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Abstract 

Polarization sensors have attracted attention and been researched as they can 

be constructed with a very simple experimental setup. They utilize the polarization 

characteristic of light propagating in an optical fiber and determine the strain, 

stress, pressure, etc. from changes in the polarization state of light propagating 

in a single-mode optical fiber when the sensor is affected by external factors. 

However, in previous research, the use of either Hi-Bi fiber or polarization 

maintaining fiber made the cost of the sensor system very high and operate 

difficultly. In this work, we present a polarization sensor system that determines 

strains by measuring changes in polarization state in a single-mode fiber which 

are commercially available inexpensive fibers. This greatly reduces the cost of 

the sensor system. In the experiment, we use the fiber wound in a coil shape as 

a sensor. When strains are applied, the sensor is rotated by the invar wire that is 

attached to the sensor. Strains applied in the experiment can be determined from 

the measured polarization states when the sensor rotates. 

In addition, we propose to calculate an arbitrary optical path using the Jones 

matrices of two rotated wave plates. The calculated polarization states obtained 

using the proposed method are in good agreement with the measured values, 

which demonstrated the feasibility of the proposed method. Therefore, when two 

Jones matrices representing the optical path are obtained, the polarization state 

of the transmitted light can be calculated from that of the reflected light on this 

optical path and vice versa. Also, the strains applied in the experiment are in good 

agreement with the calculated ones. These all verified the feasibility of the strain 
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sensor system developed in this work. Therefore, when the object (building, slope, 

etc.) connected to the other end of the invar wire is deformed, the strain amount 

can be obtained by this method. However, when a multipoint measurement is 

performed by connecting sensors in series, the size of the experimental data 

becomes enormous and it will become very difficult to use function fitting for data 

processing. Taking that problem into account, we performed data processing 

using a 3-layer feedforward neural network. The experimental data are used as 

training data for learning, that is, we take the measured polarization state as the 

input and the rotation angle of the sensor as the output for training the neural 

network. In addition, to test the trained neural network, we provided a newly 

measured polarization state to the trained network. The output of the trained 

network, namely, the rotation angle of the sensor, is almost the same as that 

applied in the experiment that generated the test data. These results demonstrate 

the feasibility of both the sensor system and the data processing methods 

proposed in the study. 
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1.1 General Background 

  Natural disasters such as landslides and slope failures due to torrential rain, 

typhoons, and earthquakes frequently occur in recent years [1-4]. Disruption of 

transportation roads and collapse of houses due to such natural disasters has 

become a social problem, and disaster countermeasures are strongly demanded 

[5-32]. Therefore, it is becoming increasingly important to monitor social 

infrastructure such as roads, bridges, and tunnels in real time, to fully understand 

pre-disaster facts, to make correct decisions, and to take effective measures. This 

is expected to effectively reduce the damage caused by disasters. In addition, 

disasters often occur in wilderness and mountainous areas where natural 

conditions are severe. 

Because of the vulnerability of these locations to lightning, rain, electromagnetic 

interference, etc., traditional electrical sensors are often easily damaged and may 

be difficult to monitor in real time. Since optical fiber sensors have features such 

as light weight, small size, insulation, and electromagnetic induction resistance, 

research for applying them to disaster prevention sensors is active. Since optical 

fiber sensors have features such as light weight, small size, electrical insulation, 

and resistance to electromagnetic induction, research on sensors that make use 

of these features is actively conducted, and development of measurement 

methods is in progress [31-51]. Among them, research for applying optical fiber 

sensors to disaster prevention sensors is also becoming increasingly active. The 

optical fiber sensor is not affected by electromagnetic interference because the 

sensor unit does not require a power supply. In addition, optical fiber sensors use 

silicon dioxide, so they have high corrosion resistance. This is a very important 
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aspect when setting up the sensor in the field especially where the environment 

conditions are very harsh.  

When an optical fiber sensor is used for measurement, the characteristics 

(phase, frequency, wavelength, intensity, polarization, etc.) of light propagating 

through the optical fiber change when an external physical quantity is applied to 

the sensor unit [52-53]. By measuring the change in the properties of the light, it 

is possible to obtain an external physical quantity applied to the sensor. This is 

also the measurement principle of the optical fiber sensor. There are various 

types of optical fiber sensors depending on the measurement method. Among 

them, polarization sensors have attracted much attention and the development 

of the polarization sensors have been researched [54-61]. This is due to the fact 

that in addition to the properties of optical fiber sensors described above, the 

polarization sensors can be constructed with a very simple experimental setup. 

Therefore, there is a possibility that it can be applied to disaster prevention 

sensing systems such as tunnel failure, earthquake prediction, and strain survey 

of infrastructure. 

1.2 Research Purpose 

  Optical fiber sensors have been widely used for sensing and monitoring in 

various engineering fields because of their superiority to electrical sensors as 

described previously. They are used to measure various physical quantities such 

as strains, temperatures, pressures, current, vibration, displacement, and so on. 

Among many types of optical fiber sensors, there is also an increasing number of 

studies on polarization optical fiber sensors that exploit the properties of the state 

of polarization of light as a measurement method. This is because the polarization 



4 

 

optical fiber sensors can be built with a simple structure compared with other 

sensing methods. When external influences are directly or indirectly applied to 

the sensor, the polarization state of the light propagating in the fiber of the sensor 

system changes. By measuring the change in the state of polarization, it is 

possible to detect the external influences applied to the sensor. However, in 

previous studies, polarization optical fiber sensor systems have used high 

birefringence or polarization maintaining fibers for measurement [59]. The use of 

these fibers not only makes the cost of the sensor system very expensive but 

also makes it difficult to operate. These also limit to some extent the development 

and spread of polarization optical fiber sensors. Therefore, we decided to develop 

a small size, low-cost polarization fiber sensor system which can be used to 

measure strains. In the experiment, since a commercially available low-cost 

single mode optical fiber is wound as a coil and used as a sensor, the cost is 

greatly reduced compared to the conventional polarization optical fiber sensor.  

In the experiment, we rotated the sensor by pulling an invar line connected to 

the sensor. This is conducted to simulate the generation of strain with the 

movement of the Invar line. That is, the strain is applied by pulling the invar line. 

As the sensor rotates, changes in the state of polarization of light are measured 

by the polarization analyzer. Since the measured polarization state corresponds 

to the movement distance (strains) of the invar line, the distance of the invar line 

can be determined from the measured polarization state. In this way, when the 

building or the slope connected to the other end of the Invar line is deformed, the 

strains of the measured object can be obtained by this measurement method. 

Furthermore, the sensor system developed in this study is not affected by 
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external temperature changes and does not require temperature compensation. 

In addition, the ultimate goal of this study is to connect multiple sensors in 

series on a single fiber for multi-point measurement of strain. However, there is a 

problem with multi-point measurement, which is the effect of the front-end sensor 

on the rear-end sensor. Once the first sensor has rotated, the light entering the 

second sensor will change even if the second sensor does not rotate. Then, the 

measurement result for the second sensor will have an error. To solve this 

problem, we propose to use the Jones matrices of two rotated wave plates to 

represent an arbitrary optical path, so that we can calculate the polarization state 

of the incident light entering the second sensor, even if the first sensor rotates. In 

addition, in order to solve the problem of large data processing when the 

multipoint measurement is performed, we also propose the use of neural 

networks for data processing. In this study, we use a three-layer feedforward 

neural network for data processing.  

1.3 Dissertation Outline 

As described above, the introduction, i.e. Chapter 1, describes the general 

background, research purpose, and dissertation outline. 

Chapter 2 presents an overview of optical fibers and optical fiber sensors. The 

concept, characteristics, and several sensing methods of optical fiber sensors are 

described here. 

Chapter 3 presents the outline of polarized light, Jones calculus, and the 

measurement principle of polarization optical fiber sensors. In addition, we 

describe the multipoint strain measurement principle based on the proposed 

sensor system and the problems in multipoint measurement experiment.  
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Chapter 4 describes the outline, components, and structure of neural networks. 

In addition, the back propagation method, and the design of the neural network 

in this study are also described in this chapter. 

Chapter 5 presents the experiment and experimental results. The experiment 

includes two parts. One is to verify the proposed method that an arbitrary optical 

path can be computed using the Jones matrices of two rotated wave plates. The 

other one is also the strain measurement experiment, however, this time we 

performed the data processing using a 3-layer feed-forward neural network. The 

experiment, data processing method, and the results are presented in this chapter, 

showing the feasibility of the proposed sensor system. 

Finally, the conclusions drawn from this study are given in chapter 6. 
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2.1 Fundamental of the Optical Fiber 

Optical fibers are flexible, thin thread-like transparent material made of quartz 

glass or plastic, through which optical signals pass. Nowadays, optical fibers are 

being drawn to the home, making them indispensable for optical communications. 

In addition, by taking advantage of the characteristics and structure of optical 

fibers, they are also used for various applications such as sensors, fiber lasers, 

high power light guides and the like [62-63]. The basic construction of an optical 

fiber is a two-layer structure consisting of a core in the center and a cladding 

material surrounding the core. The main component of the optical fiber core 

material is silicon dioxide, and a very small amount of dopants is used to increase 

the refractive index of the core. In this way, the fiber core has a higher refractive 

index than the cladding [64]. The general structure of an optical fiber is shown in 

Fig 2.1.1.  

 

Fig.2.1.1. Structure of an optical fiber. 

