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Abstract—We present a gradient-based topology optimization
method of optical waveguide devices using the beam propagation
method (BPM). Efficient topology optimization of an optical
waveguide is available by using our approach because it utilizes
the adjoint variable method (AVM) for sensitivity analysis, and
the BPM for numerical propagation analysis. In this paper, a way
of evaluating sensitivities for a design of longitudinally varying
waveguides is newly described in the case that a density method
and finite difference BPM (FD-BPM) are employed. In addition,
the validity and availability of our proposed method are verified
by optimizing an S-bend and a Y-branch waveguides.

Index Terms—Topology optimization, Adjoint variable method,
Beam propagation method, Optical waveguide device.

I. INTRODUCTION

In resent years, high speed and large capacity communica-
tion systems are required. High performance optical waveguide
devices are in demand to realize these systems. Recently, the
optimal design of optical waveguide devices based on the
topology optimization method has attracted lots of attention.
Compared with size or shape optimization, the advantage
of the topology optimization method is that it has a great
flexibility. Therefore, there is a potential for designing the
unconventional and high performance devices by using the
topology optimization.

Topology optimization method has already been applied
to design optical waveguide devices such as photonic crys-
tal waveguide devices [1]− [6]. We also have reported the
application to optical waveguides and confirmed the validity
of topology optimization [7]− [11]. Although the finite ele-
ment method (FEM) or finite difference time domain (FDTD)
method are used as a propagation analysis method in these
reports, topology optimization does not restrict a numerical
calculation method to the FEM or FDTD. Thus one can select
a suitable wave propagation analysis method depending on a
design problem in topology optimization.

Beam propagation method (BPM) is a quite useful technique
in the case that backward wave reflections are negligible and
refractive index varies slowly along the propagation direction.
The wavefront matching (WFM) method [12], [13], which
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utilizes a principle of the BPM, is proposed as an optimal
design method of weakly guiding optical waveguides. An
optimum refractive index distribution can be synthesized au-
tomatically using the WFM. Several applications using the
WFM method has been reported, for instance, a Y-branch
waveguide [14], a crossing waveguide [15], and an arrayed-
waveguide grating [16] for integrated planar lightwave circuits.
The optimal design technique in [12] has a disadvantage in
that a complicated refractive index distribution which is called
“mosaic-like pattern” is appeared. This drawback is to some
extent overcome by using “Solid pattern” approach proposed
in [13]. However, WFM is not based on an objective func-
tion minimization problem, and the arbitrariness of objective
property has not been discussed yet.

Topology optimal design problem is able to be efficiently
solved by using a gradient method like a steepest descent if
sensitivities for the design parameters are easily evaluated.
Sensitivities of enormous design parameters have to be calcu-
lated in gradient-based topology optimization. In the topology
optimization process, it is not practical to approximate a lot of
sensitivities by finite difference scheme, therefore, an adjoint
variable method (AVM) can be utilized for analyzing the sen-
sitivities efficiently. A size optimization of optical waveguides
using the AVM and BPM has already been proposed [17], [18].
However, topology optimization based on these approaches has
not yet been discussed.

In this paper, we describe a topology optimal design method
using the AVM and finite difference BPM (FD-BPM). A
general way of evaluating sensitivities with a central AVM
(CAVM) and the BPM has been described in [17], [18] for the
optimization of the size or refractive index. In our approach,
a density method, which is widely used in the topology
optimization, is used as a representation of refractive index
distribution and we describe a way to evaluate sensitivities for
a longitudinally varying waveguide without using CAVM in
the case that the density method is employed. By using our
approach, an optical waveguide device can be designed using
the topology optimization even if the device is too long to
be analyzed with reasonable computer resources by the FEM
or FDTD. We confirm the validity of our proposed topology
optimal approach by applying it to a design of an S-bend and
a Y-branch waveguides.

In Section II, we firstly review the formulation of FD-
BPM, then a way of a representation of the refractive index
distribution is described. Moreover, sensitivity analysis method
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Fig. 1. Topology optimal design model of a 2-D optical waveguide.

in the case of using the FD-BPM and the density method is
described in Section III. After that, the design examples of the
application of our approach are shown in Section IV. Finally,
we state the conclusion in Section V.

