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ABSTRACT Many recently built residential houses and factories are equipped with facilities for converting
energy from green sources, such as solar energy, into electricity. Electricity consumers may input the extra
electricity that they do not consume into the smart grid for sale, which is allowed by law in countries such
as Japan. To reduce peak-time electricity usage, time-varying pricing schemes are usually adopted in smart
grids, for both the electricity sold to consumers and the electricity purchased from consumers. Thanks to the
development of cyber-physical systems and advanced technologies for communication and computation,
current smart grids are typically networked, and it is possible to integrate information such as weather
forecasts into such a networked smart grid. Thus, we can predict future levels of electricity generation
(e.g., the energy from solar and wind sources, whose generation is predominantly affected by the weather)
with high accuracy using this information and historical data. The key problem for consumers then becomes
how to schedule their purchases from and sales to the networked smart grid to maximize their benefits
by jointly considering the current storage status, time-varying pricing, and future electricity consumption
and generation. This problem is non-trivial and is vitally important for improving smart grid utilization and
attracting consumer investment in new energy generation systems, among other purposes. In this paper, we
target such a networked smart grid system, in which future electricity generation is predicted with reasonable
accuracy based on weather forecasts. We schedule consumers’ behaviors using a Markov decision process
model to optimize the consumers’ net benefits. The results of extensive simulations show that the proposed
scheme significantly outperforms the baseline competing scheme.

INDEX TERMS Smart grids, Markov decision process, scheduling algorithms, time-varying systems.

I. INTRODUCTION
Electricity systems for a smart world (also known as smart
grids) [1]–[3], in which information and communications
technology (ICT) is applied to provide consumers with elec-
tricity in a more intelligent, stable and efficient manner, are
attracting increasing attention. A smart grid includes a variety
of components, such as smart meters (which automatically
record the amounts of electricity consumed and deliver the
data to a control center), smart appliances, and renewable
energy resources (where new green energy sources have been
integrated into the smart grid).

State-of-the-art studies on smart grids have addressed
various aspects of these systems, such as electrical power

conditioning and the control of the production and distri-
bution of electricity, from the standpoints of the overall
smart grid system, the electricity provider and the consumers.
System-oriented research primarily focuses on smart control
centers, smart transmission networks, and smart substations,
as well as security and other similar concerns. In other words,
such studies focus on each component of the smart grid
system and optimize them individually. For example, wireless
sensor networks (WSNs) [4] can be used to enhance the
generation, delivery, and utilization of electricity to improve
smart grid operations [5]. By contrast, provider-oriented stud-
ies primarily focus on time-varying pricing schemes to opti-
mize a defined objective function, e.g., to reduce peak-time
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electricity consumption under certain constraints. Support for
high peak-time electricity consumption requires a high sunk
cost (initial investment), but this is usually only needed for
a specific period of time. Finally, consumer-oriented stud-
ies primarily focus on the optimization of a defined utility
function (such as the minimization of the overall cost) under
certain assumptions regarding the smart grid.

An increasing number of recently built residential houses
and factories are equipped with facilities for converting
energy from green sources, such as solar energy, into elec-
tricity and to store that electricity for current and future use
or sale. The amount of electricity generated may exceed the
consumer’s own demands or even the available electricity
storage capacity when conditions are favorable. Electricity
consumers can sell this excess electricity to the smart grid,
which is allowed by law in countries such as Japan. Usually,
the smart grid owner sets time-varying prices for the sale
of electricity to consumers and the purchase of electricity
from consumers to reduce peak-time electricity usage and
to encourage consumers to sell electricity during peak times.
Consumers decide whether to sell their electricity at specific
times based on the current storage status, time-varying prices,
and expected future electricity generation and consumption.
The key problem for consumers is how they can optimize
their behaviors (whether and when to sell their generated
electricity or purchase electricity from the electricity plant,
and in what amounts).

Datamining, especially big datamining, can help to predict
future levels of electricity generation based on historical data
and predictions of future weather, seasons, etc. Thanks to the
development of cyber-physical systems as well as advanced
communication and computation technologies, current smart
grids are typically networked, and the available weather fore-
casts are becoming increasingly accurate. Since weather is
the dominant parameter affecting the amounts of electricity
generated from solar and wind sources, we can utilize, e.g.,
weather forecasts to predict the expected future levels of
electricity generation with high accuracy. However, even with
the ability to predict the amount of electricity that will be gen-
erated in the near future, the question of how best to schedule
purchases from the smart grid and sales to the smart grid at
each decision time to optimize the overall benefit to electric-
ity consumers remains a non-trivial problem. Moreover, the
ability to predict future levels of electricity generation and
consumption is still imperfect. To our knowledge, no such
optimization scheme has been proposed to date.