As previously described, the fiber core is doped with impurities in order to 

increase the refractive index of the core. This is done to take advantage of the 

total reflection of light in order to confine the optical signal inside the core of the 

Cladding with lower 
refrective index

Core with higher 
refrective index
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fiber for long distance transmission. As long as we adjust the angle at which light 

is incident into the core of the fiber, we can ensure that light is totally reflected at 

the boundary of the fiber core and the cladding and is transmitted through the 

fiber. Total internal reflection is also a necessary condition to transmit optical 

signals using an optical fiber. Only then can the optical signal be completely 

confined within the core of the optical fiber for propagation, thereby avoiding 

unnecessary signal losses. It is necessary to ensure that optical signals 

propagate within the fiber core not only in the field of communications but also in 

the field of fiber sensing. Typically, the core has a refractive index of 1.47 and the 

cladding has a refractive index of 1.46. The propagation of the optical signal in 

the core of the fiber using total internal reflection is shown in Fig.2.1.2 [65]. 

 

Fig. 2.1.2. Propagation of light in the fiber core. 

  Optical fibers are roughly classified into multimode optical fibers (MMF) and 

single-mode optical fibers (SMF) depending on the propagation mode. Multimode 

optical fiber is one designed to carry from hundreds to thousands of light rays or 

propagation modes, each at a slightly different reflection angle within the optical 

Cladding

Cladding

Core
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core. Multimode optical fibers generally have a wider core diameter, typically 50-

100 micrometers. And multimode optical fibers are mostly used for 

communication over relatively short distances because of the large inter-mode 

dispersion of multimode fiber, resulting in narrow fiber bandwidth. On the other 

hand, single mode optical fiber has only one propagation mode, and it has no 

inter-mode dispersion, so the bandwidth is very wide. Therefore, it is best to use 

single-mode fiber with very wide bandwidth for high speed and long distance 

transmission systems. In this study, single-mode fibers are used to implement the 

experiments. 

2.2 Fundamental of Optical Fiber Sensors 

  In recent years, with the development of optical fiber communication 

technology, laser light source technology, and optical fiber sensing technology, 

optical fiber sensors have been vigorously researched and developed in the past 

decades. One important reason is that the fibers that make up the fiber optic 

sensor have many unique features and advantages, which are described as 

follows [66]:  

(a) thin diameter 

(b) lightweight 

(c) flexibility 

(d) non-inductive 

(e) corrosion resistance 

(f) explosion proof 

  These features are very useful for installation and construction even in a narrow 

space that is not easily accessible, and in transportation equipment where 
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exercise performance and transport efficiency are important. Although traditional 

electrical sensors are widely used in many fields, the measurement unit always 

requires a power supply which is susceptible to lightning and surge current. This 

is a serious problem that is urgent to be solved. In addition, if there are electronic 

and electrical devices nearby, sensors and measures that do not receive 

electromagnetic induction are required. The advantages of the aforementioned 

optical fibers have enabled fiber optic sensors to successfully solve the problems 

faced by these electrical sensors. 

  Nowadays, optical fiber sensors are playing an increasingly important role in 

modern life and industry and are currently being studied to be more sensitive, 

more precise and more adaptable. They have been widely used for measuring 

physical, biological, and chemical parameters in various fields. An optical fiber 

sensor measures external changes by detecting changes in light properties such 

as intensity, phase, frequency, and polarization. The optical fiber sensor basically 

consists of a light source, an optical fiber as a transmission path, measurement 

equipment and an optical receiver. However, from the specific role of the fiber in 

the sensing system, the sensor is generally divided into two types [67]. That is to 

say, in the fiber sensor system, the fiber is used only as a transmission path, or 

the fiber itself is used as a sensor. The first is that there are sensor components 

in the sensing system, and the fiber is only used as a transmission path. The 

second is that the fiber itself is used as a sensor, and the external action is applied 

directly to the fiber. In this research, we conduct experiments with the optical fiber 

itself as a sensor. This kind of optical fiber sensor has very unique features and 

characteristics, which include: small size, lightweight, flexibility, immune to 
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electromagnetic induction, corrosion resistance, and distribution and quasi-

distribution measurement [31-32]. These characteristics and features allow the 

use of fiber optic sensors in places where traditional electrical sensors cannot 

apply, such as the places where there is electromagnetic interference or where 

thunderstorms occur frequently. In this study, the state of polarization of light 

propagating in optical fibers will change when external changes are applied to 

the sensor, therefore, we can measure the changes in the state of polarization of 

light to determine the external changes that are applied to the sensor. 

2.3 Optical Fiber Sensing Method 

There are various methods of fiber sensing, and they all have their own 

characteristics. When we want to choose a sensing method, we need to have a 

good understanding of how this method works. On the basis of understanding the 

principle and selecting for your own measurement target, satisfactory 

measurement results will be obtained. Here, we mainly introduce fiber sensing 

methods based on three measurement principles. The first is the fiber Bragg 

grating (FBG) detection method that reflects a specific wavelength, the second is 

the Brillouin Optical Time Domain Reflectometry (BOTDR) detection method 

using backscattered light, and the third is the polarization detection method used 

in this study. 

2.3.1 Fiber Bragg Grating Sensor 

  FBG is made by irradiating a doped fiber with a strong laser to change the 

refractive index of the fiber core. The refractive index of the fiber will change 

correspondingly with the spatial distribution of the luminous intensity. The fiber 

core after strong laser irradiation has a periodic change in refractive index and 
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becomes a fiber grating. An FBG reflects only a specific wavelength called the 

Bragg wavelength λ𝐵  and transmits the other wavelengths when lthe ight is 

incident to the FBG [34]. The Bragg wavelength λ𝐵 can be expressed by Eq. 

(2.3.1).  

𝜆𝐵 = 2𝑛𝛬              (2.3.1) 

In the equation, 𝑛 is the effective refractive index and Λ is the grating period. 

When strain or temperature is applied to the FBG, both n and λ change and the 

Bragg wavelength shifts. Since the shift of the Bragg wavelength has a linear 

relationship with the change in temperature and strain, the temperature and strain 

applied to the FBG can be detected by observing the shift of the Bragg 

wavelength. 

As described above, an FBG sensor is not only sensitive to changes in 

temperature but also sensitive to temperature changes. It is therefore often used 

as a strain sensor and temperature sensor to measure strain and temperature 

changes. This also means that temperature compensation must be performed 

when measuring strain using FBG sensors.  

2.3.2 Brillouin Optical Time Domain Reflectometry Sensor 

When an optical pulse is incident on an optical fiber, it generates various 

scattered light. The scattered light that returns to the light incident end is called 

backscattered light. There are various types and characteristics of scattered light, 

one of which is called Brillouin scattered light depending on strain and 

temperature changes. Brillouin scattered light has a feature that the frequency 

distribution of Brillouin scattered light generated in that part changes due to strain 

or temperature change applied to the optical fiber. That is, when the strain or 
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temperature change is applied to the optical fiber, the frequency of the Brillouin 

scattered light will shift. Since the Brillouin frequency shift amount changes 

linearly with respect to strain and temperature, measuring this shift amount 

enables detection of strain or temperature change applied to the optical fiber [68]. 

In this method, since the optical fiber itself is a sensor, linear and planar 

measurement and monitoring that cannot be realized by conventional 

measurement have become possible. Another advantage of the BOTDR 

measurement system is that it can measure continuous distribution for several 

tens of kilometers from one end of a single optical fiber [69]. Furthermore, if the 

sensor optical fiber is installed in a loop, measurement can be continued by 

measuring from both ends even if there is a break at one place. 

However, since the Brillouin scattered light signal returning to the incident end 

is low, it is necessary to perform averaging processing. Therefore, it takes tens 

of minutes for one measurement. This also means that real-time dynamic 

measurements are not possible with BOTDR sensor systems.  

2.3.3 Polarization Optical Fiber Sensor  

The polarization optical fiber sensor is a sensor that detects the amount of 

strains by measuring the changes in the polarization states when strains are 

applied to the sensor. In principle, it is possible to connect multiple sensors on 

one fiber, so multipoint measurement can be implemented with one optical 

measurement instrument. Slope installation is simpler than conventional types 

because polarization is less susceptible to loss of fiber connections and 

connectors can be used for installation and extension. Therefore, it is expected 

to reduce installation cost. In this study, the fiber used as a sensor does not 
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require any special treatment, and the experiment can be completed using 

commercially available single-mode fiber. Compared to studies using birefringent 

fibers or highly polarization maintaining fibers, we can achieve lower prices. The 

detailed description of polarization optical fiber sensors will be presented in 

Chapter 3. 
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3. Polarization Optical 

Fiber Sensor 
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3.1 Polarization  

Light is an electromagnetic wave whose vibration direction is perpendicular to 

the propagation direction. Light in which an electric field and a magnetic field 

vibrate only in a regular direction in this plane is called polarization. Random light 

with no regularity in the polarization of light waves is called natural light [70]. The 

polarized light can change shape freely without losing energy or increasing 

entropy. Also, since polarized light is the simplest light, it can be handled 

physically briefly, and mathematical handling for experimental prediction can be 

easily done [71-72]. From such a perspective, polarized light is easier to handle 

than natural light. Cross-sectional views are often used to represent polarized 

light. The sectional view is the trajectory of the tip of the electric field vector when 

the observer stands on the path of the light ray and looks toward the light source 

at the origin of the coordinate. 

3.1.1 Types of Polarized light 

When considering the electric field of plane polarized light traveling in the Z 

direction, let each component 𝐸𝑥 and 𝐸𝑦 be expressed as: 


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 (3.1.1) 

The polarization state is determined by the amplitude ratio Ax Ay⁄  and the 

phase difference 𝛿 = 𝛿𝑦 − 𝛿𝑥 [73]. 

