
Nonsingular constraints in time-dependent
variational principle for parametrized wave
functions

言語: eng

出版者: Wiley

公開日: 2017-09-06

キーワード (Ja): 

キーワード (En): 

作成者: 太田, 勝久

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10258/00009465URL



Nonsingular constraints in time-dependent variational principle

for parametrized wave functions

Katsuhisa Ohta1, ∗

1Department of Applied Chemistry, Muroran Institute of Technology,

Muroran, Hokkaido 050-8585, Japan

Abstract

In this work we consider two conditions required for the nonsingularity of constraints in the time-

dependent variational principle (TDVP) for parametrized wave functions. One is the regularity

condition which assures the static nonsingularity of the constraint surface. The other condition is

the second-class condition of constraints which assures the dynamic nonsingularity of the constraint

surface with a symplectic metric. Especially for analytic wave functions for complex TDVP-

parameters, the regularity and the second-class conditions become equivalent. The second-class

condition for expectation values is reduced to the non-commutability of the corresponding quantum

operators. The symplectic singularity of the equation of motion of TDVP (TDVP-EOM) is also

shown to be a local breakdown of the second-class condition in an extended canonical phase-space.
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I. INTRODUCTION

In quantum dynamics, the variational approach is one of the most practical methods

to obtain time developments of wave functions with appropriate variational parameters[1].

Depending on forms of the functional, there are three types in the variational calculation,

namely referred to Dirac-Frenkel’s [2, 3], McLachlan’s[4], and the time-dependent varia-

tional principle (TDVP)[5–10]. Especially the TDVP, based on the least-action principle,

has attracted much interest since its theoretical framework is similar to that of classical

mechanics. By utilizing the pseudo-classical structure, we have introduced constraints in

the TDVP[11–13] according to the Dirac’s constrained classical-mechanics[14, 15]. Con-

straints in variational approaches can be used for various purposes, such as to keep some

formal symmetries of the system, to construct some physical situations, to analyze physical

or chemical effects of some freedoms, and so on [16–19]. It is necessary, however, to require

some conditions for nonsingular constraints as in constrained classical-mechanics[20–22].

In this work, we consider two types of such conditions in the TDVP to construct a

nonsingular constraint surface. One is the regularity condition of constraints. This condition,

as discussed in §II, constructs the nonsingular static structure of the constraint surface. The

other condition is the second-class condition of constraints which assures the nonsingular

dynamic structure of the constraint surface with a so-called symplectic metric[7] as discussed

in §III. Especially for analytic wave functions for the complex TDVP-parameters[8, 10], we

show some simple features of the TDVP. The regularity condition becomes equal to the

second-class condition. Moreover, the Poisson bracket of expectation values is proven to be

equal to the expectation of the commutator of corresponding quantum operators[12] as shown

in §IV. Some examples are given for second-class conditions in §V. As one of the examples,

the symplectic singularity in the equation of motion of TDVP (TDVP-EOM)[23, 24] is shown

to be a local breakdown of the second-class condition with a numerical example. The section

VI gives the summary of the present work.
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II. REGULARITY CONDITION FOR STATIC NONSINGULARITY OF CON-

STRAINTS

In this section we consider the regularity condition of constraints. The regularity con-

dition assures the independence of freedoms to be frozen in variational calculations and

constructs the nonsingular constraint surface.

We parametrize wave functions Ψ through real-valued parameters {αi}i=1,N . The varia-

tional freedom δΨ is expanded and restricted within a predetermined region of Hilbert space

by the parameters {αi}i=1,N as

|δΨ⟩ =
N∑
i=1

∣∣∣∣ ∂Ψ∂αi

⟩
δαi . (1)

We here assume that the local bases
{∣∣∣ ∂Ψ∂αi

⟩}
i=1,N

are independent as

Rank [S] = N , (2)

by the Gramian matrix (S)ij =
⟨

∂Ψ
∂αi

∣∣∣ ∂Ψ
∂αj

⟩
.

In quantum mechanics, constraints should be applied to the wave function. We here

assume that such a constraint can be also specified by another real parameters {fa}a=1,M as

|δΨf⟩ =
M∑
a=1

∣∣∣∣ ∂Ψ∂fa
⟩
δfa = 0 (M < N) . (3)

If the local bases
{∣∣∣ ∂Ψ∂fa⟩}a=1,M

are independent, the constraint (3) is equivalent to a set of

constraints on the parameters as

δfa = 0 (a = 1, . . . ,M) . (4)

When the variational freedom δΨf is located within the predetermined region of Eq. (1), the

parameters {fa}a=1,M will be functions of the primordial parameters {αi}i=1,N . Then the

explicit constraints (4) on {δfa}a=1,M can be understood as implicit constraints on {δαi}i=1,N

through the functions

fa = fa(α1, . . . , αN) = 0 (a = 1, . . . ,M) . (5)

The equations (5) correspond to the holonomic constraints on dynamical variables in classical

mechanics[25].
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In order for the above equations to hold, we should introduce some requirements as fol-

lows. First we consider the requirement of the independence of the local bases
{∣∣∣ ∂Ψ∂fa⟩}a=1,M

.

