

フラックスゲート磁気センサを用いた非破壊検査

メタデータ	言語: jpn
	出版者:日本非破壊検査協会
	公開日: 2017-05-25
	キーワード (Ja): 渦電流探傷,
	フラックスゲート磁気センサ, 非破壊検査, 表皮効果,
	アルミニウム合金
	キーワード (En): Eddy current flaw detection, Fluxgate
	magnetic sensor, Non destructive inspection, Skin
	effect, Aluminum alloy
	作成者: 中根, 英章
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00009186

高感度磁気センサの非破壊検査への応用

フラックスゲート磁気センサを用いた非破壊検査

室蘭工業大学 中根 英章

Eddy Current Testing using Fluxgate Magnetic Sensor

Muroran Institute of Technology Hideaki NAKANE

📕 キーワード) 渦電流探傷,フラックスゲート磁気センサ,非破壊検査,表皮効果,アルミニウム合金

1. はじめに

渦電流探傷試験(Eddy Current Testing:ECT)は金属製品表 面付近の微細なきず(欠陥)を高感度で検出する手法として,鉄 鋼製品の製造工程での検査,火力,原子力発電プラントでの熱交 換器伝熱管検査や航空機の保守検査など広く用いられている。 従来,渦電流磁界を検出するのに誘導コイルを用いていたため, 高い周波数での検査となる。高い周波数では表皮効果により渦電 流が表面から急激に減衰するため,極く表面の欠陥を検出するこ とになる。もし,内部に欠陥があるときは,より低い周波数での 検査が必要になるが,誘導コイルでは,低い周波数の渦電流磁界 の検出は困難となる。このような課題を解決するため,低い周波 数の磁界でも十分に検出できる磁気センサ,ここではフラックス ゲート磁気センサを用いた渦電流探傷法を紹介するものである。

2. フラックスゲート磁気センサ

本研究で用いるフラックスゲート磁気センサは高透磁率材料 の磁化曲線の非線形性を利用した磁気センサであり,主に直流 磁界を測定するのに用いられている。高透磁率材料に交流磁界 を印加して,内部に誘導される交流磁界を検出コイルで検出す る際,地磁気などの微弱な直流磁界が内部の誘導磁界に重畳す ると磁性材料の磁化曲線の非線形性のため波形対称性が損なわ れ,2次の高調波成分を生ずるようになる。2次の高調波成分と 外部からの重畳磁界量に比例関係があるので,2次高調波成分 量を計測して,重畳磁界の量として表示できる。このため,こ

渦電流による磁界の左右のバランスがとれているの で磁気センサは磁界を検出しない

図1(a) ダブルDコイルと磁気センサが一様な金属板上に設置され た場合

のようなフラックスゲート磁気センサを倍周波型磁気センサと呼 ぶこともある。検出できる磁界を決めるセンサ内部の雑音量は 一例では50pTrmsHz^{-1/2} (at 1Hz)¹⁾ 程度となり,50μTの地磁 気以下の磁気信号でもS/N 比良く測定できる。また,この検出 感度は直流磁界ばかりでなく,数 kHz までの交流磁界にまで及 ぶ。交流磁界を高感度で検出できることから,渦電流探傷検査, 特に,内部の欠陥を検出するために低い周波数の渦電流磁界を 検出するのに好適であると考えられる。他に,非破壊に使用さ れる高感度磁気センサとして超伝導量子干渉型磁気センサがあ るが,感度はフラックスゲート磁気センサより高感度であるが²⁾, 地磁気や都市雑音などの外部雑音の影響で動作が不安定になり 易く,on-site での使用が難しい。

3. フラックスゲート磁気センサを用いた非破壊検 査装置の構成

フラックスゲート磁気センサを用いて渦電流検査を行う場 合,試料に励磁コイルによる磁界により渦電流を誘起させる が,励磁コイルによる磁界が高感度磁気センサにそのまま印 加されると,試料からの微小な渦電流磁界の検出が困難にな る。そのため,通常,励磁コイルでは正と負の極性を持つ磁 界が磁気センサでは打ち消し合うような差動型コイルを用い る。本研究では、ダブルD型コイルと呼ばれる半円のコイル を2個組み合わせて円形になるような差動型コイルを用いた。 図1(a)および(b) で磁気センサの直下にある実線で示

欠陥部分で渦電流が歪み,その影響でコイルの左右の磁界 のバランスが崩れるので,磁気センサは磁界を検出する

図1(b) ダブルDコイルと磁気センサが欠陥のある金属板上に設置 された場合

575

される円形のコイルがダブル D コイルである。等分された二つ の半円に流れる電流が互いに逆向きで、大きさが等しいため、 発生する磁界(図中青と赤の矢印)も方向が逆向きで大きさ が等しく、ダブル D コイルの中心に垂直な直線上では磁界が 打ち消し合っている。この直線上に磁気センサの中心を合わ せると磁気センサに入る磁界は打ち消し合うことになる。こ のダブルDコイルと磁気センサを中心軸を合わせたままで、 検査すべき金属板上に設置する。図1(a)はこのダブルDコ イルで欠陥のない一様な金属板に誘導された渦電流を破線で 示している。誘導された渦電流はダブルDコイルにおける電 流の方向と逆向きになるが,流れる方向と大きさは円の中心 線に対して対称であり、この渦電流により発生して磁気セン サに達する磁界は正負の向きが打ち消し合うことになる。一 方,図1(b)は金属板に線状の欠陥(割れなど)が右手方向 に存在する場合であり,誘導される渦電流が欠陥部(実線で 示す)で妨げられている様子を示している。この場合,右側 の半円状の渦電流が欠陥を避けて迂回しており, 左右の半円 上の渦電流分布のバランスが崩れるので、中心に垂直な直線 上に置かれた磁気センサには渦電流により発生した左右の磁 界の差分の磁界が印加される。