In this paper, we study such a smart grid, in which elec-
tricity consumers are able to generate their own electricity
from solar power or other sources. The amount of electricity
generated primarily depends on the weather. Weather fore-
casts, etc., are integrated into each consumer’s control system
to help predict the amounts of electricity expected to be
generated in the coming few days. We jointly consider the
predicted amounts of generated electricity (subject to uncer-
tainty and disturbances) and consumed electricity (subject
to uncertainty), the current electricity storage status and the

time-varying pricing scheme set by the smart grid owner
(including both purchase and sale prices). AMarkov decision
process (MDP) model is used as a tool to help optimize
consumers’ behaviors with the defined objective of maxi-
mizing the consumers’ benefit. The dynamic programming
and branch-and-bound [6] algorithm design paradigms are
applied to reduce the computational complexity. The results
of extensive simulations are reported, which indicate that the
proposed mechanism outperforms other competing schemes.
The proposed management scheme can be implemented in
each consumer’s energy generation system to promote better
smart grid utilization and attract consumer investment in new
energy generation systems. Overall, the contributions of this
paper are as follows:

1) Weather forecasts, etc., are integrated into the smart
grid system to help predict future levels of electric-
ity consumption to improve smart grid utilization and
attract consumer investment in new energy generation
systems. The uncertainties in the estimated levels of
future electricity generation and consumption due to
non-perfect prediction are also considered in the pro-
posed scheduling scheme.

2) An MDP model is used as a tool to schedule
consumers’ behaviors to maximize their benefits.
The dynamic programming and branch-and-bound
algorithm are used to reduce the computational
complexity.

3) Extensive simulations conducted for performance eval-
uation are presented, and the results show that the
proposed scheme can achieve better performance than
the baseline competing scheme in typical scenarios.

The remainder of this paper is organized as follows.
We first discuss related work in Section II. Then, we describe
the smart grid system and the pricing scheme in Section III.
We introduce how we use the MDP to optimize consumers’
behaviors in Section IV. We report experimental investiga-
tions of the proposed scheme’s performance in Section V.
Finally, concluding remarks are provided in Section VI.

II. RELATED WORK
Smart grids [1]–[3] include a variety of operational compo-
nents and devices for energy measurement, including smart
meters, smart appliances, and renewable energy resources.
Various state-of-the-art schemes consider electrical power
conditioning and the control of electricity production and dis-
tribution from the standpoints of the overall system, the elec-
tricity provider and the electricity consumers. System-level
studies (such as [7]) primarily focus on smart control centers,
smart transmission networks [5], and smart substations, as
well as security [8] and other similar concerns. For example,
with regard to transmission, wireless sensor networks [4] can
be applied to enhance the generation, delivery, and utilization
of electricity in a smart grid. In [5], such a systemwas studied
in which sensors were used to improve the performance of
the smart grid. One important issue from the provider’s point
of view is that of time-varying pricing, which can help to
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increase the provider’s net profit while decreasing the sunk
cost. From the consumers’ perspective, many works [9]–[11]
have attempted to minimize the overall cost or maximize
some defined utility function.

Many researchers have investigated various pricing
schemes, in which different pricing policies are applied
to help optimize a defined objective in typical sce-
narios [10], [12]–[15]. Specifically, [10] assumed the exis-
tence of two-way communication between the smart grid and
the consumers and developed a real-time pricing algorithm
to benefit both the smart grid owner and the electricity con-
sumers. In [13], a scheme was proposed for electric vehicles
(smart grid consumers) to assist in decisions regarding when
to buy electricity from the smart grid by predicting future
electricity prices. In [14], peak-time electricity consumption
was controlled by means of dynamic pricing with distributed
load management.

Regarding the use of weather forecasts in smart grids, the
related studies can be classified into research on the predic-
tion of future electricity generation, such as [16] and [17],
and research on scheduling schemes using such prediction
results [18], [19]. In [18], the use of weather forecasts in a
smart grid was investigated, but the accuracy of the weather
forecasts was not considered. In [19], a methodology was
presented for the optimal operation of a smart grid to min-
imize power flow fluctuations at interconnection points by
considering the forecasted errors in isolation.

Similar to the smart grid system discussed in this paper,
vehicle-to-grid (V2G) systems are emerging, in which elec-
tricity stored by vehicles can be sold to the smart grid. Hybrid
vehicles and battery-powered vehicles are becoming increas-
ingly popular because of their environmental friendliness,
lower operation costs, and decreased fuel dependency, as well
as preferential governmental policies and other factors. They
also offer an opportunity for V2G power. V2G power [20]
is primarily intended to address certain unusual cases, such
as the need to satisfy peak power demands to stabilize the
grid. Many studies have been conducted related to V2G
power [21]–[25]. Several typical works are as follows. In [21],
an aggregator was proposed to provide grid-scale power by
making use of the distributed power of electric vehicles. The
authors of [24] studied a unidirectional V2G power scheme
and proposed an aggregator algorithm to maximize profit by
combining the capacity of many EVs. The authors of [25]
studied how to integrate V2G power to balance the unpre-
dictable nature of wind power to ensure the stable and reliable
operation of a power system.
Markov decision process [26] is a tool that provides amath-

ematical framework to assist in decision-making when the
potential outcomes are subject to randomness. The outcome
of such a process depends on the current state of the system
and the actions chosen by the decision-maker. The MDP
approach offers good performance for addressing various
problems in which decision-making is required, such as coop-
erative multimedia transmission [27], dynamic pricing [28],
and video frame transmission [6].