The local bases of {fa}a=1,M can be expanded as∣∣∣∣ ∂Ψ∂fa
⟩

=
N∑
i=1

∣∣∣∣ ∂Ψ∂αi

⟩ (
∂αi

∂fa

)∣∣∣∣
0

(a = 1, . . . ,M) , (6)

where |0 denotes calculations on the constraint surface, that is to apply Eq. (5) after dif-

ferentiations. So, the independence of the local bases
{∣∣∣ ∂Ψ∂fa⟩}a=1,M

is equivalent to the

requirement for the rectangular matrix
(
∂α
∂f

)∣∣∣
0
of dimensions N ×M as

Rank

[(
∂α

∂f

)∣∣∣∣
0

]
= Rank

[(
∂αi

∂fa

)∣∣∣∣
0

]
= M . (7)

The equation (7) is the regularity condition of constraints and assures the nonsingularity

of the static structure which is constructed with
{∣∣∣ ∂Ψ∂fa⟩}a=1,M

. Next we consider the con-

straints (4) through Eq. (5) as

δfa =
N∑
i=1

(
∂fa
∂αi

)∣∣∣∣
0

δαi = 0 . (8)

To obtain M -dimensional independent constraints (4), we should require again

Rank

[(
∂f

∂α

)∣∣∣∣
0

]
= Rank

[(
∂fa
∂αi

)∣∣∣∣
0

]
= M , (9)

for the rectangular matrix of dimensions M × N . The equation (9) is another regularity

condition which has the same form as in classical-mechanics[20]. The regularity conditions

(7) and (9) satisfy the reciprocal relation with each other as(
∂f

∂α

)∣∣∣∣
0

(
∂α

∂f

)∣∣∣∣
0

= EM , (10)

by the chain rule of partial differentiations as shown in Appendix A. The matrix EM is an

M -dimensional identity matrix. Not only in time-dependent but also in time-independent

variational approaches, the regularity conditions (7) and (9) are required for the static

nonsingularity of the constraint surface.

Finally, as a special form of constraints (5), we consider constraints for expectation

values[11, 12] by some quantum operators {ξ̂a}a=1,M as

ξa = ξa(α1, . . . , αN) =
⟨
Ψ(α1, . . . , αN)

∣∣∣ξ̂a∣∣∣Ψ(α1, . . . , αN)
⟩

= 0

(a = 1, . . . ,M < N) . (11)
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The constraints on the variational freedoms are written as

δξa =
N∑
i=1

(
∂ξa
∂αi

)∣∣∣∣
0

δαi =
N∑
i=1

[ ⟨
∂Ψ

∂αi

∣∣∣∣ ξ̂a∣∣∣∣Ψ⟩∣∣∣∣
0

+

⟨
Ψ

∣∣∣∣ξ̂a ∣∣∣∣ ∂Ψ∂αi

⟩ ∣∣∣∣
0

]
δαi = 0 . (12)

The regularity condition for the constraints (11) is

Rank

[(
∂ξ

∂α

)∣∣∣∣
0

]
= Rank

[( ⟨
∂Ψ

∂αi

∣∣∣∣ ξ̂a∣∣∣∣Ψ⟩∣∣∣∣
0

+

⟨
Ψ

∣∣∣∣ξ̂a ∣∣∣∣ ∂Ψ∂αi

⟩ ∣∣∣∣
0

)]
= M . (13)

So, if the wave function Ψ satisfy a pseudo eigenvalue-equation on the constraint surface for

one of the operators {ξ̂a}a=1,M , namely for ξ̂b as( ⟨
∂Ψ

∂αi

∣∣∣∣ ξ̂b∣∣∣∣Ψ⟩∣∣∣∣
0

+

⟨
Ψ

∣∣∣∣ξ̂b ∣∣∣∣ ∂Ψ∂αi

⟩ ∣∣∣∣
0

)
= 0 (i = 1, . . . , N) , (14)

the constraints (11) breaks the regularity condition (13) and can not construct any nonsin-

gular constraint surface.
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III. SECOND-CLASS CONDITION FOR DYNAMIC NONSINGULARITY OF

CONSTRAINTS

In this section we consider the second-class condition which assures nonsingularity of the

dynamic structure of the constraint surface with a so-called symplectic metric[7].

A. TDVP-EOM and generalized Poisson bracket (GPB)

First we summarize the equation of motion of TDVP (TDVP-EOM)[7–10] for the param-

eters {αi(t)}i=1,N . The real-valued Lagrangian of the TDVP is defined with a normalized

wave function Ψ as

L(α, α̇) = < Ψ(α)|L̂|Ψ(α) >=< Ψ(α)|(i~∂t − Ĥ)|Ψ(α) >

= i~
N∑
i=1

⟨
Ψ

∣∣∣∣ ∂Ψ∂αi

⟩
α̇i− < Ψ|Ĥ|Ψ > , (15)

where {αi(t)}i=1,N describe the time development of the wave function within the predeter-

mined region of Eq. (1). If the wave function is not normalized, the normalization can be

considered a posteriori since the norm of wave function is one of the constants of motion in

the TDVP[11, 12]. However, the operator L̂ in Eq. (15) should be replaced by the Hermitian

form as in Eq. (B1) of Appendix B. We obtain the EOM by the least-action principle

δ

∫ t2

t1

L(α, α̇)dt

=
N∑
i=1

∫ t2

t1

δαi

[
N∑
j=1

i~
(⟨

∂Ψ

∂αi

∣∣∣∣ ∂Ψ∂αj

⟩
−
⟨
∂Ψ

∂αj

∣∣∣∣ ∂Ψ∂αi

⟩)
α̇j −

∂ < Ψ|Ĥ|Ψ >

∂αi

]
dt

= 0 , (16)

with fixed boundary conditions as δαi(t1) = δαi(t2) = 0. From Eq. (16), the TDVP-EOM

for the parameters {αi(t)}i=1,N is obtained as

α̇i =
N∑
j=1

(
σ−1

)
ij

∂H

∂αj

, (17)

where H =< Ψ|Ĥ|Ψ > and

(σ)ij = i~
(⟨

∂Ψ

∂αi

∣∣∣∣ ∂Ψ∂αj

⟩
−
⟨
∂Ψ

∂αj

∣∣∣∣ ∂Ψ∂αi

⟩)
= i~

(
S − St

)
ij
. (18)
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The TDVP parameters {αi}i=1,N are not canonical variables in general. If the parameters

are standard canonical variables as {qi, pi}i=1,n (N = 2n) in classical mechanics, the matrix

σ−1 in Eq. (17) has a standard canonical form

σ−1 = J =

 0 En

−En 0

 = −J−1 . (19)

The real-valued anti-symmetric matrix σ is sometimes called as a symplectic metric of

the dynamical space[7], although σ is not a “metric” in the exact meaning. When the matrix

σ becomes noninvertible, we cannot continue to chase the time development of the system

by Eq. (17). This singularity of σ is called as a symplectic singularity[22–24]. We here note

that the nonsingularity of symplectic metric σ is not equal to that of Hermitian metric S

in Eq. (2). Using the Hermitian property for S = Re(S) + i Im(S) in Eq. (18), we have

Rank [σ] = Rank [Im(S)] . (20)

Then the nonsingularity of the dynamic structure σ and that of the static structure S are

not equivalent.