(a) Elliptically polarized light 

If 𝐴𝑥 ≠ 𝐴𝑦  and it is an arbitrary phase difference δ  which is shown in Eq. 

(3.1.1), the locus of the tip of the electric field vector is 
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and it will draw an ellipse. This polarized light is called elliptically polarized light, 

and the cross-sectional view is shown in Fig. 3.1.1 (a). The inclination angle α 

between the major axis of the ellipse and the x-axis is shown as 

 cos22tan
22

yx

yx

AA

AA


   (3.1.3) 

The rotation direction of the electric field is counterclockwise when 0 <δ <π, 

and clockwise when −π<δ <0. Common polarized light is elliptically polarized light 

and it becomes circularly polarized light and linear polarized light when special 

conditions are met. 

(b) Circularly polarized light 

If 𝐴𝑥 = 𝐴𝑦  and cos 𝛿 = 0  in Eq. (3.1.1), the polarized light is called circular 

polarized light. The cross-sectional view is shown in Fig. 3.1.1 (b). The 

determination of the direction of rotation is the same as in the case of elliptically 

polarized light  

(c) Linearly polarized light 

If 𝐴𝑥 = 𝐴𝑦  and cos 𝛿 = 1  in Eq. (3.1.1), the polarized light is called linearly 

polarized light. The cross-sectional view is shown in Fig. 3.1.1 (c). The inclination 

(orientation angle ) from the x-axis of the oscillating plane of the electric field is 

shown as  
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Fig. 3.1.1. Types of Polarized light 

3.1.2 Complex representation of the electric field 

Since the equation of the electric field can be expressed in the complex form, 

Eq. (3.1.1) can be rewritten to the complex form as [73] 
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Shifting the phase reference − 𝛿 2⁄  
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Since the polarization state is determined by the ratio of the amplitude and the 

phase difference, spatial and temporal changes can be ignored. Eq. (3.1.6) can 

be represented as 
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3.1.3 Stokes parameters 

In the previous section, the polarization state is expressed using the amplitude 

and phase of light, but it is not easy to measure the amplitude and phase of light 

when measuring the polarization state. When actually making measurements, 

use Stokes parameters as light intensity. The Stokes parameters consist of four 

terms S0, 𝑆1, S2 and S3. From S0, the intensity of the entire light, the intensity 

of the horizontal linear polarization component, the intensity of the + 45 ° linear 

polarization component, and the intensity of the right circular polarization 

component are respectively shown. If temporal changes of the polarization state 

can be ignored and the complex conjugate is * [73-74], the Stokes parameter can 

be defined as 
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Completely polarized light is shown as 

     2

3

2

2

2

1

2

0 SSSS           (3.1.9) 

In many cases, standardized Stokes parameters are used in which each 

polarization component of 𝑆1 to S3 is standardized by the overall intensity S0. 

The phase difference can be obtained by Eq. (3.1.10). 

       𝛿 = tan−1 (
S3

S2
)                  (3.1.10) 

The Stokes parameters and the electric field representations are interrelated 

and can be converted to each other by Eq. (3.1.8) and Eq. (3.1.10). In this 

experiment, the polarization state is handled by converting the Stokes 
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parameters obtained by the polarization analyzer into the electric field display. 

3.2 Jones Calculus 

As described above, polarization represents a state in which the electrical field 

vibration of a plane of light is spatially biased [73-74]. When the electrical field is 

represented by 𝐄, then the arbitrary polarization can be represented by a vector 

sum of two fundamental polarized lights 𝐸𝑥   and 𝐸𝑦  The parameters for 

determining the polarization state is the phase difference 𝛿 of 𝐸𝑥  and 𝐸𝑦 , and 

the ratio of the amplitudes of 𝐸𝑥  and 𝐸𝑦. 

There are two methods for calculating the polarization of an optical path, the 

Jones matrix calculus, and the Mueller matrix calculus [75-76]. Since completely 

polarized light is used in the experiment, for each optical element we decided to 

use the Jones matrix as it is easier to calculate than the Mueller matrix. The Jones 

matrix calculus is a method of representing polarized light by a matrix. It is 

composed of a 2⨯1 Jones vector which represents an electrical field component, 

and a 2⨯2 Jones matrix representing the polarization component. Using complex 

notation, the 2⨯1 Jones vector representing the electric field is expressed as: 

 
0 0

0 0

{ ( )} ( )
[ ( )]

{ ( )} ( )

x x x x x

y y y y y

exp i wt kz exp i
exp i wt kz

exp i wt kz exp i

 

 

         
        

         
Ε  (3.2.1) 

For actual measurements, only the phase difference is taken into account, so 

Eq. (3.2.1) can be rewritten using a phase difference while omitting [ ( )]exp i wt kz  

as shown in Eq. (3.2.2) [32]. 

 
0 0

0 0

( )

( ) ( )

x x x

y y y

exp i

exp i exp i



 

    
    

    
Ε   (3.2.2) 

 y x      (3.2.3) 
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where E0𝑥 and E0𝑦 are amplitudes, 𝛿𝑥  and 𝛿𝑦  are phases, i=√−1, and 𝛿 is 

the phase difference. A polarization element is represented by a 2⨯2 Jones 

matrix 𝐉, which is shown as:  

 11 12

21 22

j j

j j

 
  
 

J   (3.2.4) 

When the optical element receives an incident light represented by the Jones 

vector 𝐄𝒊𝒏, it changes the polarization state of the incident light to emit a new 

polarization state vector 𝐄𝒐𝒖𝒕. The polarization conversion process by the optical 

element is expressed by [32]: 

 𝐄𝑜𝑢𝑡 = 𝐉 · 𝐄𝑖𝑛  (3.2.5) 

In addition, when there are M optical elements, we can use Eq. (3.2.6) 

expressed below to calculate the transmitted light through multiplying the Jones 

matrices representing the optical elements in order from right to left [32].  

 𝐄𝑜𝑢𝑡 = 𝐉𝑀−2 · 𝐉𝑀−1 · 𝐉2 · 𝐉1 · 𝐄𝑖𝑛 (3.2.6) 

However, in practical applications, we can only use this method after obtaining 

the Jones matrices of all optical elements in the optical path. It is often very 

difficult to obtain the Jones matrices of all optical elements in the optical path. 

Therefore, we propose to use the Jones matrices of two rotated wave plates to 

calculate an arbitrary optical path. Thus, no matter how many optical components 

are included in the optical path, we can determine the polarization state of the 

transmitted light from the polarization state of the incident light of the optical path 

as long as we can find the Jones matrix of the two rotated wave plates 

representing the optical path. This calculation can be expressed by Eq. (3.2.7). 
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In addition, the Jones matrix of an arbitrarily rotated wave plate is expressed by 

Eq. (3.2.8) [77], which is a regular matrix.  

 𝐄𝑜𝑢𝑡 = 𝐉2 · 𝐉𝟏 · 𝐄𝑖𝑛 (3.2.7) 

2 1

cos sin cos 2 sin cos 2
2 2 2

,

sin cos 2 cos sin cos 2
2 2 2

i i

i i

  
 

  
 

 
  

  
  
  

J J
 (3.2.8) 

where ∅ represents the phase difference of the arbitrarily rotated wave plate, 

and 𝜃 represents the orientation angle. 

3.3 Measurement Principle of the Sensor 

As shown in Fig. 3.3.1, the sensor that is used in the experiment is a single-

mode 8.3/125 fiber that is wound in a circle shape [31]. When the fiber is wound 

into a circle, the core and cladding of the fiber are usually deformed, thereby 

changing the fast axis refractive index and the slow axis refractive index. 

Birefringence in the fiber is caused by changes in the fast and slow axis refractive 

indices. The influence of this birefringence can be increased depending on the 

size of the winding radius to be integrated from end to end of the wound portion 

of the optical fiber. By adjusting the number of turns and the winding radius of the 

optical fiber, it is possible to have the same performance as a wave plate. In other, 

the circularly wound fiber can be used as a wave plate. The phase difference, 

which is expressed as 𝛿, of the wound part can be calculated by [31]: 

 
2

=



m

                (3.3.1) 
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




R
m

Nar
            (3.3.2) 

where N is the number of turns of the fiber; r is the cross-sectional radius of the 
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fiber; R is the bending radius of the fiber; λ is the wavelength of the laser light; 

and a is calculated to be 0.13 [78]. In the experiment, N is set to 1, R to 0.0215 

m, r to 6.25⨯10-5 m, and λ to 1.55⨯10-6 m. Then we substituted these values into 

Eq. (3.3.1) and (3.3.2) and calculated the phase difference of the sensor to be 

34.43°. The orientation angle of the sensor was the actual rotation angle of the 

sensor applied in the experiment.  

 

(a) 

 

(b) 

Fig. 3.3.1. Schematic diagram of the sensor. 

