, we can obtain the matrix equation by the same arguments as before.



−Ez, i(0)
Hy, i(0)


=



cos φi
j sin φi

η
p
i

jηp
i sin φi cos φi





−Ez, i(di)
Hy, i(di)


, (A13)

η
p
i =

kx, i

ωε
=

ni

Z0 cos θi
. (A14)

Designating the tangential electromagnetic field components at the interface i as ei and hi, and
applying Eq. (A11) or (A13) iteratively, we can relate the amplitudes e1 and h1 at the beginning face
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to those e2N+1 and h2N+1 at the end face by the transfer matrix M .



e1

h1


= [M]



e2N+1

h2N+1


, (A15)

[M] =
2N
i=1

[Mi] , (A16)

[Mi] =


cos φi
j sin φi

η
ξ
i

jηξi sin φi cos φi


, (ξ = s or p). (A17)

The transmission coefficient is given by18

T =
η
ξ
2N+1

η
ξ
0

|τ |2, (A18)

τ =
2ηξ0

η
ξ
0(M11 + η

ξ
2N+1M12) + M21 + η

ξ
2N+1M22

, (A19)

where Mi j represents the (i, j) element of the transfer matrix M .
In the present study, we consider finite periodic multilayer stacks composed of 2N layers with

refractive indices and thicknesses of

(ni,di) =



(n1,d1) for odd i
(n2,d2) for even i

. (A20)

The number of layer periods N corresponds to the number of unit cells.

APPENDIX B: THEORETICAL OVERVIEW: PBG OF INFINITE PERIODIC
MULTILAYER STRUCTURE

Figure 2(a) shows one period of an infinite periodic multilayer medium with a period of length
Λ = d1 + d2 corresponding to a unit cell. Here, x is replaced by x in Eqs. (A4) and (A5), and the
interface between two layers is taken at x = 0. Obliquely propagating waves on the xz plane satisfy
the wave equation (A1). For a unit cell (−d1 ≤ x ≤ d2), using the Bloch-Floquet theorem, we can
write the periodic boundary condition in the form

Ψy,1(−d1) = Ψy,2(d2) exp( jKxΛ), (B1)

p1
∂Ψy,1

∂x

�����x=−d1

= p2
∂Ψy,2

∂x

�����x=d2

exp( jKxΛ), (B2)

where Kx represents the wavenumber propagating in the periodic structure, which is referred to as
the Bloch wavenumber, and pi = 1 and 1/n2

i for TE and TM modes, respectively. The requirements
of continuity of the tangential field components at the interface x = 0 between two layers, and
Eqs. (B1) and (B2) lead to the eigenvalue equation20

cos(KxΛ) = 1 +Ω
2

cos(κ1d1 + κ2d2)

+
1 −Ω

2
cos(κ1d1 − κ2d2), (B3)

where

Ω =
p2

1κ
2
1 + p2

2κ
2
2

2p1p2κ1κ2
, (B4)
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κi =


k2
0n2

i − k2
z, (i = 1,2). (B5)
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