Finally we here introduce Generalized Poisson Bracket (GPB)[8, 25] as

{r, s}σ−1 =
N∑
i=1

N∑
j=1

∂r

∂αi

(
σ−1

)
ij

∂s

∂αj

. (21)

The GPB of the parameters {αi(t)}i=1,N by themselves is the inverse of the symplectic metric

{α,α}σ−1 = σ−1 . (22)

The time development of any function Ω(α) can be calculated by the GPB as

Ω̇ = {Ω, H}σ−1 . (23)

B. TDVP-EOM with constraints

We here apply constraints (5) for the dynamics of the parameters {αi(t)}i=1,N . As

Eq. (16), the least-action principle with the constraints is

N∑
i=1

∫ t2

t1

δαi

[
N∑
j=1

(σ)ij α̇j −
∂H(α)

∂αi

−
M∑
a=1

λa
∂fa(α)

∂αi

]
dt = 0 , (24)
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where Lagrange multipliers {λa}a=1,M are introduced. The TDVP-EOM with constraints

are obtained as

α̇i =
N∑
j=1

(
σ−1

)
ij

∂K

∂αj

, (25)

where an extended Hamiltonian[14, 15] is defined as

K(α) = H(α) +
M∑
a=1

λafa(α) . (26)

The constraints should be preserved in time along the trajectory of {αi(t)}i=1,N . This is

the consistency condition in Dirac’s constrained classical-mechanics[14, 15]. By using the

EOM (25), the consistency conditions for the constraints (5) are written as

ḟa = {fa, H}σ−1 +
M∑
b=1

{fa, fb}σ−1λb = 0 . (27)

If we define a column vector (h)a = {fa, H}σ−1 , the inhomogeneous linear equations (27)

are rewritten in a matrix form as

h+ {f, f}σ−1λ = 0 . (28)

The Lagrange multipliers are obtained as

λ = − ({f, f}σ−1)−1 h . (29)

C. Second-class condition of constraints

In order to determine the Lagrange multipliers uniquely by Eq. (29), we should assume

the nonsingularity of the Poisson matrix {f, f}σ−1 . So, the constraints (5) are required to

satisfy another condition on the constraint surface as

Rank [{f, f}σ−1 ] = M . (30)

The constraints which satisfy Eq. (30) have been classified to second-class constraints[14, 15].

So we call here Eq. (30) as the second-class condition for the constraints.

The GPB of the constraints is written by the parameters {αi(t)}i=1,N as

{f, f}σ−1 =

(
∂f

∂α

)∣∣∣∣
0

σ−1
(
∂f

∂α

)t
∣∣∣∣∣
0

. (31)
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Then if the symplectic metric σ is nonsingular, we have

Rank [{f, f}σ−1 ] ≤ Rank

[(
∂f

∂α

)∣∣∣∣
0

]
≤ M . (32)

So the regularity condition (9) is only a necessary condition for the second-class condition

(30).
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IV. ANALYTIC WAVE FUNCTIONS FOR COMPLEX TDVP-PARAMETERS

The TDVP with complex parameters is just a special case of the real parameters. The

complex parametrization, however, has some simple features for the second-class condition

and we treat it here separately.

A. TDVP-EOM and complex generalized Poisson bracket (CGPB)

We here adopt analytic wave functions[8] for complex TDVP-parameters {zi, z∗i }i=1,n with

N = 2n as

Ψ(z) = Ψ (z1, z2, . . . , zn) ,
∂Ψ(z)

∂z∗i
= 0 (i = 1, . . . , n), (33)

to keep the variational independency or the duality between δΨ and δΨ∗. As shown in

Appendix B, if the Gramian matrix is defined as

(C)ij =

⟨
∂Ψ

∂zi

∣∣∣∣∂Ψ∂zj
⟩

, (34)

the TDVP-EOM (B3) is written in a matrix form as ż

ż∗

 =
1

i~

 0 C−1

−(C−1)t 0

 ∂H
∂z

∂H
∂z∗

 = σ−1

 ∂H
∂z

∂H
∂z∗

 . (35)

In this case, we have

|σ| = (−1)n~2n |C|2 , (36)

for the symplectic metric

σ = i~

 0 −Ct

C 0

 . (37)

Therefore, differently from the case of the real parameters as in Eq. (20), the nonsingularity

of the dynamic structure σ and that of the static structure C become equivalent in the

complex parametrization.