Figure 3.3.1(b) shows the actual photo of the sensor part, including a top view 

and a left view. The base (A) with a sector part (B) is rotatable, and the radius of 

r
R

C 

A 

Invar wire 

B 

D 
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the sector part is donated as 𝑅′. And, we fixed the cylinder (C) with a radius of 

0.02m to the base using screws. Then, the optical fiber wound around this 

cylinder was used as a sensor and is fixed in the fixing slots (D) [32]. In the 

experiment, the Invar wire was attached to the sector part. When we pull the Invar 

wire to rotate the base, the sensor will also rotate with it. Then, we can use the 

rotation angle of the sensor to calculate the movement distance of the Invar wire, 

and further determine the strains applied in the experiment. Since the rotation 

angle of the sensor is obtained from the measured polarization state in the 

experiment, determining the strains applied through measuring the polarization 

state is possible. Here, the strain, which is denoted as ε, is defined as the 

percentage ratio between the movement distance ΔL of the invar wire and the 

length L (1 m) of the invar wire, which are expressed as [32] 

'
180

L R


  ,                    (3.3.3) 

   
L

L



 ,                       (3.3.4) 

where 'R  is 0.065 m and 𝜌 (∘) is the rotation angle of the sensor. 

3.4 Measurement Principle and Problems in Multipoint Measurement 

In practical applications, there are many occasions where multipoint monitoring 

and measurement of strains is required. Based on the strain measurement 

system proposed in this study, multipoint measurement of strains can be 

performed using the time delay of reflected pulses from sensors when they are 

connected in series. However, in multi-point measurement, there is a problem 

that the front-end sensor affects the rear-end sensor. However, in multipoint 

measurement of strains, the problem arises that the front-end sensor affects the 
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rear-end sensor. Here, we take the two sensors connected in series as an 

example to illustrate the problems encountered in multipoint measurement. When 

the first sensor rotates, the polarization of the transmitted light from it changes, 

which directly causes the polarization of the incident light entering the second 

sensor to change. This also causes the polarization state of the reflected light 

from the second sensor measured in the experiment to change, even if the 

second sensor does not rotate. In addition, in the multipoint strain measurement 

experiment, once all the sensors are connected, we cannot separately measure 

the transmitted light from each sensor or the incident light entering each sensor. 

The polarization states of the reflected light from each sensor are the only 

parameters we can measure. If we can calculate the polarization state of the 

incident light incident entering the second sensor, and based on the measured 

polarization state of the reflected light of the second sensor, we can correctly 

obtain the rotation angle of the second sensor. That is, if we can correctly 

calculate the polarization state of the incident light entering each sensor in the 

multipoint experimental system, multipoint strain measurement can be 

implemented. However, in the present experiment, the polarization state of the 

incident light of each sensor could not be correctly calculated by the original 

calculation method. Therefore, as mentioned earlier, we propose to use the Jones 

matrices of two rotated wave plates to represent an arbitrary light path. Then, 

regardless of whether the first sensor is rotated, we can correctly determine the 

polarization state of the incident light entering the second sensor as long as we 

find the Jones matrices representing the optical path. The calculated value of the 

polarization state of the incident light entering the second sensor is then used 
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instead of its actual value. In this way, we believe that the problem of the influence 

of the first sensor on the sensor sensor in multipoint strain measurement can be 

solved. This method is also applicable when there are three or more sensors. As 

can be seen from the foregoing, when the sensor is rotated, we measure the 

polarization state of the reflected light from the sensor, represented by three 

Stokes parameters. That is, one rotation angle will correspond to three Stokes 

parameters. In the multipoint strain measurement experiment, two or more 

sensors will be connected, and the experimental data will become very large. It 

will take time to calculate the rotation angle of the sensors from the polarization 

states of each sensor because the polarization state of the reflected light of each 

sensor cannot be calculated at the same time. Moreover, an error has already 

occurred in the calculation of the polarization state, and it is possible to generate 

a larger error when using the calculated values of the polarization state to obtain 

the rotation angle of the sensor. Therefore, we use neural networks for data 

processing in our research because neural networks have the ability to handle 

multiple inputs and multiple output problems. As long as we design the neural 

network we need, we can get the rotation angle of each sensor at the same time. 

This not only saves a lot of time but also improves the accuracy of data 

processing. The detailed description of the neural network will be introduced in 

Chapter 4. 
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4.1 Outline of Neural Network 

A neural network is a mathematical model established by abstracting the 

human brain neuron network from the perspective of information processing. In 

engineering applications, it is commonly referred to as an artificial neural network. 

Neural networks can effectively approach a wide range of applications. In 

particular, it exhibits excellent capabilities in the problems of pattern mapping, 

pattern perfection, pattern classification and the like. The first research on neural 

networks information processing is the model of neurons proposed by McCulloch 

and Pitts in 1943 [79]. They described the concept of neurons in their research, 

which are the units that exist in the network, mainly accepting input, processing 

input, and producing output. A neural network is a network constructed by 

mutually connecting artificial elements simulating nervous system cells (neurons) 

of a living body, and has three major features [80-82]. 

The first characteristic is "nonlinearity". It is well known that neural networks 

have powerful approximation capabilities and can achieve high precision 

approximation for any complex function. The reason for this ability is the nonlinear 

nature of the network. With the linear activation function, the neural network 

simply combines the input and outputs it again, so the approximation of complex 

functions cannot be achieved. With nonlinear activation functions, neural 

networks can approach complex functions at will. 

The second characteristic is "learning ability", which is also said to be the 

greatest attraction of neural networks. Learning ability is the ability to 

automatically form the necessary functions based on the examples presented. 

This ability is suitable for problems that cannot be solved by conventional 
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methods. In a system with learning ability, it is not necessary to design the 

mechanism artificially. 

The third feature is "parallelism". A neural network is one of the realizations of 

massively parallel computers, and a theoretical system for systematically 

grasping parallel operation has been established. 

4.2 Components and Forms of Network 

A neural network is a network that simulates the human brain neurons in order 

to realize artificial intelligence-like machine learning technology. It is a model 

established from the abstraction of specific functions of the human brain neuron 

network from the perspective of information processing. A neuron model is a 

model that contains inputs, outputs, and computational functions, much simpler 

than the actual neurons of a human brain. In a neural network, a neuron is the 

basic unit of computation. It accepts external inputs or inputs from other neurons 

and produces outputs after computation. There are several different models of 

neurons depending on the method of computation, and we need to choose the 

appropriate model based on the characteristics of our experimental data. When 

deciding the model of a neuron, it is generally considered from two aspects [80]. 

The first one is the operation of the element is " decisive " or "probabilistic". The 

other is whether the output is "2 -value" or "analog". Currently, neural network 

engineering models that most used in neural networks include decisive 2-value 

models, stochastic 2-value models, and decisive analog models. In our 

experiments, the polarization state is an analog value that is critical to the rotation 

angle. Therefore, this study uses a "Decisive analog model". The neuron model 

and the activation function used are described as follows. 
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4.2.1 Decisive 2-Value Model 

The decisive 2-value model is modeled by a decisive element with a 2-value 

output of {0, 1} corresponding to whether the neuron is excited or not [80-82].  

We assume the signal input to the model to be {x1, x2 … xN}. By multiplying 

these inputs by weights {w1, w2 … wN} and adding them together, an amount s 

corresponding to the intracellular potential is obtained. Here, the weights 

correspond to the synaptic connection weights. If s exceeds the threshold θ, the 

output y will be 1, otherwise, the output y will be 0. The calculation is shown in 

Eq. (4.2.1) and Eq. (4.2.2). And, the decisive 2-value model is shown in Fig. 4.2.1. 

           s = ∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛                      (4.2.1) 

          y = {
1     𝑠 ≥ 𝜃
0    𝑠 ≤ 𝜃

                     (4.2.2) 

 

Fig. 4.2.1 Decisive 2-value model. 

4.2.2 Stochastic 2-Value Model 

A stochastic 2-Value Model is a model to decide stochastically whether to set this 

output valued to either {0, 1}, which is shown in Fig. 4.2.2. That means even if the 

input is the same, the output may take different values [80-82]. 
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Fig. 4.2.2. Stochastic 2-value model. 

The intracellular potential s is calculated from the input in the same way as the 

decisive model. Then, calculate the sigmoid function value p for s, and set the 

output y to 1 with the probability of p, and 0 with the probability of 1-p. The 

calculation is expressed by Eq. (4.2.3) to Eq. (4.2.6) [80-82]. 

                       s = ∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛                         (4.2.3) 

                      p = sigmoid(s − θ)                      (4.2.4) 

                  P(𝑦 = 1) = p                           (4.2.5) 

                  P(𝑦 = 0) = 1 − p                       (4.2.6) 

4.2.3 Decisive Analog Model 

A decisive analog model is a model that determines the output y as an analog 

value in the range of 0 ≤ y ≤ 1 and definitely determines this output from the 

input. The intracellular potential s is obtained by the same procedure as the 2-

value mode described above. However, different from the decisive 2-value model, 

the continuous output will be obtained by using a function called a sigmoid 
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function when calculating y from s. The sigmoid function is shown in Fig. 4.2.3, 

and its equation is expressed as Eq. (4.2.7) [80-82]. 

 

Fig. 4.2.3. Sigmoid function. 

            sigmoid(z) =
1

1+𝑒−𝛼𝑧                  (4.2.7) 

It is an important function representing input/output characteristics of neurons. 

In Eq. (4.2.7), α is a coefficient which is called gain. The output of the Sigmoid 

function is a continuous value, and the Sigmoid function is a monotonic function 

for the input, usually used for backpropagation method. The sigmoid function and 

its derivative are also continuous. Also, as shown in Fig. 4.2.3, the sigmoid 

function approaches the step function if the gain of the sigmoid function is 

increased. Conversely, when the gain is larger than 0 and sufficiently smaller than 

1, the sigmoid function becomes a linear function. This requires us to set the initial 

value of the gain, neither too large nor too small, but to choose a suitable initial 

value.  