Unlike the related studies discussed above, this paper con-
siders a system in which weather forecasts from the internet
are used to predict future levels of electricity generation
in a networked smart grid. An MDP model is used as a
tool to optimize consumers’ behaviors with the objective of
maximizing their overall benefit while considering forecast
errors and potential fluctuations in users’ future electricity
consumption.

III. SYSTEM OVERVIEW
This section provides an overview of the electricity system
concept for the networked smart world (namely, the smart
grid system), inwhich electricity consumers can also generate
electricity. We first introduce the pricing model designed
by the electricity plants, including the prices at which they
sell electricity to consumers and the prices at which they
purchase electricity from consumers. The assumptions made
concerning electricity consumers’ electricity generation and
consumption are mentioned at the end of this section.

A. SYSTEM OVERVIEW
We study the electricity system of a networked smart grid,
in which most buildings (including residential houses and
factories) are equipped with facilities for converting solar
energy or energy from other green sources, such as biogas,
into electricity. Some capacity for electricity storage is asso-
ciated with such an electricity generating system to allow
the generated electricity to be stored for self-use or sale.
A monopoly market is considered, in which there is only one
electricity plant.1 However, the government enforces certain
political regulations, e.g., an electricity plant will be fined
or even forced to shut down if it cannot provide sufficient
electricity, as we discuss in greater detail later. Green elec-
tricity from solar power, wind power, etc., has enormous
social impacts on society; hence, the government typically
assists in the establishment of such energy sources in terms
of the initial investment, etc., to promote the development of
the necessary facilities, such as the equipment for converting
solar energy into electricity. The smart grid is networked, and
thus, weather forecasts from the internet, etc., can be utilized
for smart decision-making.

Fig. 1 shows an illustration of such a system, in which
the electricity plant generates electricity and the electricity is
transmitted via the electrical grid (smart grid). The electricity
plants and the grid are owned by the monopolistic electricity
provider; in this paper, we use a single electricity plant to
denote this situation. We divide users into three categories:
always-insufficient consumers such as large factories (who
demand more electricity than they can generate), always-
sufficient consumers (who always generate more electricity
than their demands), and other consumers (such as certain res-
idential consumers). Each consumer has an electricity storage
unit with a maximum storage capacity, where the additional

1This is usually the case in countries such as Japan or China, where there is
only one electricity provider in a given geographical area, e.g., the electricity
in the Tokyo area is provided by Tokyo Electric Power Company.
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FIGURE 1. Illustration of an electricity system for the smart world.

electricity they generate can be stored for future use or for
sale to the grid. This electricity storage is directly related to
the initial investment and affects the system performance.

B. PRICES SET BY THE ELECTRICITY PLANT
We assume that the electricity plant has a maximum capac-
ity Cmax , where Cmax denotes the plant’s maximum output.
In other words, the electricity plant cannot generate more
electricity than Cmax throughout the year. Cmax is related to
the initial investment, i.e., a larger Cmax requires a larger
initial investment or sunk cost. Cmax is typically larger than
the amount of electricity demanded.

1) SALE PRICES OF THE ELECTRICITY PLANT
The available electricity resources are generally insufficient
in situations such as summer in Tokyo, where most of the
nuclear power stations have been shut down since the East
Japan earthquake in 2011. To reduce peak-time electricity
usage and limit the electricity usage of consumers who use
large amounts of electricity, elastic prices are usually adopted
instead of flat prices.2 According to this elastic pricing
scheme, prices are determined by the amount of electricity
consumed and the time period. We denote the electricity
usage of user i during time period t (time is divided into
multiple discrete periods to simplify the formulation and
calculation) by vi,t and the corresponding price by pv′i,t ,t .
Here, v′i,t denotes the amount of electricity purchased from
the electricity plant, i.e., the amount of electricity consumed
minus the amount of consumed electricity self-generated by
the consumer. We divide the time and amount of electricity
usage used in the pricing scheme into discrete phases. Within
each phrase, the prices are the same. Moreover, the prices are
bounded by government policy in this monopolistic electric-
ity market. The prices assigned by the electricity plant are
defined as follows:

pv′i,t ,t = p0 + εdmin(
v′i,t
v0
,
vmax
v0

)eft i ∈ U (1)

where pv′i,t ,t represents the electricity price when user i pur-
chases an amount of electricity equal to v′i,t from the smart
grid during time period t . p0 is the base price, and ε is

2Our scheme is not specific to any particular pricing scheme, i.e., the
proposed scheme also functions in systems in which other types of pricing
schemes are adopted.

a constant weight parameter.
v′i,t
v0

determines the weight of
the amount of electricity consumption; users must pay more
money for higher electricity consumption with respect to
the base consumption, v0. Note that this term is bounded
by vmax

v0
, i.e., all users who consume vmax or more pay the

same electricity price. ft is the term representing the smart
grid’s ’business’ in the time domain, which takes a positive
integer value. Peak time corresponds to a larger ft , whereas a
smaller ft indicates that the electricity plant is not very busy.
U denotes the set of consumers served by the electricity plant.