The GPB (21) is reduced to the Complex Generalized Poisson Bracket (CGPB)[8, 12] as

{r, s}σ−1 =
1

i~

n∑
i=1

n∑
j=1

[
∂r

∂zi

(
C−1

)
ij

∂s

∂z∗j
− ∂r

∂z∗i

[(
C−1

)t]
ij

∂s

∂zj

]
= {r, s}CGPB . (38)

The time development of any function Ω(z, z∗) can be calculated as

Ω̇ = {Ω, H}CGPB . (39)
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B. Regularity condition of constraints

We here introduce constraints for the complex parameters {zi, z∗i }i=1,n. In order keep the

duality of δΨ and δΨ∗, the constraints are also taken to be analytic as

ua(z1, . . . , zn) = 0 , u∗a(z1, . . . , zn) = 0 (a = 1, . . . ,m < n) . (40)

Variational freedoms {δzi, δz∗i }i=1,n are constrained implicitly as

δua =
n∑

i=1

(
∂ua

∂zi

)∣∣∣∣
0

δzi = 0 , δu∗a =
n∑

i=1

(
∂u∗a
∂z∗i

)∣∣∣∣
0

δz∗i = 0 . (41)

As the real parameters in Eqs. (9) and (7), the regularity conditions of the constraints (40)

are

Rank

[(
∂u

∂z

)∣∣∣∣
0

]
= Rank

[(
∂u

∂z

)†∣∣∣∣∣
0

]
= m, (42)

and

Rank

[(
∂z

∂u

)∣∣∣∣
0

]
= Rank

[(
∂z

∂u

)†∣∣∣∣∣
0

]
= m, (43)

respectively.

C. Second-class condition of constraints

As shown in Appendix B, the constraints (40) are considered in the TDVP with La-

grange multipliers. In order to determine the Lagrange multipliers uniquely from the con-

sistency conditions of the constraints ua(z) = 0 as in Eq. (B8), we should require the

second-class condition on the constraint surface as

Rank [{u, u∗}CGPB] = m. (44)

Moreover, if we can assume the orthogonality between local bases as in Appendix C,

we have

{u, u∗}CGPB =
1

i~

(
∂u

∂z

)∣∣∣∣
0

C−1
(
∂u

∂z

)†∣∣∣∣∣
0

=
1

i~

⟨
∂Ψ

∂u

∣∣∣∣ ∂Ψ∂u
⟩ −1

. (45)

Then, differently again from the case of the real parameters in Eq. (32), the reg-

ularity condition (42) and the second-class condition (44) become equivalent. Since

Rank [{u, u∗}CGPB] = Rank [{u∗, u}CGPB], the second-class condition for the other con-

straints u∗a(z) = 0 in Eq. (40) is also equivalent to the regularity condition (42).
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D. Constraints for expectation values

In this section, we show another special feature in the complex TDVP parameters. As in

Eq. (11), we consider constraints of expectation values for some quantum operators

ξa = ξa(z1, . . . , zn, z
∗
1 , . . . , z

∗
n) =

⟨
Ψ(z1, . . . , zn)

∣∣∣ξ̂a∣∣∣Ψ(z1, . . . , zn)
⟩

= 0

(a = 1, . . . ,m < n) . (46)

The second-class condition for the expectation values (46) can be examined simply by the

algebra of corresponding quantum operators without any calculation of the expectation

values as follows. If the local bases
{∣∣∣ ∂Ψ∂zi⟩}i=1,n

are complete locally, we have

n∑
i=1

n∑
j=1

∣∣∣∣∂Ψ∂zi
⟩
(C−1)ij

⟨
∂Ψ

∂zj

∣∣∣∣ = 1̂ . (47)

In this case, the CGPB for the constraints becomes the expectation value of the commutator

of corresponding operators [12] as

{ξa, ξb}CGPB

=
1

i~

n∑
i=1

n∑
j=1

[
∂ < Ψ|ξ̂a|Ψ >

∂zi

(
C−1

)
ij

∂ < Ψ|ξ̂b|Ψ >

∂z∗j

− ∂ < Ψ|ξ̂a|Ψ >

∂z∗i

[(
C−1

)t]
ij

∂ < Ψ|ξ̂b|Ψ >

∂zj

]

=
1

i~

[⟨
Ψ

∣∣∣∣∣ξ̂a
(

n∑
i=1

n∑
j=1

∣∣∣∣∂Ψ∂zi
⟩(

C−1
)
ij

⟨
∂Ψ

∂zj

∣∣∣∣
)
ξ̂b

∣∣∣∣∣Ψ
⟩

−

⟨
Ψ

∣∣∣∣∣ξ̂b
(

n∑
i=1

n∑
j=1

∣∣∣∣∂Ψ∂zi
⟩(

C−1
)
ij

⟨
∂Ψ

∂zj

∣∣∣∣
)
ξ̂a

∣∣∣∣∣Ψ
⟩]

=
1

i~
< Ψ|[ξ̂a, ξ̂b]|Ψ > . (48)

Then commutable operators [ξ̂a, ξ̂b] = 0 always lead to singular constraints. We note, how-

ever, that Eq. (48) is true if and only if the local completeness condition (47) holds. Then,

even if operators are commutable, they will construct nonsingular constraint surface for

approximate wave functions which do not have the local completeness (47).
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V. EXAMPLES OF SECOND-CLASS CONDITIONS

A. Augmentation of constraints

We here consider the case that new constraints {gb = 0}b=1,M2 are added to the existing

nonsingular constraints {fa = 0}a=1,M1 as

fa = fa(α1, . . . , αN) = 0 (a = 1, . . . ,M1) , (49)

gb = gb(α1, . . . , αN) = 0 (b = 1, . . . ,M2) . (50)

The dimension of the extended frozen-space will be M = (M1 +M2) < N as

h = (f , g) = (f1, f2, . . . , fM1 , g1, g2, . . . , gM2) = 0 . (51)

The GPB matrix of the total constraints to examine the second-class condition is written as

{h, h}σ−1 =

 {f, f}σ−1 {f, g}σ−1

{g, f}σ−1 {g, g}σ−1

 . (52)

We here use an equation of factorization for a matrix of dimensions (K+L)× (K+L) with

partial matrices AK×K , BK×L, CL×K , and DL×L asA B

C D

 =

 EK 0

CA−1 EL

A 0

0 D −CA−1B

 EK A−1B

0 EL

 . (53)