As shown in Fig. 4.2.3, the function rises with z=0 as a boundary, and when 

the threshold is θ, the function can be shifted to the right by θ, and the function 
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can be rewritten as 

                  y = sigmoid(s − θ)                  (4.2.8) 

The decisive analog model is shown in Fig. 4.2.4, and the output of a decisive 

analog model can be calculated using Eq. (4.2.9) and Eq. (4.2.10). 

                   s = ∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛                      (4.2.9) 

                   y = sigmoid(s − θ)                   (4.2.10) 

 

Fig. 4.2.4. Decisive analog model. 

As can be seen from Fig. 4.2.3, the decisive analog model has two kinds of 

parameters, the weights and the threshold. During the learning process, we 

modify the weights and thresholds to make the output of the network to approach 

our expected target output. Therefore, the fewer the number of parameters, the 

easier it is to modify. In order to unify the parameters for processing, we usually 

make some changes to the neurons as shown in Fig.4.2.5. It adds an input x0, 

which takes a value of 1 to the input. Let the value of weight w0 be -θ for this 

input. This means that the threshold θ can be treated as one of the weights. The 
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intracellular potential s and the output 𝑦 of the neuron can be expressed by the 

following equation [83]. 

                       s = ∑ 𝑤𝑛
𝑁
𝑛=0 𝑥𝑛                   (4.2.11) 

              𝑦 = 𝑓(𝑠)                         (4.2.12) 

 

Fig. 4.2.5. Treat threshold as one of weights. 

4.2.4 Architecture of Neural Network 

As mentioned earlier, neural networks are constructed by interconnecting 

neurons that simulate human brain neurons. In practical applications, neural 

networks are generally divided into two categories. One is a feedforward neural 

network and the other is called a feedbackward neural network [81-83].  

 (1) Feedforward neural networks 

The feedforward neural network consists of a series of layers, including an 

input layer, several hidden layers, and an output layer. The first layer, called the 

input layer, receives signals from the outside as input to the network. A simple 

schematic of a feedforward neural network is shown in Fig. 4.2.6.   
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Fig. 4.2.6. An example of a feedforward neural network. 

Each of the subsequent layers is connected to the previous layer, and the last 

layer produces the final output of the network. Inside the network, the signals 

propagate in the order of the input layer, the hidden layer, and the output layer, 

and are processed by the neurons at each layer, and the final operation result is 

outputted by the output layer. There is no signal feedback inside a feedforward 

neural network.  

(2) Feedbackward neural networks 

Unlike a feedforward neural network, within a feedback neural network, the 

signal flow is not unidirectional, but bidirectional. When determining the neurons 

on the input side, the values of the neurons on the output side must be considered 

at the same time. At the same time, the value of the neurons on the output side 

also depends on the value of the neurons on the input side. Figure 4.2.7 shows 

an example of a feedbackward neural network. We find that it is possible to 

exchange signals between arbitrary neurons. This makes the feedback neural 

network look very complicated. 
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Fig. 4.2.7. An example of a recurrent neural network. 

Since the signal is fed back from the output side to the neurons on the input 

side, the feedbackward type neural network has complex nonlinear dynamics and 

exhibits various time characteristics, which can be used to solve dynamic 

information processing [83].  

4.3 Backpropagation Method 

The error back propagation method is one of the learning methods of 

feedforward neural networks, and has been widely studied and actively used in 

neural network algorithms. The error back propagation method determines the 

parameters of the network based on the gradient method [82-85]. The error 

backpropagation network has three or more layers, but basically, it is usually 

three layers. 

input

input

output
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Fig. 4.3.1. Feedforward neural for error backpropagation method. 

As shown in Fig. 4.3.1, there are known inputs ( 𝑥1, 𝑥2, … 𝑥𝑁 ) and 

corresponding target outputs (𝑡1, 𝑡2, … 𝑡𝑁). In the process of learning with neural 

networks, the neural network will give outputs (𝑦1, 𝑦2, … 𝑦𝑁). The purpose of our 

study is to make the error between the outputs ( 𝑦1, 𝑦2, … 𝑦𝑁 ) of the neural 

network and the target outputs (𝑡1, 𝑡2, … 𝑡𝑁) infinitely close to 0. We use the error 

evaluation function 𝐸 to calculate the error between the outputs (𝑦1, 𝑦2, … 𝑦𝑁) 

and the target outputs (𝑡1, 𝑡2, … 𝑡𝑁), which is given as [83] 

             𝐸 = ∑ |𝑦𝑛 − 𝑡𝑛|2𝑁
𝑛=1                 (4.3.1) 

In this study, the learning method we used was the backpropagation method. 

Change the relationship between inputs and outputs by changing the internal 

parameters (weights and thresholds) of the network. 

Here, we take the feedforward neural network shown in Fig. 4.3.1 as an 

example. The neurons that make up the neural network are the neuron models 

we described in Section 4.2.3. In this case, the threshold is regarded as one of 

the weights, and only the weight of the neurons needs to be modified during the 

・・・ ・・・
・・・

・・・

input layer hidden layers output layer
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learning process.  

In this study, in order to process the experimental data, we used a three-layer 

feedforward neural network. Therefore, we are here to explain the error back 

propagation method based on the feedforward neural network. The measured 

values of the three parameters of the Stokes representing the polarization state 

are used as inputs, and the angle of rotation of the sensor is used as an output 

to the network. When designing neural networks, we must consider our actual 

data types and structures. For our experimental data, what we need is a three-

input-one-output neural network, as shown in Fig.4.3.2. Thus, we give the 

introduction of the error backpropagation method using the neural network shown 

in Fig. 4.3.2.  

 

Fig.4.3.2. Forward mode of error backpropagation method. 

In the learning process of the error back propagation method, it is divided into 

=1 =1
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two steps, one is the forward mode and the other is the backward mode. The step 

for calculating the actual output of the neural network in the order of the input 

layer to the output layer is called the forward mode, as shown in Fig.4.3.2. Here, 

the 𝑥1 , 𝑥2 and 𝑥3 are inputs to the neural network, and the 𝑦1 is the output of 

the neural network. The 𝑤  represents the weight, and the threshold of each 

neuron is treated as a weight. So we add a neuron with an output of 1 and a 

threshold of  – 𝜃 in each layers. 

Before learning begins, we need to give each weight an initial value. The input 

and target output are then provided to the neural network and learning begins. 

Learning is actually to determine a set of weights that correctly represent the 

relationship between input and target output. When the learning is complete, the 

set of weights will be determined. The actual output of the neural network can be 

calculated according to the equations as follows: 

𝑆11 = 𝑤11−1𝑥1 + 𝑤21−1𝑥2 + 𝑤31−1𝑥3 + 𝑤01−1𝑥0           (4.3.2) 

         𝑦𝑠11 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠11)                         (4.3.3) 

𝑦1 = 𝑤11−2𝑦𝑠11 + 𝑤21−2𝑦𝑠21 + 𝑤31−2𝑦𝑠31 + 𝑤01−2𝑠0       (4.3.4) 

𝑦𝑠11 , 𝑦𝑠21 and 𝑦𝑠31 are the output of neurons in the hidden layer and are also 

the input to the output layer. In a neural network, the output of each layer is the 

input to the next layer connected to it. Therefore, we can determine the output of 

neurons of each layer in the order from the input layer to the output layer. 

The next step is the backward mode that corrects the weights of each layer 

from the output layer to the input layer. The calculated difference 𝑦𝑖 −

𝑡𝑖  between the actual outputs of the neural network and the target outputs is 

used as an input to the backward mode to modify the weight of the network. In 
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the backward mode, the signal propagates from the output layer to the input layer. 

The difference between the actual output of the neural network and the target 

output is given to the neural network shown in Fig.4.3.3, which are inputs to the 

backward mode. The 𝑦𝑠11 , 𝑦𝑠21  and 𝑦𝑠31  are the outputs of neurons in the 

hidden layer calculated in the forward mode. The 𝑧 represents the outputs of 

each neurons in the backward mode as shown in Fig. 4.3.4. And we can calculate 

it using Eq. (4.3.5). 

 

Fig. 4.3.3. Backward mode of error back propagation method. 

 

Fig. 4.3.4. Neuron model in backward mode. 

=1 =1

(y)
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𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑′(𝑠) ∑ 𝑤𝑛𝑍𝑛
𝑁
𝑛=1                (4.3.5) 

Here, the {𝑍1, 𝑍2 ,   ⋯ 𝑍𝑁} represent the inputs that are provided to the neuron, 

and {𝑤1, 𝑤2 ,   ⋯ 𝑤𝑁} are the weights corresponding to the inputs. Then we use 

the derived function of the sigmoid function to calculate the outputs of neurons in 

backward mode. We use the calculated output 𝑧 of each neuron to make minor 

modifications to the weights by Eq. (4.3.6). 

     𝑤𝑖𝑗−(𝑙+1) = 𝑤𝑖𝑗−(𝑙+1) − 𝜇𝑦𝑠𝑖𝑙𝑧𝑗(𝑙+1)           (4.3.6) 

Here, μ is a small positive number that determines the amount of weight change 

in each learning process. The 𝑙 represents the number of layers in which the 

neurons are located, and 𝑖  and 𝑗  represent the 𝑖 -th neurons and the 𝑗 -th 

neurons in the layer. The 𝑤𝑖𝑗−(𝑙+1) represents the weight connecting the neuron 

of number 𝑖 in layer 𝑙 and the neuron of number 𝑗 in layer(𝑙 + 1). Here we use 

a three-input-one-output feedforward neural network to explain the error 

backpropagation method. But in practice, we may encounter more complicated 

situations, and there may be dozens to hundreds of inputs. So we need to design 

the neural network according to the actual situation. 