FIGURE 2. The weight parameters depending on the amount of electricity
consumed and the weight profile in the time domain. (a) Amount of
electricity consumed. (b) Weight in the time domain.

FIGURE 3. Illustration of the prices defined by the electricity plant for
p0 = 0.1 and ε = 0.1.

Fig. 2 (a) illustrates a typical set of weight parameters
defined based on the amount of electricity consumed, where
v′0=50 kWh and vmax is 150 kWh. Fig. 2 (b) shows the
weighting profile in the time domain, where time is divided
into three phases. From 0:00 am to 6:00 am, the amount of
electricity expected to be consumed is the least, and hence,
this time period has the lowest weight. The period of 18:00
to 24:00 is assumed to be the busiest, and thus, the corre-
sponding weight is the highest. Note that these pricing speci-
fications can be modified as needed and that our algorithm
does not make any assumptions regarding when the peak
time occurs. We assume that this trend holds daily throughout
the year. Also note that the time priority can also be modified
without affecting the feasibility of the proposed algorithm.
Fig. 3 shows an illustration of the final elastic electricity
prices adopted by the electricity plant, where the weight
parameters based on the amount of electricity consumed and
the weighting in the time domain are the same as those
shown in Fig. 2. From this figure, we can observe that the
electricity prices vary significantly depending on the time and
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the amount of electricity purchased. Note that no units are
assigned to the figure to make the model more applicable to
different scenarios, considering that the units could differ as
a result of currency differences between countries.

In this monopolistic electricity market, the government
assumes the responsibility of supervision and certain agree-
ments are established between the government and the elec-
tricity plant, such as Csupply − Cneeded ≥ 0.3 If the electricity
plant cannot meet this requirement, it will be fined a large
amount of money; hence, the electricity plant must invest
properly to handle peak-time electricity usage.

2) PURCHASE PRICES OF THE ELECTRICITY PLANT
Consumers can also generate electricity, and the amounts
of electricity they generate may exceed their own demands.
Hence, users may also put electricity onto the market for the
electricity plant to purchase. The electricity plant would like
to purchase users’ excess electricity during peak periods to
avoid a situation in which the amount of electricity supplied is
lower than the amount of electricity demanded. The ability to
purchase electricity from consumers can also lower the initial
investment required of the electricity plant. Therefore, the
electricity plant may increase its purchase prices during peak
times to attract more electricity sales. Electricity consumers
are thus motivated to sell their excess electricity at higher
prices if the prices vary in time. We assume that the prices at
which the plant purchases electricity from users are defined
as follows:

p′t = p′0 + ε
′ft (2)

where p′t represents the purchase price of electricity at time t ,
p′0 is the base price, and ε′ is the weight parameter for the
time factor. ft is the same function introduced in Eq. (1).
This purchase pricing scheme is a simplified version of the
sale pricing scheme, in which the quantity purchased is not
considered. Generally, purchase prices are lower than the
prices set in Eq. (1). Otherwise, consumers might sell elec-
tricity purchased from the electricity plant directly back to the
electricity plant and make a profit from the price difference,
which is obviously not reasonable in a mature market. Note
that we do not consider cases in which large government
or policy compensations exist since in the presence of such
incentives, compensation of this kind will disappear.

C. ELECTRICITY CONSUMERS
The amounts of electricity generated by consumers depend
on the season, weather, and time of day. For example, more
electricity may be generated during daytime compared with
that generated during the night if the system in question
converts solar energy into electricity. The amount of electric-
ity generated is also related to the initial investment or the
sunk cost. The initial investment determines the maximum
amount of electricity that a user can generate when all other

3Other regulations are also possible; however, we consider only this
typical one in this paper.

conditions remain the same. Note that the initial investment
is usually bounded by the limitations of residential houses
or factory buildings, etc. The generated electricity can be
stored in the electricity storage unit, but the volume of that
storage is limited by Ei, where Ei denotes the maximum
amount of electricity for user i that can be stored in that user’s
electricity storage. The amount of electricity stored in user i’s
electricity storage at time t is denoted by ei,t and must satisfy
0 ≤ ei,t ≤ Ei. The amount of electricity generated by user i at
time t is denoted by gi,t , where gi,t is determined by the initial
investment (sunk cost), the season, the weather, the time of
day, etc., as mentioned. Mi,max denotes the initial investment
of user i.

For an always-insufficient consumer, i.e., for big user i,∑T
t=1 vi,t >>

∑T
t=1 gi,t , where T is the time horizon

considered. Such consumers can use their own generated
electricity during peak times or high-price periods. Always-
sufficient consumers will sell

∑T
t=1 gi,t −

∑T
t=1 vi,t during

peak times with a proper storage. It can be easily proven
that these are the best strategies for these two types of
consumers.