This equation is proven easily by straightforward calculation[26]. Using Eq. (53), we can

decompose the determinant of the matrix (52) as

|{h, h}σ−1 | =

∣∣∣∣∣∣ {f, f}σ−1 {f, g}σ−1

{g, f}σ−1 {g, g}σ−1

∣∣∣∣∣∣
= |{f, f}σ−1 | ×

∣∣{g, g}σ−1 − {g, f}σ−1 ({f, f}σ−1 )
−1 {f, g}σ−1

∣∣ .(54)
By using Eq. (54), we can analyze the nonsingularity of the total constraints (51). If we

assume the existing constraints {fa = 0}a=1,M1 are nonsingular in the extended frozen-space,

the singularity of the GPB {h, h}σ−1 is caused by∣∣{g, g}σ−1 − {g, f}σ−1 ({f, f}σ−1 )
−1 {f, g}σ−1

∣∣ = 0 . (55)

The matrix in the determinant (55) is constructed by the components of g, which are

orthogonalized to f by Schmidt-like method with the symplectic metric {f, f}σ−1 . So
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there are two possibilities for Eq. (55) to hold. One is that the added constraints g do not

have new components enough to construct the extended frozen-space. The other is the case

that {f, g}σ−1 = 0 and |{g, g}σ−1 | = 0 at the same time. This means that g is Poisson

commutable to f and moreover singular by itself.

B. Constraints for moments

We consider moments as an example of the expectation values in Eq. (11).

Before the expectation values in quantum mechanics, we constrain the powers of the

TDVP parameters directly as in classical mechanics. If the powers of a variable ω(α) =

ω(α1, . . . , αN) are constrained directly as fr(α) = ωr(α)−µr = 0 and fs(α) = ωs(α)−µs = 0,

we have their GPB as

{fr, fs}σ−1 =
N∑
i=1

N∑
j=1

∂(ωr − µr)

∂αi

(
σ−1

)
ij

∂(ωs − µs)

∂αj

= rs ωr+s−2 {ω, ω}σ−1 = 0 . (56)

So the constraints fr and fs can not construct any nonsingular constraint surface as in

classical mechanics. We note that these constraints break also the regularity condition (9),

since they are degenerate as
(

∂fr
∂αi

)
=
[
ωr−s ( r

s

)] (
∂fs
∂αi

)
.

Next, as the constraints for expectation values, we constrain the moments of r-th power

of a Hermitian operator ω̂ as

fr(α) = < Ψ(α)|f̂r|Ψ(α) >=< Ψ(α)|ω̂r − µr|Ψ(α) >= 0 (r = 1, 2, . . . ) . (57)

The constants should satisfy µ2 ≥ (µ1)
2 ≥ 0 and so on, as shown generally in Appendix

D. The expectation values have usually the variance as

< Ψ|ω̂r+s|Ψ > ̸= < Ψ|ω̂r|Ψ >< Ψ|ω̂s|Ψ > . (58)

So, we have

{fr, fs}σ−1 = {< Ψ|ω̂r − µr|Ψ >, < Ψ|ω̂s − µs|Ψ >}σ−1

̸= rs < Ψ|ω̂|Ψ >r+s−2

(
N∑
i=1

N∑
j=1

∂ < Ψ|ω̂|Ψ >

∂αi

(
σ−1

)
ij

∂ < Ψ|ω̂|Ψ >

∂αj

)
= 0 . (59)
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Then the constraints for moments can be nonsingular. If we employ the analytic wave

function (33), however, we have

{fr, fs}CGPB = {< Ψ|ω̂r − µr|Ψ >,< Ψ|ω̂s − µs|Ψ >}CGPB

=
1

i~
< Ψ|[ω̂r, ω̂s]|Ψ > = 0 , (60)

through Eq. (48). So the constraints become singular again as in Eq. (56) or in classical

mechanics.

C. Singularity of TDVP-EOM

As the last example of the second-class condition, we discuss the symplectic singularity

of the TDVP-EOM[23, 24]. In the EOM (17), if the matrix σ becomes singular, we cannot

continue to chase the time development of the system. As in classical mechanics[22], the

symplectic singularity in the TDVP-EOM is shown to be a local breakdown of the second-

class condition in an extended canonical phase-space as follows.

For the TDVP-EOM (17), we consider the Legendre transformations of dynamical vari-

ables to obtain the EOM in a canonical phase-space as usually in classical mechanics. How-

ever, the TDVP Lagrangian L(α, α̇) (15) is linear in α̇i, and we cannot introduce corre-

sponding variables by βi =
∂L
∂α̇i

because the Jacobian matrix of the transformation is always

singular as
∣∣∣ ∂βi

∂α̇j

∣∣∣ = ∣∣∣ ∂2L
∂α̇i∂α̇j

∣∣∣ = 0. So, we here construct 2n-dimensional extended phase-space

{αi, βi}i=1,n by adding the “momentum” variables {βi(t)}i=1,n with n constraints as

fi(α, β) = βi −
∂L(α, α̇)

∂α̇i

= βi − i~
⟨
Ψ(α)

∣∣∣∣∂Ψ(α)

∂αi

⟩
= 0 (i = 1, . . . , n) . (61)

The action of the TDVP Lagrangian (15) is written as

JTDV P =

∫ t2

t1

[
n∑

i=1

βiα̇i −H(α)

]
dt . (62)

So, by using Lagrange multipliers {λi}i=1,n as in Eq. (24), the TDVP with constraints (61)

leads to
n∑

i=1

∫ t2

t1

[(
α̇i −

∂H

∂βi

−
n∑

j=1

λj
∂fj
∂βi

)
δβi −

(
β̇i +

∂H

∂αi

+
n∑

j=1

λj
∂fj
∂αi

)
δαi

]
dt = 0 . (63)

If an extended TDVP Hamiltonian K(α, β) is defined as

K(α, β) = H(α) +
n∑

j=1

λjfj(α, β) , (64)
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the EOM is written as

α̇i =
∂K

∂βi

, β̇i = −∂K

∂αi

. (65)

So {αi, βi}i=1,n become canonical variables and their Poisson bracket matrix has the 2n-

dimensional canonical form J as in Eq. (19).