このような原理で欠陥のある部分では渦電流磁界が検出で きる。渦電流磁界は交流磁界ではあるが、ダブルDコイルの 電流(誘導磁界)とは位相が異なるためロックイン増幅器で 位相調整を行い、誘導磁界と同じ周波数の渦電流磁界の成分 を出力とする。誘導磁界の周波数を変更する際には位相調整 を行う。図2にフラックスゲート磁気センサを用いた非破壊 検査装置の模式図を示す。試料の上に設置された磁気センサ とダブルDコイルは一体となって試料の表面をラスター走査 (XY 走査)し、欠陥部で発生する信号はロックイン増幅器(参 照信号用発振器内蔵)で、誘導磁界と同じ周波数成分を取り 出して欠陥部の信号強度として走査画像上に表示される。

4. フラックスゲート磁気センサを用いた非破壊検 査装置による試行例

フラックスゲート磁気センサを用いた非破壊検査装置を構成し、実際に平面板の渦電流検査を試行した。試料としては 縦横 20 cm,厚さ4 mm の Al 合金板(A1050)の中心付近に模 擬欠陥の一つとして長さ10mm,幅0.15mmの貫通スリット を設けたものを用意した。他に模擬欠陥の長さや幅を変えた ものも用意した。最初に長さ10mmの欠陥を検出するために、 直径 10mm のダブル D コイル (5 回巻)を用意し、フラック スゲート磁気センサと一体化して, 試料平板上で 10cm 四方 をラスター走査して検査を行った。試料表面からダブルDコ イルまでは2mm, 試料表面からセンサの底面までは10mm, さらに 20mm 上方にセンサ本体がある。図3に試行結果を示 す。ダブル D コイルに周波数 560 Hz, 200 mAmの電流を印加 した。模擬欠陥はこの画面の縦方向で長さ10mmである。信 号出力値を疑似カラー表示している。欠陥のない部分では渦 電流は検出されないが、疑似的に緑色にしてある。欠陥の付 近で渦電流が検出されるが,赤色部は印加した渦電流に対し て正の位相の渦電流信号強度であり,青色は負の位相の信号 強度を表す。ダブルDコイルの中央軸が画面の水平方向になっ ているため, 欠陥の両端で正負の出力が現れる。正負の出力 の中心を結ぶ線分の位置が、ほほ欠陥と一致する。

次に,表面から見えない内部の欠陥を検出するため,試料 表面に厚さ1mmのAl板を重ねた状態で検査を試みた。この 際,渦電流が浸透する深さを大きくするため,渦電流の周波 数を70Hzまで低下させた。ダブルDコイルに周波数70Hz,

図3 長さ10mm,幅0.15mmの模擬欠陥に対する検査結果 検査領域(100mm×100mm)

図2 フラックスゲート磁気センサを用いた非破壊検査装置の模式図

200mA_{pp}の電流を印加した。このとき,Al板の導電率が 16MS/mであるので,渦電流の表皮深さは10mmで,1mm の深さでの渦電流の強度はそれほど減衰しない。カバー層を 設けた場合の検査結果を図4に示す。欠陥のない部分の疑似 カラーがオフセットのため黄色になっている。カバー層があ るため,表面から欠陥部は見えていないが,図3と同じ位置 に欠陥の存在を示す正負の出力が現れている。欠陥の大きさ を表す正負の出力の中心間隔も同じである。

小さな欠陥の検出の試みも行った。先に述べた検出原理で、 欠陥部を迂回する渦電流がダブルDコイルによる磁界のバラン スを崩すことにより磁界センサで信号を検出する。従って、欠 陥が小さくなると、迂回する渦電流が小さくなり、そのバラン スの崩れも小さくなる。これに対応するためダブルDコイルを 小型化した。小さな欠陥として、縦横 20cm、厚さ 4mm の Al 合金板 (A1050) に長さ 2mm、幅 0.1mm、深さ 0.5mm の模 擬欠陥を形成した試料に対して検査を行った。この試験では 直径 5mm のダブルDコイルを用いた。検査の結果を図5に 示す。ダブルDコイルに周波数 1.9kHz, 600 mApp の電流を 印加した。画面下方右寄りに欠陥に対応する正負の信号が現 れている。

図 4 長さ 10mm,幅 0.15mmの模擬欠陥(1mm カバー層有)の検査結果 検査領域(100mm×100mm)

図 5 長さ 2mm,幅 0.1mm,深さ 0.5mmの模擬欠陥に対する検査結果 検査領域(100mm×100mm)

大きな 欠陥に対する結果と多少異なり,正負の出力の間に 小さな長円状の正負の信号が現れている。これは,ダブル D コイルの直径に対する欠陥の長さの比が異なるため,迂回電 流の形状が変わったためと考えられる。

5. おわりに

フラックスゲート磁気センサを用いた渦電流探傷法を提案 し、内部の欠陥を検出するための低い周波数での渦電流試験 に有効であることを示した。

参考文献

- 1) Bartington Instruments : Specification sheets, Low radiation single axis magnetic field sensor, Mag592, (2014)
- 2) H. Nakane : Non Destructive Evaluation in Multilayer Structure Using the High Tc SQUID. IEICE Trans. Electron., vol.E88-C, pp.188-191, (2005)

中根 英章 室蘭工業大学 (050-8585 室蘭 市水元町 27-1) 大学院情報電子工学系専攻 教授

1981年より日立製作所中央研究所にて超伝 導デバイスの研究に従事。1991年より室蘭 工業大学にて高感度磁気センサの研究およ び高感度磁気センサによる非破壊検査応用 研究に従事

URL: http://www.muroran-it.ac.jp