II. TOPOLOGY OPTIMIZATION

A. Formulation of the FD-BPM

Now we consider a two dimensional planar optical waveg-
uide, as shown in Fig. 1. In isotropic, linear and non-dispersive
dielectric media, 2-D scalar Helmholtz equation for TE and
TM polarized waves is given as follows:

∂

∂x

(
p
∂Φ

∂x

)
+

∂

∂z

(
p
∂Φ

∂z

)
+ k20qΦ = 0, (1)

p = 1, q = n2, Φ = Ey for TE wave,

p = 1/n2, q = 1, Φ = Hy for TM wave,

where k0 is a free-space wavenumber, n(x, z) is a refractive
index distribution. By assuming ∂n/∂z ≈ 0 and Φ(x, z) =
ϕ(x, z) exp(−jk0n0z), the following basic BPM equation is
obtained,

−∂
2ϕ

∂z2
+ j2k0n0

∂ϕ

∂z
= (Dxx + ν)ϕ, (2)

with

Dxx =
1

p

∂

∂x

(
p
∂

∂x

)
,

ν = k20
(
n2 − n20

)
,

where n0 is a reference refractive index. In the paraxial BPM
equation, ∂2ϕ/∂z2 is omitted. Then, the following sequential
update equation of the BPM can be obtained by using implicit
FD scheme for Eq. (2) [19],

[A]i {ϕ}i+1 = [B]i {ϕ}i , (3)

where [A]i and [B]i are the matrices obtained by spatial
discretization, i(= 0, 1, · · · , Nz − 1) is the step number of
the z-direction.

In this paper, we employ the paraxial approximation on the
basic BPM equation. In addition, the transverse direction is
discretized by using a FD scheme proposed by Stern [20].
The transparent boundary condition [21] is employed as an
absorbing boundary condition.
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Fig. 2. Examples of Heaviside filter.

B. Representation of refractive index distribution

In the topology optimization, the representation of refractive
index distribution is one of the most important issues. Here, we
employ the density method to describe the refractive index in
design region. The refractive index distribution is represented
by the normalized density distribution ρ(x, z) [1]. A drawback
of conventional density method is that a gray region, in which
0 < ρ < 1, appears. In order to suppress the gray regions, we
express the refractive index distribution by using a Heaviside
filter H(ρ) as follows:

n2(x, z) = n22 + (n21 − n22)H(ρ), (4)

H(ρ) =

{
0.5(2ρ)m (0 ≤ ρ < 0.5)
1− 0.5(2− 2ρ)m (0.5 ≤ ρ ≤ 1)

,

where m is a penalty parameter, n1 and n2 are the refractive
indices of the core and cladding region, respectively. In the
practical optimization, the density distribution is discretized
on the finite difference grids. As shown in Fig. 2, H(ρ)
is a step-like function approximately if m is a large value.
Thus, a binarized refractive index distribution is obtained by
m → ∞. However, n(x, z) has to be differentiated by the
density parameter in the sensitivity analysis, thus the topology
is not freely modified in the case that the value of m is raised
excessively. Therefore, in this paper, m is taken to be a lower
value in the initial phase of the optimization. Then, the value
of m is raised as iterating the optimization, finally, m is set
to infinity.

III. SENSITIVITY ANALYSIS

Now we describe the sensitivity analysis method in the case
of using the 2-D BPM and the density method. We assume
the design parameters are allocated for each discrete point in
the design region. A sensitivity of an objective function C is
defined by ∂C/∂ρi,j where ρi,j is a density parameter, j(=
0, 1, 2, · · · , Nx−1) is an index number along the x-direction.
Properties of optical waveguides are usually represented by
an S-parameter, i.e. Sn1, where n is the output port number.
Thus, we consider that C depends on the normalized power
|Sn1|2 in the port n. The sensitivity of |Sn1|2 is expressed by

∂ |Sn1|2

∂ρi,j
= Re

{
2S∗

n1

∂Sn1

∂ρi,j

}
, (5)
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where ∗ means complex conjugate. Sn1 can be represented by
the following overlap integral,