The Lagrange multipliers are determined by the consistency conditions for the constraints

as Eq. (27)

n∑
j=1

{fi, fj}J λj = −{fi, H}J . (66)

We can show that the Poisson bracket matrix for the constraints (61) is reduced to the

n-dimensional symplectic metric σ as in classical mechanics[22],

{fi, fj}J =
n∑

k=1

[
∂fi
∂αk

∂fj
∂βk

− ∂fj
∂αk

∂fi
∂βk

]
= i~

[⟨
∂Ψ

∂αi

∣∣∣∣ ∂Ψ∂αj

⟩
−
⟨
∂Ψ

∂αj

∣∣∣∣ ∂Ψ∂αi

⟩]
= (σ)ij . (67)

So, the symplectic singularity of σ in the EOM (17) can be understood as a local breakdown

of the second-class condition for the constraints (61) in the extended canonical phase-space.

Finally we obtain the TDVP-EOM in the extended canonical phase-space explicitly as

α̇i = λi , (68)

and

β̇i =
d

dt

[
i~
⟨
Ψ

∣∣∣∣ ∂Ψ∂αi

⟩]
. (69)

It is easy to show that the EOM (68) is reduced to Eq. (17) by using Eqs. (66), (67), and

{fi, H}J = −∂H

∂αi

. (70)

The other EOM (69) simply means the consistency conditions of constraints hold as ḟi = 0.

1. Numerical example

We show a numerical example of the symplectic singularity of the TDVP-EOM. We

consider a normalized wave function with real parameters θ(t) and η(t) as

Ψ(t; x) =
1√

θ2(t) + η2(t)

[
η(t)eiθ(t)χ1(x) + θ(t)eiη(t)χ2(x)

]
, (71)
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where χ1(x) and χ2(x) are orthonormalized real-valued bases. By denoting Hij =<

χi|Ĥ|χj >, the TDVP Lagrangian (15) is calculated as

L(θ, η, θ̇, η̇) = −~

[
θ̇η2 + η̇θ2

θ2 + η2

]
−
[
η2H11 + θ2H22 + 2θη cos (θ − η)H12

θ2 + η2

]
. (72)

To construct the 4-dimensional extended canonical phase-space with {θ, βθ, η, βη}, con-

straints are introduced as

fθ = βθ + ~
(
θ2 + η2

)−1
η2 = 0, fη = βη + ~

(
θ2 + η2

)−1
θ2 = 0 . (73)

Based on Eq. (67), the symplectic singularity of the TDVP-EOM (17) is examined by

∣∣σ−1∣∣ =

∣∣∣∣∣∣
 0 σθη

σηθ 0

−1∣∣∣∣∣∣ = 1

(σθη)
2 =

1(
{fθ, fη}J

)2 =

[
1

~
(θ2 + η2)2

2θη(θ − η)

]2
. (74)

So the trajectories become singular at the points θ = 0, η = 0, or θ = η, where the

constraints fθ and fη will also break the second-class condition as {fθ, fη}J = 0 in the

4-dimensional canonical phase-space. The EOM in the 4-dimensional canonical phase-space

is written explicitly as

θ̇ = −1

~

[
1

η(θ − η)

]
×
{
θη(H11 −H22) +

[(
θ2 − η2

)
cos (θ − η) + η

(
θ2 + η2

)
sin (θ − η)

]
H12

}
, (75)

η̇ = −1

~

[
1

θ(θ − η)

]
×
{
θη(H11 −H22) +

[(
θ2 − η2

)
cos (θ − η) + θ

(
θ2 + η2

)
sin (θ − η)

]
H12

}
, (76)

and

β̇1 = 2θη
(
θ2 + η2

)−1
sin (θ − η)H12 , (77)

β̇2 = −β̇1 . (78)

Numerically obtained trajectories are shown in Figure 1 for {θ(t), η(t)}, and Figure 2 for

{βθ(t), βη(t)}, respectively. We have used the Hamiltonian parameters as (H11 −H22)/~ =

−2.0, H12/~ = 1.0. Initial conditions for eight trajectories are (θ0, η0) = (±0.5,±0.25), and

(±0.25,±0.5). As shown in Figure 1, these eight trajectories, which do not approach to
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the origin along θ = 0, η = 0, or θ = η, go through the origin without any singularities.

The continuity of these trajectories at the origin is proven in Appendix E. However, the

trajectory, which starts from the initial condition (θ0, η0) = (0.25, 0.5) or (−0.25,−0.5), will

sink into the singularity of η = θ as time goes on. The trajectories of {βθ, βη} are obtained

directly by the constraints (73) as

−~ ≤ βθ(t) ≤ 0, − ~ ≤ βη(t) ≤ 0, βθ(t) + βη(t) = −~ . (79)

The symplectic singularities are located at (βθ/~, βη/~) = (−1.0, 0), (0,−1.0), and

(−0.5,−0.5) in Figure 2.
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VI. SUMMARY

In this work we have investigated two conditions for the constraints in the TDVP. The

regularity condition assures the static nonsingularity of the constraint surface not only in

time-dependent but also in time-independent variational approaches. The constraint on the

wave function which is the essential dynamical variable in quantum mechanics is connected to

the nonsingular constraints on variational parameters through the regularity condition. The

other condition is the second-class condition of the constraints which assures the dynamic

nonsingularity of the constraint surface with a symplectic metric. Especially for analytic

wave functions for complex TDVP-parameters, these two conditions become equivalent. For

constraints of expectation values in complex TDVP-parameters, the second-class condition

is reduced to the non-commutability of the corresponding quantum operators. As one of

examples of the second-class condition, the symplectic singularity of the TDVP-EOM is

shown to be a local breakdown of the second-class condition in the extended canonical

phase-space.
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Appendices

Appendix A: TRANSFORMATION OF REAL PARAMETERS

We consider the nonsingular transformation from the parameters {αi}i=1,N to the param-

eters {fa}a=1,M which will be frozen and their orthogonal complements {gb}b=1,N−M as

fa = fa(α1, . . . , αN) (a = 1, . . . ,M < N), gb = gb(α1, . . . , αN) (b = 1, . . . , N −M) .(A1)