We therefore focus on the remaining consumers, such as
certain residential consumers who can generatemore electric-
ity than their demands only in certain cases, i.e., a home user
i for whom vi,t < gi,t only sometimes. Correspondingly, the
amount of electricity sold by such a user i at time t is denoted
by ai,t . ai,t may be 0, which means that consumer i does not
sell any electricity. Because the purchase prices are assigned
by the electricity plant in a time-varying manner, consumers
must decide when to sell their excess electricity to maximize
their benefits. Consumers prefer to sell their electricity when
the electricity they are generating is sufficient for their near-
future usage and during high-price periods. Consumers must
consider the status of their storage, the amount of electricity
expected to be generated in the near future, etc., for optimal
scheduling; this problem is non-trivial and is the focus of this
paper.

Overall, the smart grid system considered in this paper
includes an electricity plant, electricity consumers, con-
sumers’ electricity storage units and their various home appli-
ances. Consumers can choose when to purchase electricity
from the electricity plant and how much to purchase. They
also decide whether and when to sell the electricity stored
in their storage units considering their expected future elec-
tricity generation, their storage status, etc. Regarding their
future electricity generation, consumers may rely on weather
information (by integrating weather forecasts into their
management systems, although weather forecasts are not
100% accurate) and other such tools. This prediction problem
is quite novel and interesting by virtue of the development
of cyber-physical systems and network communication tech-
nologies. This paper further investigates this problem to seek
better system efficiency and higher overall benefits for con-
sumers. We hope that systems of this kind may attract more
consumers and promote the development of green energy
generation systems.
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FIGURE 4. Illustration of the factors affecting user decisions.

1) ELECTRICITY CONSUMPTION MODEL
We assume that consumers are wise and rational. In other
words, consumers will strive to use their home appliances
during time periods of low ’business’ (low prices) as much as
possible to reduce their overall cost. Regarding consumption,
there are two cases: one is that the consumers possess com-
plete information about their future home appliance usage,
and the other is that the consumers only have knowledge
about the distribution of their future electricity consumption.
Different home appliances may have different properties in
terms of when they are used, e.g., the refrigerator must always
be turned on, whereas in principle, the washing machine
could be used at any time during the day, although consumers
may prefer to wash their clothes at a specific time. The
amount of electricity vi,t consumed by consumer i is thus
assumed to consist of two components4: the base consump-
tion and the flexible electricity consumption. In other words,
vi,t = v0i,t + v1i,t , where the base electricity consumption
during time period t is denoted by v0i,t and v

1
i,t denotes the

flexible electricity consumption during the same time period.
The probability that the flexible electricity consumption of
user i will be equal to a certain value of v1i,t is calculated

as 1
δi,t
√
2π
e
−

(v1i,t−µi,t )

2δ2i,t [29], where δi,t is the corresponding
standard deviation and µi,t is the corresponding expectation
value of the distribution, which is time-varying and can be
determined based on historical data.

2) ELECTRICITY GENERATION PREDICTION
Hi,t is a positive integer and represents the maximum elec-
tricity generation capability of user i. The number of possible
values ofHi,t is assumed to beH0. Sunny weather conditions
during daytime lead to a large Hi,t , whereas Hi,t may be
smaller in the evening. The function gi,t = (q+ rand ∗ q1) ∗
Hi,t ∗ εg is used to represent the amount of electricity gen-
erated, where q is the base value of the generated electricity;

4Our algorithm is not specific to any particular model of consumers’
electricity consumption; it works just as well with other models. This model
is simply chosen as an example for this paper.

rand ∗ q1 is the additive variable for electricity generation,
where rand denotes a random number between 0 and 1 and
q1 is a constant value; and εg is a weight parameter.
The remaining variable to be considered is the weather,

and weather forecasts can be used for this purpose with high
prediction accuracy. The prediction accuracy at time t for
the weather at time t ′ is assumed to be wi,t,t ′ (t ′ ≥ t), and
the corresponding predicted amount of generated electricity
is g′i,t,t ′ . Note that a larger t

′
− t leads to a lower prediction

accuracy for the predicted amount of electricity generated
at t ′, as illustrated by the following equation:

wi,t,t ′ = w0 − ε
w(t ′ − t) (3)

This equation indicates that the prediction accuracy is
assumed to be a linear function of the time difference, where
εw is a positive weight parameter. The true weather may be
different from the prediction; we assume that the remaining
probability is shared equally among all other possible weather
conditions (i.e.,

1−wi,t,t′
H0−1

)).
Note that this paper focuses on how to schedule users’

behaviors rather than how to perform weather prediction and
that our algorithm is also suitable for usewith other prediction
accuracy models. We normalize the amounts of electricity
generated, consumed and purchased as percentages of the
electricity storage capacity to simplify the formulation.

IV. FORMULATION
This section introduces the objective function, which is
designed to maximize the long-term net benefit to electricity
consumers. We then explain how to use an MDP model to
solve this indeterministic optimization problem. Fig. 4 shows
all the factors that affect users’ decisions.