4.4 Design of Neural Network 

The reason why neural networks are widely used is because of their learning 

ability, which is also considered to be its greatest feature. From the training data 

by using a learning method, we could get an approximate relationship that 

represents the relationship between the experimental data used as the training 

data. Then, use the obtained approximate relationship to give correct output for 

inputs other than training data. By optimizing the parameters of the neural 

network, a highly accurate approximation can be made [86-87]. In this research, 
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learning is performed using the above-mentioned error backpropagation method. 

In this study, we decided to use a feedforward neural network consisting of an 

input layer, a hidden layer, and an output layer for data processing. In order to be 

able to get the output we expect, we must properly design the neural network 

according to our experimental data. Before designing a neural network, we need 

to determine the inputs and outputs that are provided to the neural network. Once 

the inputs and outputs are determined, the number of neurons in the input and 

output layers of the neural network is also determined. In the study, the rotation 

angle of the sensor is the value we require, so it is used as the output of the 

neural network. The measured values of the polarization state corresponding to 

the angle of rotation of the sensor are provided as an input to the neural network.   

Since we are using a three-layer feedforward neural network, after the input 

layer and the output layer are determined, in order to obtain a satisfactory 

learning result, the appropriate number of neurons in the middle layer should be 

determined. If the number of neurons in the hidden layer is too small, although it 

may take a small amount of time to complete the study, it is often difficult to obtain 

satisfactory learning results. Conversely, if there are too many neurons in the 

hidden layer, not only will it take a lot of time to complete the study, but there may 

also be overfitting. In both cases, good learning outcomes are not guaranteed. In 

order to determine the appropriate number of neurons for the hidden layer and 

obtain satisfactory learning results, the Trial & Error method is used [31,82].  

The steps of the Trial & Error method are as follows. First, we set up a small 

number of neurons for the hidden layer and start learning. If there is a large error 

in the learning result, we will increase the number of hidden layer neurons little 
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by little and observe the learning results. If the error becomes smaller, we then 

continue to increase the number of hidden layer neurons. If the error becomes 

larger, the number of hidden layer neurons should be reduced. Often this process 

has to go through many times until the error is not smaller any longer, and the 

number of neurons at this time is taken as the number of neurons in the hidden 

layer.  

Similarly, the determination of the number of times of learning is equally 

important for achieving satisfactory learning outcomes. As with the method of 

determining the number of hidden layer neurons, we also adjust the number of 

learning times while observing the learning results. Similarly, the adjustment of 

the weight and the value of the gain during the learning process are also 

determined using the Trial & Error method. The gain is a parameter in the sigmoid 

function as described previously. 

The learning procedure of the error backpropagation method could be 

expressed as Fig. 4.4.1 [88]. The learning process is consistent with our previous 

description. First, set the initial value for the parameters. The parameters include 

the number of neurons in the hidden layer, the number of learning times, the 

values of gain of the sigmoid function, the degree of weight correction and the 

initial value of weights. Then, the training data for determining the weights is 

provided, the inputs are (𝑥0, 𝑥1, … 𝑥𝐿), and the outputs are (𝑦0, 𝑦1, … 𝑦𝐿). After 

providing input to the neural network, the output of each neuron in each layer is 

calculated to obtain the actual output of the neural network. The program will then 

execute the backward mode to modify the weight value until the set number of 

learning times is completed. 



45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.4.1. Learning procedure of the backpropagation method. 
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5.1 Verification of twisting when rotating the sensor 

In this study, we use a common single-mode fiber that was wound into a circle 

shape as a sensor and the sensor is rotated by pulling the Invar wire attached to 

the sensor. The state of polarization is measured using a polarization analyzer. 

Since we do not know whether the twisting motion affects the experimental results 

when the sensor is rotated, it is necessary to detect whether the twisting motion 

of the rotated sensor affects the experiment before performing the strain 

experiment. If there is a twisting effect, then it must be taken into account. The 

experimental system for verification of twisting is shown in Figure 5.1.1 [32].  

 

(a) Measurement of the light source. 

 

(b) Measurement of light transmitted through the sensor. 

Fig. 5.1.1. Experimental systems for verifying twisting. 

First, we connected the polarization analyzer directly to the light source to 

measure the state of polarization of the output light of the light source as shown 

in Fig 5.1.1.a. The next step is shown in Fig.5.1.1.b [32]. We used two 1-m-long 

fibers and wound them into a circle shape for use as the sensor. Then, we 

connected each fiber separately to the light source and conducted the experiment. 

In the experiment, we rotated the sensor from 0° to 180° at 10° intervals and 
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measured the polarization state of the transmitted light of the sensor. The two 

types of fibers used in the experiments were (a) an optical fiber without an outer 

jacket and (b) an optical fiber with an outer jacket, and the two types of fibers 

have different radii. When the fibers are wound into a circular shape as a sensor, 

their bending radii are 0.0215 m and 0.0205 m, respectively [32]. The phase 

difference of the sensor was calculated by Eq. 3.3.1 and Eq. 3.3.2. We used the 

measured state of polarization of the output light of the light source to calculate 

the state of polarization of the transmitted light from the rotated sensor. The 

calculation formula used is shown in Eq. 3.2.5. Then, we compared the calculated 

and measured values of the state of polarization of the transmitted light from the 

sensor, and their comparison is shown in Fig. 5.1.2. Here, S1, S2, and S3 denote 

the Stokes parameters that represent the state of polarization, which can be 

directly measured by the polarization analyzer in the experiment.  

If the twisting motion does not affect the experimental results when the sensor 

is rotated, the measured values of the state of polarization of the transmitted light 

from the sensor should be the same as the calculated values. However, as shown 

in Fig. 5.1.2, their values do not match with each other no matter which type of 

optical fiber is used [32]. This means that the twisting motion has influences on 

experiment results when the sensor is rotated. Then, we must also take this 

twisting effect into account for calculation when the strain experiment is 

performed. 
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(a) Results using fibers without an outer jacket. 
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(b) Results using fibers with an outer jacket. 

Fig. 5.1.2. Experiment for verifying twisting. 
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Furthermore, according to previous research, when the optical fibers are 

rotated, twisting occurs and the corresponding constant is known as the twisting 

coefficient [78]. Then, the state of polarization of the transmitted light from the 

sensor was calculated from the measured values of the state of polarization of 

the light source using Eq. 3.2.5 with twisting coefficient [32]. The results 

calculated with consideration of this twisting coefficient are shown in Fig. 5.1.2 

[32]. If this twisting coefficient can represent the twisting effect generated by the 

rotation of the optical fiber, the results calculated using this twisting coefficient 

should be consistent with the measured results shown in Fig. 5.1.2. However, the 

calculated values of the state of polarization of the transmitted light from the 

sensor and the measured values of the state of polarization of the transmitted 

light from the sensor still did not match. This means that we can neither ignore 

the twisting effect caused by the rotation of the optical fiber nor simply use the 

twisting coefficient to calculate the twisting. Therefore, due to the occurrence of 

the twisting and its effect on the state of polarization, we believe that it is possible 

to calculate the twisting as a rotated wave plate. The feasibility is also verified by 

the following experimental results. 

5.2 Experiment using Jones calculus and Results 

5.2.1 Experiment system 

The strain measurement experimental system used in this study is shown in 

Fig. 5.2.1 [32]. We used an LD light source and a polarization analyzer to 

measure changes in the state of polarization of light propagating within the optical 

fiber as the sensor rotates. In the experiment, there is an invar line connected to 

the sensor, and we pulled the Invar line to rotate the sensor.  
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Fig. 5.2.1. Schematic diagram of the experimental system. 

The pulsed light from the light source passes through the polarization controller 

and entered the sensor via the optical circulator. The Fresnel reflected light that 

was generated by the reflecting mirrors was incident on the polarization analyzer 

through the optical circulator. As can be seen from Fig. 5.2.1, there are two 

reflecting mirrors in the experimental system, the reflecting Mirror 1 and the 

reflecting Mirror 2. Their reflected light is measured by the polarization analyzer. 

As long as the state of polarization of the output light of the light source does not 

change, the polarization state of the reflected light of the Mirror 1 will not change. 

And, the polarization state of the incident light entering the sensor is calculated 

using the polarization state of the reflected light of Mirror 1. On the other hand, 

the reflected light from the Mirror 2 is affected by the rotation of the sensor. That 

is, the polarization state of the reflected light of the Mirror 2 changes as the sensor 

rotates. In the experiment, since the polarization state of the reflected light of the 

Mirror 2 changes with the rotation of the sensor, we use the measured 

polarization state to calculate the rotation angle of the sensor. And then using the 
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rotation angle of the sensor to calculate the displacement of the Invar line and 

the strains applied in the experiment. In the experiment, we used pulsed light to 

perform the measurement, so that when the pulsed light output from the light 

source is reflected by the Mirror 1 and Mirror 2, there will be a time delay between 

the two reflected light from Mirror 1 and Mirror 2. We used a 600-m- long optical 

fiber to prevent the overlap of the two reflected pulses. The wavelength of the 

light source was 1550 nm, the repetition frequency was 1 kHz, the pulse width of 

the incident light was set to 3 μs. The maximum sampling frequency of the 

polarization analyzer was 1,046 kHz. In this study, we used the polarization state 

calculated by the Jones matrix instead of the measured polarization state to 

calculate the rotation angle of the sensor. The calculation results given in the 

following sections also demonstrated the feasibility of the proposed calculation 

method.  