Sn1 =

∫
ψ∗
nϕNzdx, (6)

where ψn is an eigenmode field in the port n. In the case that
FD scheme is employed, by using the rectangle rule, Eq. (6)
can be rewritten as follows:

Sn1 = ∆x {ψn}† {ϕ}Nz
, (7)

where † means Hermitian transpose, ∆x is a step width along
the x-direction. By substituting Eq. (3) into Eq. (7), we can
obtain

Sn1 = ∆x {ψn}†
(
[A]

−1
[B]

)
Nz−1

(
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−1
[B]

)
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· · ·

· · ·
(
[A]

−1
[B]

)
i
· · ·

(
[A]

−1
[B]

)
1

(
[A]

−1
[B]

)
0
{ϕ}0 . (8)

By taking the derivative of Sn1 with respect to a density
parameter ρi,j , we get

∂Sn1

∂ρi,j
= ∆x {ψn}†i+1

(
− [A]

−1
i

∂ [A]i
∂ρi,j

{ϕ}i+1

+ [A]
−1
i

∂ [B]i
∂ρi,j

{ϕ}i

)
, (9)

where

{ψn}†i+1 = {ψn}†
(
[A]

−1
[B]

)
Nz−1

(
[A]

−1
[B]

)
Nz−2

· · ·
(
[A]

−1
[B]

)
i+1

. (10)

Here, {ψn}i+1 is a backward propagating field of {ψn} which
comes from the output port n. Figure 3 shows the sensitivity
analysis using the BPM. {ϕ}i, {ϕ}i+1, and {ψn}i+1 in Eq. (9)
are obtained by the forward and backward beam propagations.
The refractive index distribution is represented by Eq. (4), thus
∂ [A]i /∂ρi,j and ∂ [B]i /∂ρi,j can be calculated analytically
without using CAVM. After calculating forward and backward
wave propagation fields, the sensitivities for all design pa-
rameters can be evaluated by simple matrix-vector products.
Therefore, efficient topology optimization can be achieved by
using this approach.

x
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Fig. 3. Sensitivity analysis using the BPM.

IV. DESIGN EXAMPLES

In this section, in order to demonstrate the validity of our
approach, we consider two design examples of weakly guiding
optical waveguides. In these examples, a steepest descent
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Fig. 4. A design model of a 2-D S-bend waveguide.
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Fig. 5. The normalized output power of the S-bend waveguide in port 2 as
a function of the number of iterations.

method is employed to minimize an objective function. The
design parameters are updated by following equation:

ρM+1
i,j = ρMi,j −

1

K

∂C

∂ρi,j
, (11)

where M is an iteration number, K is a constant which is
taken to be as follows:

K = max
i,j∈Ω

∣∣∣∣ ∂C∂ρi,j
∣∣∣∣ , (12)

where Ω represents a set of discrete points in the design region.
After updating the density parameters, ρi,j is reset to 0 + δ
or 1− δ in the case of ρi,j ≤ δ or 1− δ ≤ ρi,j , respectively,
where δ is an arbitrarily small value and is introduced for
avoiding the sensitivity to be zero. In this paper, we select δ
to be 10−8. The above constants, K, δ, of course, have to be
changed properly depending on a design problem.

A. S-bend waveguide

Now we design a 2-D S-bend waveguide whose design
model is shown in Fig. 4. We assume a fundamental TE mode
(TE0 mode) at the wavelength of 1.55 µm is launched into
port 1. The core and cladding refractive indices are n1 = 1.45
and n2 = 1.445, respectively. The configuration parameters of
the design model are as follows: w = 5 µm, L = 800 µm,
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(a) Optimized refractive index
distribution

(b) Field pattern(|Ey|)

Fig. 6. The refractive index distribution and the field pattern of the optimized
S-bend waveguide.