The variational freedoms are transformed as

δfa =
N∑
i=1

(
∂fa
∂αi

)
δαi , δgb =

N∑
i=1

(
∂gb
∂αi

)
δαi , (A2)

or in a matrix form  δf

δg

 =

 ∂f
∂α
∂g
∂α

 δα . (A3)

When the Jacobian matrix is nonsingular, we have

EN =

 ∂f
∂α
∂g
∂α

( ∂α
∂f

∂α
∂g

)
=

 ∂f
∂α

∂α
∂f

∂f
∂α

∂α
∂g

∂g
∂α

∂α
∂f

∂g
∂α

∂α
∂g

 =

 EM 0

0 E(N−M)

 , (A4)

by the chain rule of partial differentiations. Then we obtain(
∂f

∂α

)(
∂α

∂f

)
= EM , (A5)

for the rectangular matrices
(
∂f
∂α

)
and

(
∂α
∂f

)
.
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Appendix B: TDVP-EOM WITH COMPLEX PARAMETERS

We consider complex TDVP-parameters {zi, z∗i }i=1,n[8]. For the analytic wave function

in Eq. (33), the TDVP Lagrangian[12] is defined as

L(z, ż, z∗, ż∗) = < Ψ(z)|L̂|Ψ(z) >=

⟨
Ψ(z)

∣∣∣∣i~2 (
→
∂t −

←
∂t)− Ĥ

∣∣∣∣Ψ(z)

⟩
=

i~
2

n∑
i=1

[⟨
Ψ

∣∣∣∣∂Ψ∂zi
⟩

żi − ż∗i

⟨
∂Ψ

∂zi

∣∣∣∣Ψ⟩]+ < Ψ|Ĥ|Ψ > . (B1)

We can obtain the TDVP-EOM by the least-action principle as

δJTDV P =
n∑

i=1

∫ t2

t1

δz∗i

(
i~

n∑
j=1

⟨
∂Ψ

∂zi

∣∣∣∣∂Ψ∂zj
⟩

dzj
dt

−
⟨
∂Ψ

∂zi

∣∣∣∣ Ĥ∣∣∣∣Ψ⟩
)

dt

+
n∑

i=1

∫ t2

t1

(
−i~

n∑
j=1

dz∗j
dt

⟨
∂Ψ

∂zj

∣∣∣∣∂Ψ∂zi
⟩

−
⟨
Ψ

∣∣∣∣Ĥ ∣∣∣∣∂Ψ∂zi
⟩)

δzi dt = 0 , (B2)

with fixed boundary conditions as δzi(t1) = δzi(t2) = 0 and δz∗i (t1) = δz∗i (t2) = 0. From

Eq. (B2), we obtain the TDVP-EOM for the complex parameters {zi(t), z∗i (t)}i=1,n as

i~
n∑

j=1

⟨
∂Ψ

∂zi

∣∣∣∣∂Ψ∂zj
⟩

dzj
dt

=
∂H

∂z∗i
, − i~

n∑
j=1

dz∗j
dt

⟨
∂Ψ

∂zj

∣∣∣∣∂Ψ∂zi
⟩

=
∂H

∂zi
, (B3)

where H =< Ψ|Ĥ|Ψ >.

If we consider analytic constraints as in Eq. (40) with Lagrange multipliers {λa}a=1,m and

{λ∗a}a=1,m, we obtain the TDVP-EOM with the constraints as

i~
n∑

j=1

(C)ij żj =
∂K

∂z∗i
, − i~

n∑
j=1

ż∗j (C)ji =
∂K

∂zi
, (B4)

where (C)ij =
⟨

∂Ψ
∂zi

∣∣∣ ∂Ψ∂zj⟩ in Eq. (34) and the extended Hamiltonian is

K(z, z∗) = H(z, z∗) +
m∑
a=1

[λaua(z) + λ∗au
∗
a(z)] . (B5)

The consistency condition for the constraints ua(z) = 0 in Eq. (40) is

u̇a = {ua, H}CGPB +
m∑
b=1

{ua, u
∗
b}CGPBλ

∗
b = 0 . (B6)

With a column vector (h∗)a = {ua, H}CGPB, Eq. (B6) is rewritten in a matrix form as

h∗ + {u, u∗}CGPBλ
∗ = 0 . (B7)
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If the matrix {u, u∗}CGPB is nonsingular, we can obtain the Lagrange multipliers uniquely

as

λ∗ = − ({u, u∗}CGPB)
−1 h∗ . (B8)

In the same way for the constraints u∗a(z) = 0 in Eq. (40), we have

λ = − ({u∗, u}CGPB)
−1 h . (B9)
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Appendix C: TRANSFORMATION OF COMPLEX PARAMETERS

As in Appendix A, we consider the nonsingular transformation from the complex pa-

rameters {zi}i=1,n to the parameters {ua}a=1,m which will be frozen and their orthogonal

complements {vb}b=1,n−m as

ua = ua(z1, . . . , zn) (a = 1, . . . ,m < n), vb = vb(z1, . . . , zn) (b = 1, . . . , n−m) .(C1)

The transformation of variational freedoms is written in a matrix form δu

δv

 =

 ∂u
∂z
∂v
∂z

 δz . (C2)

If the Jacobian matrix is nonsingular, we have

En =

 ∂u
∂z
∂v
∂z

( ∂z
∂u

∂z
∂v

)
=

 ∂u
∂z

∂z
∂u

∂u
∂z

∂z
∂v

∂v
∂z

∂z
∂u

∂v
∂z

∂z
∂v

 =

 Em 0

0 E(n−m)

 , (C3)

by the chain rule of partial differentiations.