5.2.2 Experiment and results 

In the previous chapter, we described that we propose to use the Jones 

matrices of two rotated wave plates to calculate an arbitrary optical path. In order 

to get the correct calculation results, we must determine the Jones matrices of 

the two rotated wave plates representing each optical path. Therefore, before 

performing the strain measurement experiment, we must conduct experiments to 

determine the Jones matrices for each optical path, including the optical circulator 

part and the surplus length part. When the sensor is rotated, we can use the 

obtained Jones matrices representing the optical path to calculate the state of 

polarization of the transmitted light from the sensor. This means that we could get 

the polarization state of the incident light entering the second sensor during multi-
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point measurement using the calculus. Then, we measured the polarization state 

of the reflected light of the Mirror 1 and Mirror 2 when the sensor is rotated. The 

rotation angle of the sensor was obtained from the polarization state of the 

reflected light from Mirror 1 and Mirror 2, and then the strains applied in the 

experiment were determined.  

5.2.2.1 Determination of the Jones matrices for the optical circulator.  

We use the experimental systems shown in Fig. 5.2.2 to obtain the Jones 

matrices of the two rotated wave plates representing the optical circulator section 

[32]. Here, we assume that the two Jones matrices representing the optical 

circulator section are 𝐉𝟏  and 𝐉𝟐 , respectively [32]. The polarization state of 

transmitted light and the polarization state of the reflected light from the optical 

circulator were measured separately.  

 

(a) Measurement of transmitted light from the optical circulator. 

 

(b) Measurement of reflected light from the optical circulator. 

Fig. 5.2.2. The experiment of the optical circulator. 

The Jones matrices representing the optical circulator were obtained through 
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this measurement. In the experiment, first, the linear polarizer (P) of the 

polarization controller was set to 0°, and the quarter-wave plate (Q) of the 

polarization controller was set to 45°. Then, we measured the polarization state 

of the transmitted light and the reflected light from the optical circulator by rotating 

the half wave plate (H) from 0° to 90° at 10° intervals. Then, we measured the 

polarization state of the transmitted and reflected light from the optical circulator 

again by rotating the half-wave plate (H) from 0° to 90° at 10° intervals when the 

linear polarizer (P) is set to 0° the quarter-wave plate (Q) is set to 90°. 

Initially, 𝐉𝟏  and 𝐉𝟐  can be expressed as the inverse matrices of the Jones 

matrices as shown in Eq. (3.2.8) [32]. That is because we use Eq. (3.2.8) to 

calculate the polarization state of the reflected light from Mirror 1 using the 

polarization state of the transmitted light of the optical circulator. Here, the 

reflected light from Mirror 1 means the reflected light from the optical circulator. 

We obtained the parameters of 𝐉𝟏  (𝜃1, 𝜙1 ) and 𝐉𝟐  (𝜃2, 𝜙2 ). The equation for 

calculating the polarization state of transmitted light from the optical circulator 

using the measured polarization state of the reflected light is expressed as [32]: 

 2 1

transmitted light reflected light 

from circulator  from Mirror 1

   
     

   
J J .    (5.2.1) 

Then, we calculated the polarization state of the transmitted light through 

changing the orientation angles (𝜃1, 𝜃2 ) and phase differences (𝜙1, 𝜙2 ) of 𝐉𝟏 

(𝜃1, 𝜙1) and 𝐉𝟐 (𝜃2, 𝜙2) from 0º to 180º at 1º intervals. Then we compared the 

calculated and measured values of the state of polarization of the transmitted 
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light to determine the parameter values that minimize the error between them.

 

Fig.5.2.3. Comparison of the measured values and the calculated values of the 

transmitted light from the optical circulator when the quarter-wave plate is at 45º. 
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Fig.5.2.4. Comparison of the measured values and the calculated values of the 

transmitted light from the optical circulator when the quarter-wave plate is at 90º. 

 

Table 5.2.1 Calculated parameters for the optical circulator. 

 Orientation angle  
(º) 

Phase difference 
(º) 

J1 (𝜃1, 𝜙1) 

J2 (𝜃2, 𝜙2) 

𝜃1 = 1 

𝜃2 = 38 

𝜙1 = 150 

𝜙2 = 106 

 

The comparison between the calculated values of the polarization state of the 

transmitted light and the measured polarization state of the transmitted light is 

shown in Fig. 5.2.3 and Fig. 5.2.4 when the quarter-wave plate is at 45° and 90°, 

respectively [32]. Table 5.2.1 lists each of the parameters we obtained [32]. 

Furthermore, from Fig. 5.2.3 and Fig. 5.2.4, we find that the calculated and 

measured values of the polarization state of the transmitted light of the optical 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

S
to

k
es

 p
a

ra
m

et
er

s

Rotation angle of HWP (º)

Comparison of S1, S2, S3

Measured values of S1 Measured values of S2 Measured values of S3

Calculated values of S1 Calculated values of S2 Calculated values of S3



58 

 

circulator are in good agreement with each other. Therefore, by substituting the 

measured values of the polarization state of the reflected light from the optical 

circulator and the matrices 𝐉𝟏 (𝜃1, 𝜙1) and 𝐉𝟐 (𝜃2, 𝜙2) obtained above into Eq. 

(5.2.1), we can calculate the polarization state of the transmitted light from the 

optical circulator. In order to ensure that no interference affects the optical path 

during the experiment, we set P, Q, and H to 0°, and measured the polarization 

state before and after the experiment. Since the two sets of measurement data 

were consistent with each other, it is proved that no interference affects the 

optical path. 

5.2.2.2 Determination of the Jones matrices for the surplus length.  

The surplus length is a length of single-mode fiber connecting the Mirror 1 and 

the sensor, as shown in Fig. 5.2.1. Here we used the polarization state of the 

transmitted light from the Mirror 1 measured in 5.2.2.1. We assume that the Jones 

matrices representing the surplus length are  𝐉𝟑 and 𝐉𝟒. The state of polarization 

of the light that was transmitted through the sensor (without rotating the sensor) 

was measured using the experimental system illustrated in Fig. 5.2.5 [32].  

 

Fig. 5.2.5. Measurement of the transmitted light from the sensor. 

In the experiment, we set the polarization controller’s linear polarizer (P) to 0º 

and the quarter-wave plate (Q) to 45º. Then, we measured the polarization state 
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wave plate (H) from 0º to 90º. Then the Q was set to 90º, and we measured the 

polarization state of the transmitted light from the sensor at 10º intervals when 

rotating the half-wave plate (H) from 0º to 90º. As described previously, 𝐉𝟑 and 

𝐉𝟒 are the two rotated wave plates that represent the surplus length, and we can 

express them using the Eq. (3.2.8). The parameters of 𝐉𝟑 (𝜃3, 𝜙3) and 𝐉𝟒 (𝜃4, 𝜙4) 

were determined. Furthermore, we can also express the sensor after 𝐉𝟒  as a 

rotated wave plate. We set the orientation angle of the sensor to 0° and the phase 

difference to 34.43° to determine the Jones matrices of the surplus length part. 

And, the phase difference used here was obtained in Sect. 3.3. Then, we used 

the polarization state of the transmitted light from the optical circulator to 

determine the polarization state of the transmitted light from the sensor. The 

equation we used to perform this calculation is expressed as follows [32]:  

  4 3

transmitted light transmitted light
sensor

from sensor from circulator 

   
      

   
J J    (5.2.2) 

Then, by changing the orientation angles (𝜃3, 𝜃4) and phase differences (𝜙3, 𝜙4) 

of 𝐉𝟑 (𝜃3, 𝜙3) and 𝐉𝟒 (𝜃4, 𝜙4) from 0º to 180º at 1º intervals, we calculated the 

polarization state of the transmitted light from the sensor. In order to find the 

parameter values that minimize the difference between them, we compared the 

calculated values and measured values of the polarization state of the transmitted 

light from the sensor.  
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 Fig. 

5.2.6. Comparison of the measured values and the calculated values of the 

transmitted light from the sensor when the quarter-wave plate is at 45º. 

 

Fig. 5.2.7. Comparison of the measured values and the calculated values of the 

transmitted light from the sensor when the quarter-wave plate is at 90º. 
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Figure 5.2.6 and Figure 5.2.7 show the comparison between the calculated 

polarization state of the transmitted light and the measured polarization state of 

the transmitted light form the sensor when the quarter-wave plate is at 45º and 

90º, respectively [32]. Table 5.2.2 lists each parameter that we obtained [32]. It 

can be seen from Fig. 5.2.6 and Fig. 5.2.7 that the calculated and measured 

values of the polarization state of the transmitted light from the sensor are very 

consistent with each other whether Q is 45º or 90º. This also shows that we 

correctly obtained the Jones matrices representing the surplus length part.  

Table 5.2.2 Calculated parameters for the surplus length. 

 Orientation angle  
(º) 

Phase difference 
(º) 

J3 (𝜃3, 𝜙3) 

J4 (𝜃4, 𝜙4) 

𝜃3 = 25 

𝜃4 = 85 

𝜙3 = 124 

𝜙4 = 139 

In order to ensure that no disturbance affects the optical path during the 

experiment, we set P, Q, and H to 0°, and measured the polarization state before 

and after the experiment. The two sets of measurement data were consistent with 

each other, demonstrating that no interference affected the optical path. 