(a) Optimized refractive index
distribution

(b) Field pattern(|Ey|)

Fig. 7. The refractive index distribution and the field pattern of the optimized
S-bend waveguide using a smoothing filter.

d = 30 µm, l = 100 µm, and D = 40 µm. The input
and output waveguides are configured to be operated as a
single mode waveguide at the wavelength of 1.55 µm. To
maximize the output power of TE0 mode, we define the
objective function as follows:

Minimize C =
∣∣∣1− |S21|2

∣∣∣2 .
The reference index n0 is taken to be the effective index of
TE0 mode in the input waveguide. The step widths are ∆x =
0.2 µm and ∆z = 1 µm. The penalty parameter changes from
m = 2 to 64 linearly during the optimization process. We give
an uniform refractive index distribution (ρ = 0.3) as an initial
structure in the design region in order to show the special
initial structure is not required. Unnecessary core refractive
index regions appear in the optimized structure in the case that
ρ ≥ 0.5 in the initial uniform region. In addition, too small
value of ρ leads to a nearly zero sensitivity, thus the device
performance is not efficiently improved in this optimization
process.

The normalized output power as a function of the number
of iterations is shown by the solid curve in Fig. 5. We can see
that the transmission property is improved with the iteration.
The optimized refractive index distribution of the S-bend
waveguide and its field pattern are shown in Fig. 6. Offsets of
the waveguide for mode matching at the input and output ports,
and the grating-like structures emerge to suppress the radiation
waves in the optimized distribution. The normalized output
power in the binarized optimized refractive index distribution
is 0.941. Considering practical production, it is preferable that
a fine structure does not emerge. The dashed curve shown in
Fig. 5 is the normalized output power as a function of the
number of iterations in the case of using a smoothing filter
which is a simple moving average filter with 3×3 kernel size.
The discretized density parameter distribution ρi,j is filtered
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Fig. 8. Wavelength dependence of the normalized output power of the
optimized S-bend waveguides.

at each iteration as follows:

ρfilteredi,j =

1∑
ξ=−1

1∑
η=−1

1

9
ρi+ξ,j+η. (13)

Although the output power vibrates marginally in conse-
quence of the smoothing filter, the transmission property in
the optimized S-bend is almost the same with the previous
results. The optimized refractive index distribution and its
field pattern using the smoothing filter are shown in Fig. 7.
Compared with Fig. 6(a), we can see that a simpler refractive
index distribution is obtained. The normalized output power in
the binarized optimized refractive index distribution is 0.955
when the smoothing filter is employed.

Figure 8 shows the wavelength dependence of the normal-
ized output power of optimized S-bend waveguides. Although
the grating-like structure emerges in optimized S-bend waveg-
uide, broadband property is obtained especially in the case of
using the smoothing filter. The designed structure shown in
Fig. 7(a) is required to be insensitive to the slight structural
deviation induced by the smoothing filter. Consequently, using
smoothing filter seems to lead to the optimized structure whose
transmission property is insensitive to wavelength.

B. Y-branch waveguide

In this subsection, we consider a weakly guiding 2-D Y-
branch waveguide which divides the input power equally into
two ports in this example. The design model of a Y-branch
waveguide is shown in Fig. 9. The configuration parameters
of the design model are as follows: w = 5 µm, L = 500 µm,
d1 = 50 µm, d2 = 30 µm, l = 50 µm, and D = 40 µm. In
order to equally divide the power into port 2 and 3, we set the
objective function as follows:

Minimize C =

∣∣∣∣12 − |S21|2
∣∣∣∣2 + ∣∣∣∣12 − |S31|2

∣∣∣∣2 .
In addition, we impose a symmetry condition to keep the
power division equally into port 2 and 3. The other design
conditions are same as the previous design example.
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Fig. 9. A design model of a 2-D Y-branch waveguide.

The normalized output power in port 2 and 3 as a function of
the number of iterations are shown in Fig. 10. In this design
example also, the transmission characteristics are improved
with the iteration. The normalized output power with the
binarized optimized refractive index distribution is 0.490 in
each port. The optimized refractive index distribution of the
Y-branch waveguide and the field pattern are shown in Fig.
11. In the vicinity of the input port, the structure which can
reduce the radiation into the longitudinal direction emerges.
Y-branch profile similar to this structure was proposed, for
instance in [22]. Moreover, as is the case in the design of the
S-bend waveguide, offsets in the both output ports and the
grating-like structure emerge in the optimized structure.