Moreover, if we can assume the orthogonality of local bases of the parameters {ua}a=1,m

and {vb}b=1,n−m as ⟨
∂Ψ

∂u

∣∣∣∣ ∂Ψ∂v
⟩

= 0 ,

⟨
∂Ψ

∂v

∣∣∣∣ ∂Ψ∂u
⟩

= 0 , (C4)

the Hermitian matrix C of Eq. (34) can be reduced as

C =

⟨
∂Ψ

∂z

∣∣∣∣ ∂Ψ∂z
⟩

=

( (
∂u
∂z

)† (∂v
∂z

)† ) ⟨∂Ψ∂u ∣∣∣⟨
∂Ψ
∂v

∣∣∣
( ∣∣∣∂Ψ∂u ⟩ ∣∣∣∂Ψ∂v ⟩ )

 ∂u
∂z
∂v
∂z


=

( (
∂u
∂z

)† (∂v
∂z

)† ) ⟨∂Ψ∂u ∣∣∣ ∂Ψ∂u ⟩ 0

0
⟨
∂Ψ
∂v

∣∣∣ ∂Ψ∂v ⟩
 ∂u

∂z
∂v
∂z

 . (C5)

From Eq. (C5), we can calculate the inverse as

C−1 =
(
∂z
∂u

∂z
∂v

) ⟨∂Ψ∂u ∣∣∣ ∂Ψ∂u ⟩ −1 0

0
⟨
∂Ψ
∂v

∣∣∣ ∂Ψ∂v ⟩ −1


(
∂z
∂u

)†(
∂z
∂v

)†


=

(
∂z

∂u

)⟨
∂Ψ

∂u

∣∣∣∣ ∂Ψ∂u
⟩ −1(

∂z

∂u

)†
+

(
∂z

∂v

)⟨
∂Ψ

∂v

∣∣∣∣ ∂Ψ∂v
⟩ −1(

∂z

∂v

)†
. (C6)
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Appendix D: INEQUALITY CONDITIONS FOR MOMENTS

As shown in the example of §VB, real-valued constants µr for the moments of r-th power

of a Hermitian operator ω̂ should satisfy the inequality[27]∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µk−1

µ1 µ2 µ3 · · ·

µ2 µ3 µ4 · · ·

· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣
≥ 0 (k = 1, 2, . . . ) , (D1)

where µ0 = 1. The proof is as follows. For a normalized wave function Ψ, we consider a

quadratic form whose coefficients are Mrs = µr+s as

l∑
r,s=0

Mrsxrxs =
l∑

r,s=0

µr+sxrxs =
l∑

r,s=0

< Ψ|ω̂r+s|Ψ > xrxs

=
l∑

r,s=0

< Ψ|ω̂rω̂s|Ψ > xrxs =

⟨
Ψ

∣∣∣∣∣∣
[

l∑
r=0

ω̂rxr

]2∣∣∣∣∣∣Ψ
⟩

≥ 0 . (D2)

As well known in linear algebra[26], for the non-negative quadratic form, all the principal

minor determinants of coefficients Mrs should be non-negative as

|M k| =

∣∣∣∣∣∣∣∣∣∣∣∣

M00 M01 · · · M0(k−1)

M10 M11 · · · M1(k−1)
...

...
...

M(k−1)0 M(k−1)1 · · · M(k−1)(k−1)

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk−1

µ1 µ2 · · · µk

...
...

...

µk−1 µk · · · µ2k−2

∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0 (k = 1, . . . , l + 1) . (D3)

Since the inequality (D3) holds for any l, Eq. (D1) has been proven.
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Appendix E: TRAJECTORIES BY POLAR COORDINATES

We here use polar coordinates to examine the continuity of the trajectories at the origin

in the numerical example of §VC1. The polar coordinates are defined as θ = r cos γ and

η = r sin γ. In Eq. (74), except for γ = nπ
2
, nπ+ π

4
, the symplectic singularity does not occur

at the origin as

lim
r→0

1

σθη

= lim
r→0

[
1

~
(θ2 + η2)2

2θη(θ − η)

]
= lim

r→0

[
r

2~ cos γ sin γ(cos γ − sin γ)

]
= 0 . (E1)

In the EOM’s (75) and (76), we have also

lim
r→0

θ̇ = lim
r→0

(
−1

~

[
1

sin γ(cos γ − sin γ)

]{
cos γ sin γ (H11 −H22)

+
[
(cos2 γ − sin2 γ) cos [r(cos γ − sin γ)] + r sin γ sin [r(cos γ − sin γ)]

]
H12

})

= −1

~

[
1

sin γ(cos γ − sin γ)

] [
cos γ sin γ (H11 −H22) + (cos2 γ − sin2 γ)H12

]
, (E2)

and

lim
r→0

η̇ = lim
r→0

(
−1

~

[
1

cos γ(cos γ − sin γ)

]{
cos γ sin γ (H11 −H22)

+
[
(cos2 γ − sin2 γ) cos [r(cos γ − sin γ)] + r cos γ sin [r(cos γ − sin γ)]

]
H12

})

= −1

~

[
1

cos γ(cos γ − sin γ)

] [
cos γ sin γ (H11 −H22) + (cos2 γ − sin2 γ)H12

]
. (E3)

Then θ̇ and η̇ do not diverge even when trajectories approach to the origin as r → 0 except

for γ = nπ
2
, nπ + π

4
. The trajectories can continuously go through the origin as shown in

Figure 1.
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FIG. 1: Trajectories in θ - η space. Initial conditions are (θ0, η0) = (±0.5,±0.25), and

(±0.25,±0.5).
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FIG. 2: Trajectories in βθ/~ - βη/~ space.
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