A. OBJECTIVE FUNCTION
In this system, the benefit to electricity consumers is the
revenue earned by selling electricity to the smart grid minus
the expense of purchasing electricity from the electricity
plant and the initial investment. Maximizing this quantity is
equivalent to maximizing electricity consumers’ net benefit.
Hence, the objective function can be expressed as follows:

maximize
∑
i∈U

(
T∑
t=1

(ai,tp′t − v
′
i,tpv′i,t ,t )− φMi,max) (4a)

subject to ai,t ≤ ei,t , i ∈ U , t = 1, . . . ,T (4b)

ei,t ≤ Ei, i ∈ U , t = 1, . . . ,T (4c)

p′t ≤ p.,t , t = 1, . . . ,T (4d)

In this equation,
∑T

t=1 ai,tp
′
t is the revenue earned by

selling electricity to the smart grid. v′i,t is the amount of
electricity purchased from the smart grid, and

∑T
t=1 v

′
i,tpv′i,t ,t

represents the cost to electricity consumer i of purchasing
electricity from the smart grid. If the electricity consumer
does not need to purchase any electricity from the electricity
plant, then v′i,t = 0. φMi,max represents the sunk cost for
electricity consumer i that is allocated to the time periods
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t = 1, . . . ,T ; this sunk cost is assumed to be linearly
proportional to the capacity Mi,max , with a proportionality
coefficient of φ. Constraint (4b) indicates that a consumer
cannot sell more electricity than the electricity contained in
that consumer’s electricity storage unit, and constraint (4c)
states that the amount of stored electricity cannot exceed
the storage capacity. Finally, constraint (4d) ensures that the
prices at which electricity is sold are no higher than the prices
set by the electricity plant for electricity sales. In all of the
above notation, t is the time period index.

B. OPTIMIZATION FACTORS
Consumers usually explore all potential options before
deploying their electricity generation systems, which means
that Mi,max(i ∈ U ) is usually fixed; hence, this quantity is
not considered in the optimization. Thus, the decisions that
consumers can make to maximize their benefits are when
to purchase electricity (affected by time-varying sale prices),
when to sell their excess electricity (affected by time-varying
purchase prices), how much electricity to purchase and how
much electricity to sell. The weather conditions, the season,
etc. affect the amount of electricity that is expected to be
generated in the near future. If the amount of electricity to
be generated is expected to be insufficient for their own use,
consumers may choose to keep their electricity instead of
selling it. Otherwise, consumers can choose to sell their
excess electricity during a high-price period since the amount
of generated electricity exceeds their own usage. Moreover,
the amount of electricity remaining in storage affects con-
sumers’ scheduling decisions, e.g., if a consumer’s storage
unit is almost full, that consumer may be more likely to sell
even when the purchase price is not as favorable. However,
future amounts of electricity generation and consumption
cannot be known exactly, and thus, the problem of scheduling
users’ behaviors while considering this uncertainty to maxi-
mize the users’ net benefit is non-trivial.

C. Markov DECISION PROCESS
An MDP is a finite-horizon (H ) recursion process, in which
a leaf node of the recursion tree marks the end of the decision
process.5 For each state st at time t , there aremultiple possible
actions, and each possible action leads to different future
states. Note that each time index t denotes a different time
period, as discussed above. The action that leads to the largest
average objective value will be chosen as the best strategy
at time t . There are four important factors involved in an
MDP, namely, 1) the state space, 2) the action space, 3) the
state transition probabilities, and 4) the benefit function.
Fig. 5 presents an illustration of such an MDP. Below, we
define each factor listed above for the problem of interest and
demonstrate how consumers can use an MDP model to make
decisions.

5Note that always-insufficient consumers can be classified into this
category.

FIGURE 5. Illustration of a Markov decision process.

1) STATE SPACE
We define the state of user i at time t as si,t , which represents
the status of that user’s storage. To reduce the complexity
of the MDP, we use a coarse status scale to limit the total
number of possible states, in which the unit is defined as
the percentage x% (e.g., x=10) of the total storage capacity.
Thus, si,t = b

ei,t
x%∗Ei

c. The compensation is incremented
correspondingly with each integer-valued downward shift.
Note that this percentage x% could be replaced with some
other constant value depending on the specified requirements
in terms of computational complexity and the consumers’
sensitivity to the granularity of the state space.

2) ACTION SPACE
An action is defined in terms of the quantities of electricity
to be sold and/or purchased during time period t . Since the
unit of the state space is x% ∗ Ei, the unit of electricity
sales is also assumed to be x% ∗ Ei. This again limits the
number of possible actions and reduces the complexity to
some extent. Thus, the possible actions Ai,t of user i at time
t are defined by the possible combinations of how much to
sell and how much to purchase, i.e., Ai,t = (ai,t , v′i,t ), where
ai,t = 0, . . . , b ei,t

x%∗Ei
c and v′i,t = 0, . . . , d Ei

x%∗Ei
e. The latter

means that the set of feasible actions must satisfy constraints
(4b) and (4c). ai,t = 0 means that no electricity will be sold.
Note that at any given t , either ai,t = 0 or v′i,t = 0; otherwise,
it is obvious that the action is not optimal.