Our approach is based on an objective function minimiza-
tion problem. Thus, for instance, (X : Y ) power divider can
be designed by setting the objective function as follows:

Minimize C =W1C1 +W2C2,

C1 =
∣∣∣X |S31|2 − Y |S21|2

∣∣∣2 ,
C2 =

∣∣∣1− (
|S21|2 + |S31|2

)∣∣∣2 ,
where W1 and W2 are the weighting parameters and are taken
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Fig. 10. The normalized output power of the Y-branch waveguide in port 2
and port 3 as a function of the number of iterations.

(a) Optimized refractive index
distribution

(b) Field pattern(|Ey|)

Fig. 11. The refractive index distribution and the field pattern of the optimized
Y-branch waveguide using a smoothing filter.

to be,

W1 =
C1

C1 + C2
,W2 =

C2

C1 + C2
.

Due to the weighting parameters, larger one of them, C1 and
C2, is minimized preferentially.

Using the optimized Y-branch structure as the initial refrac-
tive index distribution shown in Fig. 11(a) and the smoothing
filter, we design three power dividers which have different
splitting ratios. The structure of optimized (X : Y ) power
divider and its field patters are shown in Fig. 12. The insertion
loss and the splitting ratio of each optimized structure at a
wavelength of 1.55 µm and the wavelength dependence are
shown in Table I and Fig. 13, respectively. We can see that
a low wavelength dependence is realized in the optimized
power dividers owing to using the smoothing filter although
larger splitting ratio causes larger insertion loss and greater
wavelength dependence of the splitting ratio. As described in
[9], an objective function taking account of the wavelength
dependence should be used if a desired broadband property
cannot be obtained. As shown in these design examples, an
optical waveguide device which is hard to design based on
theoretical approach can be found out automatically by using
our approach.

TABLE I
THE INSERTION LOSS AND THE SPLITTING RATIO OF THE OPTIMIZED

(X : Y ) POWER DIVIDER.

Insertion loss [dB] Splitting ratio
(3:2) power divider -14.3 1.50
(2:1) power divider -16.0 2.00
(3:1) power divider -11.9 2.92

V. CONCLUSION

We presented a new approach of topology optimization
of optical waveguides using the AVM and the BPM, and
described the way to evaluate the sensitivities in the case of
using the density method. We are the first to apply the topology
optimization utilizing the BPM and the AVM to the design of
weakly guiding waveguide devices.

We demonstrated that the low loss S-bend and Y-branch are
found out by using our approach, therefore the validity of our
approach is confirmed. Arbitrary transmission properties are
configurable in our approach thus it can be applied to a design
of an arbitrary waveguide device which has an another func-
tion, such as a X-junction, a mode/wavelength/polarization
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(a) Optimized refractive index
distribution

(b) Field pattern(|Ey|)

(c) Optimized refractive index
distribution

(d) Field pattern(|Ey|)

(e) Optimized refractive index
distribution

(f) Field pattern(|Ey|)

Fig. 12. The refractive index distribution and the field pattern of the optimized
power divider using a smoothing filter. (a) and (b): (3:2) power divider, (c)
and (d): (2:1) power divider, (e) and (f): (3:1) power divider.

splitter, and so on. It is our future work to design these kind
of devices using our topology optimization approach.

In the case of utilizing topology optimization, arbitrary
refractive index distribution can be appeared in the design
region. The optimized devices shown in this paper are weakly
guiding and these distributions do not violate the assumption
of the BPM. However, in particular strongly guiding optical
waveguides, the assumption may be violated. Topology opti-
mization based on the FEM or FDTD has been successfully
applied to strongly guiding waveguide problems [1]- [6], [9]-
[11]. Thus, the applicability of our approach is principally
limited by the assumption. It is known that the accuracy of
the BPM is degraded at an abrupt refractive index change
area. Therefore, our approach could be applied to the design
of strongly guiding optical waveguides by developing some
additional constraint condition to suppress an emergence of
the abrupt refractive index change. It is also our future work.
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