3) TRANSITION PROBABILITY
To define the transition probability, we need to know two
factors: the electricity consumption of the home appli-
ances and the future electricity generation. Recall that elec-
tricity consumer i can generate an amount of electricity
g′i,t,t ′ (t

′
≥ t) at time t ′ with prediction probability wi,t,t ′ ,

where the prediction is made at time t . Then, based on
whether a user’s energy consumption is known or unknown,
we can calculate the transition probabilities for action Ai,t for
two cases when the decision is made at time t0:
Case 1: If the system has full knowledge of the user’s

energy consumption vi,t , then the transition probability can
be expressed as follows:

Tsi,t+1 (si,t ) = Tmin(0,si,t+g′i,t0,t+v
′
i,t−vi,t−ai,t )

(si,t ) = wi,t0,t (5)
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where this equation indicates the state transition and
si,t+1 = min(0, si,t + g′i,t0,t + v

′
i,t − vi,t − ai,t ).

Case 2: When full knowledge of the user’s energy con-
sumption vi,t cannot be obtained, there are many possible
amounts of electricity consumption, defined in terms of a
base consumption v0i,t and a flexible consumption v1i,t , with

probability 1
δi,t
√
2π
e
−

(v1i,t−µi,t )

2δ2i,t . Then, the transition probability
can be expressed as follows:

Tsi,t+1 (si,t ) = Tmin(0,si,t+g′i,t0,t+v
′
i,t−v

0
i,t−v

1
i,t−ai,t )

(si,t )

= wi,t0,t
1

δi,t
√
2π

e
−

(v1i,t−µi,t )

2δ2i,t (6)

4) OPTIMAL POLICY
Before introducing the optimal policy, we must define the
benefit of each action. The benefit is defined as the user’s net
benefit, i.e., the revenue earned by selling electricity minus
the costs paid to purchase electricity. This quantity can be
calculated asBsi,t ,Ai,t (si,t+1) = ai,tp′t−v

′
i,tpv′i,t ,t . If, at the end of

the recursion process, the amount of stored electricity is larger
than 0, then an additional benefit is added by assuming that
the remaining electricity can be sold at the peak-time price.

The optimal policy θ is the series of actions that leads to the
maximum benefit over the lifetime of theMDP. Let θ∗ denote
the maximum benefit, given the current state si,t . θ∗(si,t ) can
be defined recursively as follows: a chosen action Ai,t in state
si,t leads to state si,t+1 with transition probability Tsi,t+1 (si,t )
and benefitBsi,t ,Ai,t (si,t+1). Then, θ

∗(si,t ) exhaustively searches
for the optimal action Ai,t given state si,t , which can be
expressed as follows:

θ∗(si,t ) = maxAi,t
∑

Tsi,t+1 (si,t )[θ
∗(si,t+1)+Bsi,t ,Ai,t (si,t+1)]

(7)

The running time of the MDP is decided by the depth
of the horizon H and the number of states at each time
instance. The dynamic programming and branch-and-bound
approaches can be utilized to calculate the optimal policy.
The current weather forecast degrades over an increasing time
horizon, which limits H . Moreover, the status normalization
strategy introduced in Section IV-C1 helps to reduce the
numbers of possible states and actions. Hence, the complexity
of the MDP can be kept sufficiently low to allow decisions to
be made in a real-time manner.

V. EXPERIMENTS
To verify the performance of the proposed scheme, exten-
sive simulations were performed. This section presents the
setup and results of these simulations for comparison with
other schemes. Note that our scheme does not require any
specific parameters and that electricity prices tend to differ
between countries.We used the following simulation settings,
in which it was assumed that each storage unit could accom-
modate almost one day of electricity usage, to investigate the

scheduling performance. This assumption is consistent with
typical products currently on the market, such as the ZEN
Urban PowerBank,6 which can supply users with at most one
day’s total electricity usage.

A. SIMULATION SETUP
Each day is divided into two time periods,
i.e., peak (8:00 am∼20:00 pm) and off-peak (20:00
pm∼8:00 am) time periods. Consumers purchase (or sell)
electricity from (or to) the smart grid at the prices defined
in Eq. (1) and (2), with default parameter values of v0 = 5
(off-peak) and 20 (peak), vmax = 150, p0 = 2.8, p′0 = 0.5,
ε = 0.5 and ε′ = 0.4. The weights ft that are used are
5 and 3 for peak and off-peak time periods, respectively. Note
that the highest sale price is lower than the lowest purchase
price to avoid consumers selling electricity purchased during
an off-peak period back to the grid at peak-time prices. The
possible weather conditions are divided into sunny, normal,
and rainy, with probabilities of 0.5, 0.3, and 0.2 (determined
based on the climate), respectively. We assume that the
accuracy of weather predictions deceases as the prediction
horizon becomes longer. The weight parameters Hi,t (i ∈ U )
corresponding to the sunny, normal, and rainy weather con-
ditions are 5, 4, and 3, respectively. The parameters applied
to calculate the expected electricity generation are q = 40,
q1 = 50, and εg = 0.2. The daily weather predication
accuracies are assumed to be (0.95, 0.9, 0.85) for the three
coming days.

B. SIMULATION RESULTS
The proposed scheme (denoted byMDP) was compared with
the optimal and greedy schemes. In the optimal schemes,
weather predictions are assumed to be 100% accurate, and the
results of this scheme serve as the upper bound on possible
performance since it is impossible for the predictions to be
any more accurate. The optimal scheme also uses the MDP
approach for decision-making. The greedy scheme serves as
the baseline for comparison. In the greedy scheme, consumers
sell their electricity during peak times when they are expected
to have a surplus at time H based on their predicted future
levels of electricity generation and consumption and their
current storage status. When the storage status is negative,
in the greedy scheme, the minimum amount of electricity
necessary to ensure that the storage status is non-negative
will be purchased. After decision-making, if the remaining
electricity is greater than the storage capacity, consumers will
sell any electricity that exceeds their storage capacity. If the
remaining electricity is negative, consumers will purchase
the minimum amount of electricity to ensure that the storage
status is non-negative. Each set of simulation parameters was
simulated 200 times (with 10 decisions (T = 10), or 5 days, in
each set), and the results were averaged (the Y axis indicates
the consumers’ overall benefits in all figures presenting the
results).

6http://www.zenenergy.com.au/
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FIGURE 6. Performance comparison of the MDP scheme with different
H values and different numbers of states.

Let us first consider the impacts of the MDP factors (the
action/state unit size x and the time horizon H ). The results
are shown in Fig. 6. From this figure, we can observe that
considering more states leads to slightly better results, at
the cost of a higher computational complexity, for the MDP
scheme. A longer decision horizon H also leads to better
performance, but the prediction accuracy degrades over time,
which decreases the performance. Consequently, the results
are only slightly better with a longer time horizonH . Regard-
ing the greedy scheme, the overall performance does not vary
considerably as H increases for similar reasons. The adopted
dynamic programming greatly shortens the running time of
MDP scheme. When H = 4 with 6 states, the total running
time is around 52.1% of the case without using dynamic
programming and this time cost can be shortened to 43%
when H = 6 with more repeated calculations.

FIGURE 7. Performance comparison of the MDP scheme with different
storage capacities.

For simulations considering both known and unknown
levels of future energy consumption, we adopted a horizon
of H = 4 with 6 states in total. The results are shown
in Fig. 7, Fig. 8 and Fig. 9. Fig. 7 shows the performance
achieved with the storage capacity treated as a variable
(X axis). We observe that the proposedMDP scheme greatly
outperforms the greedy scheme, regardless of whether the
future electricity consumption is known or unknown. The
superiority of the proposed scheme can be attributed to the
decision-making method, which accounts for the expected
levels of future electricity generation and consumption as
well as the current storage status and uses an MDP model

FIGURE 8. Performance comparison of the MDP scheme with different
p0 values.

FIGURE 9. Performance comparison with different prediction accuracies
and weather probabilities. The notation (x,y,z) indicates the independent
probabilities of sunny, normal, and rainy weather conditions.

to optimize consumers’ behaviors based on this information.
TheMDP scheme performs slightly less well than the optimal
scheme because of the imperfect weather predictions. Note
that the initial states of the simulations with different storage
capacities were different; thus, no direct comparison can be
made between them.

The effect of the prices at which the consumers purchase
electricity from the smart grid was also investigated, as shown
in Fig. 8, which presents the results for various p0 values.
We observe that as the prices increase, the overall benefit
decreases. However, the previously observed trend holds, i.e.,
theMDP scheme is far superior to the greedy scheme and only
slightly worse than the optimal scheme.

The results obtained for different weather prediction accu-
racies for the two coming days and different weather situa-
tions (affecting electricity generation) are shown in Fig. 9.
In this figure, the notation (i, j, k) indicates the independent
probabilities of sunny, normal, and rainy weather condi-
tions. In other words, (0.5, 0.3, 0.2) means that for each day,
sunny, normal, and rainy weather conditions are assumed to
occur with probabilities of 0.5, 0.3, and 0.2, respectively.
We observe that as the prediction accuracy decreases, the
performance degrades, since inaccurate weather forecasts can
mislead the decision-making process. When the probability
of sunny weather increases, the amount of electricity gener-
ated during a given period becomes larger, leading to a higher
overall benefit. The proposed MDP scheme outperforms the
greedy scheme in all cases.
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VI. CONCLUSION
This paper focuses on a networked smart grid system, in
which consumers can generate their own electricity and pre-
dictions of future levels of electricity generation can be cal-
culated with reasonable accuracy based on weather forecasts,
etc. AnMDPmodel is used to optimize consumers’ behaviors
(their purchases from the smart grid and sales to the smart
grid) during each specific decision period to maximize their
net benefits considering various factors. The results of exten-
sive simulations show that the proposed scheme significantly
outperforms the baseline competing scheme.
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