5.2.3 Changes in the polarization state due to the rotation of the sensor.  

Here, we used the Jones matrices representing the optical circulator and the 

surplus length that were obtained in the previous sections to calculate the 

polarization state of the transmitted light from the sensor. The measured values 

of the polarization state of the reflected light from Mirror 1 used here are those 

that were measured in Sect. 5.2.2.1 when P, Q, and H were all set to 0º. We 

measured the polarization state of the transmitted light from the sensor using the 

experimental system shown in Fig. 5.2.5. In the experiment, we set P, Q, and H 

to 0° and rotated the sensor from 0° to 180° at 10° intervals. It has been 
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demonstrated in Section 5.1 that twisting occurs when the sensor rotated. 

Therefore, when calculating the polarization state of the transmitted light from the 

sensor, we must add a matrix representing the twisting to the calculation equation. 

The matrix of the twisting is expressed by Eq. (3.2.8). Thus, the equation for 

calculating the state of polarization of the transmitted light from the sensor is 

expressed as [32]: 

   4 3 2 1

transmitted light reflected light
sensor twisting

from sensor from Mirror 1

   
        

   
J J J J   (5.2.3) 

 

Fig. 5.2.8. Comparison of the measured values and the calculated values of the 

transmitted light from the rotated sensor. 

The comparison of the measured values and calculated values of the 

polarization state of the transmitted light from the rotated sensor is shown in Fig. 

5.2.8 [32]. The calculated values used here were obtained using Eq. (5.2.3). As 

can be seen from Fig. 5.2.8, the calculated values of the polarization state of the 

transmitted light from the rotated sensor are in good agreement with the 
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measured values. Therefore, we can use the calculated values to replace the 

measured values of the polarization state of the transmitted light of the rotated 

sensor in the experiment. Thus, even if another sensor is connected in series 

from the back, the polarization state of the light into the second sensor can be 

accurately determined. In this way, it is thought that the influence of the front-end 

sensor on the rear-end sensor can be solved in the multi-point strain 

measurement experiment. 

Then, we performed a strain measurement experiment with a single sensor 

using the experimental system shown in Fig. 5.2.1. In the experiment, we 

measured the polarization state of the reflected light from Mirror 1 and Mirror 2 

when the sensor was rotated. As the sensor rotates, the change in the 

polarization state of the reflected light from the sensor is shown in Fig. 5.2.9 [32]. 

Here, the reflected light of the sensor means the reflected light from Mirror 2.  

 

Fig. 5.2.9. The relationship between the polarization state of the reflected light 

and the rotation angles of the sensor. 
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As can be seen from Fig. 5.2.9, when the sensor rotates, the calculated values 

of the polarization state of the reflected light from the sensor agrees well with the 

measured values as the sensor rotates. This calculated value was obtained using 

the measured values of the polarization state of the reflected light from Mirror 1 

as described above. Then, a function fitting was performed using the calculated 

values shown in Fig. 5.2.9 instead of the measured values. Through function 

fitting, we obtained three sets of approximate expressions for the Stokes 

parameters expressed by the rotation angle of the sensor. Then we run the C 

program to change the rotation angle of the sensor from 0° to 180° at 1° interval, 

and obtained 181 sets of Stokes parameters [32]. Then, we compared the 

measured values of the polarization state of the reflected light from the sensor 

with the 181 sets of Stokes parameters to obtain the rotation angle when the error 

is minimal. The comparison between the angle obtained in the program and the 

rotation angle applied in the experiment is shown in Fig. 5.2.10 [32]. 
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Fig. 5.2.10. Comparison of the calculated angles with the angles that were 

applied in the experiment. 

We performed linear approximation separately at intervals of 0º~170º and 

30º~170º and obtained the values of 𝑅2 , which are 0.9914 and 0.9992, 

respectively. The value of 𝑅2 is larger in 30º~170º; therefore, the accuracy in this 

interval is higher. Hence, this interval was determined to be the measurement 

range. The reason why the error occurs in the interval of 0°~30° is that the change 

in the polarization state is very small in the interval from 0°~30° as shown in 

Fig.5.2.9. It is believed that the overall error may be reduced in the range of 

0°~180° by varying the incident light. Then the strains applied in the experiment 

were obtained from rotation angles using a simple mathematical calculation using 

Eq. (3.3.3) and (3.3.4). The comparison between the calculated strains and the 

strains applied in the experiment is shown in Fig. 5.2.11 [32]. 
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Fig.5.2.11. Comparison of the calculated strains with the strains that were applied 

in the experiment. 

As can be seen from Fig. 5.2.11, there is an excellent linear relationship 

between the calculated strains and the strains applied in the experiment. Table 

5.2.3 shows the relationship between the strains applied in the experiment and 

the calculated strains [32]. We found that the relative errors between them are 

within 4%. This demonstrates the feasibility of the proposed polarization strain 

sensor system using the Jones matrices of two rotated wave plates to calculate 

an arbitrary optical path. In addition, we performed the quantification of the strain 

measurement range with high accuracy by comparing the calculated strains with 

the strains applied in the experiment. Here, the strain measurement range was 

quantified by using the calculated values of the polarization state of the reflected 

light from the sensor. Therefore, in the strain measurement experiment, we can 

use the calculated values to effectively replace the measured values and obtain 

high-precision results. In addition, when multiple sensors are connected in series 
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for multi-point strain measurement, measuring the polarization state of reflected 

light from each sensor is very time-consuming. This replacement not only saves 

a lot of time and labor but also improves the operability of the measurement 

system. 

Table 5.2.3 Relative errors between the applied and calculated strains. 

Rotation angle 

of sensor 

(º) 

Strain applied in 

the experiment 

(× 103με) 

Calculated strain 

(× 103με) 

Relative error 

(%) 

30 34.03 35.17 3.3 

40 45.38 44.24 2.5 

50 56.72 58.99 4.0 

60 68.07 69.20 1.7 

70 79.41 79.41 0.0 

80 90.76 91.89 1.3 

90 102.10 100.97 1.1 

100 113.45 112.31 1.0 

110 124.79 121.39 2.7 

120 136.14 132.73 2.5 

130 147.48 144.08 2.3 

140 158.83 154.29 2.9 

150 170.17 165.63 2.7 

160 181.51 178.11 1.9 

170 192.86 188.32 2.4 

 

5.3 Experiment using a Neural Network and Results 

In the experiment, we rotated the sensor by pulling the invar wire connected to 

the sensor from 0 to 180º at 10º intervals, while the linear polarizer (P), the 

quarter-wave plate (Q), and the half-wave plate (H) were all set to 0º. The 

changes in the polarization states of the reflected light from the sensor with the 

rotation angle of the sensor are shown in Fig. 5.3.1. As described previously, the 
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Stokes parameters S1, S2, and S3 represent the polarization states, which can 

be directly measured by the polarization analyzer. 

 

Fig. 5.3.1. The relationship between the polarization states and the rotation 

angles of the sensor. 

In this experiment, we used a neural network to perform data processing to 

determine the rotation angle of the sensor. The experimental data shown in Fig. 

5.3.1 is used as training data and was provided to the neural network for learning, 

where the measured polarization state was used as the input and the rotation 

angle of the sensor was used as the output. The feedforward neural network we 

used is illustrated in Fig. 5.3.2. The error back-propagation is the learning method 

we used here. Both the time cost and the accuracy of learning results must be 

considered when operating the learning. Here, the number of neurons in the 

hidden layer is set to 10, with the neurons denoted as 𝑛1, 𝑛2, ⋯, and 𝑛10.  
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Fig. 5.3.2. Feed-forward neural network used for learning. 

 

Fig. 5.3.3. Rotation angles of the sensor applied in the experiment and rotation 

angles outputted by the neural network for training data. 
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to the network as output. During the process of learning, the network is trained to 

make the output approach the target output, i.e. the rotation angle of sensor 

applied in the experiment. The number of learning times is 1.26 million, the width 

of weight correction is 1.0, the gain α is 1.9, and the learning time is 23 seconds.  

Fig. 5.3.3 shows the comparison between the angles outputted by the designed 

neural network and the angles actually applied in the experiment [31]. 

As can be seen from Fig. 5.3.3, the angles applied in the experiment and the 

angles outputted by the neural network agree very well with each other. 

Furthermore, the relative errors between them are suppressed to 0.04% or less. 

This means that the designed neural network was satisfactorily trained and the 

relationship between the angles applied to the sensor in the experiment and the 

measured polarization states was correctly determined. When the input is given 

to the trained neural network, it is expected that the network could yield a correct 

output corresponding to that input. As shown in Fig. 5.3.1, we measured three 

times and took three sets of experimental data. In order to test the trained neural 

network, we used another set of experimental data as test data and provided the 

polarization state as input to the trained neural network to calculate the angles. 

The comparison between the calculated angles and the angles that were applied 

in the experiment, which were used as test data, is shown in Fig. 5.3.4 [31].  
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Fig. 5.3.4. Rotation angles of the sensor applied in the experiment and rotation 

angles outputted by the neural network for test data. 

As can be seen from 5.3.4, there is a near-linear relationship between the 

angles applied in the experiment used as test data and the angles outputted by 

the trained network. However, an error occurred between the calculated rotation 

angle and the actual rotation angle at some angles, when the angle is 20º and 

the interval of 110º to 140º. The errors that occurred are not due to the poor 

performance of the experimental system, but because we conducted all the 

experiments manually. In order to eliminate the error of the experimental data due 

to manual operation as much as possible, we obtained the average values of the 

first experimental data and the second experimental data, then we used the 

average values as new training data to perform the learning again. Figure 5.3.5 

shows the comparison between the angles outputted by the network and the 

angles applied in the experiment. 
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Fig. 5.3.5. Rotation angles of the sensor applied in the experiment and rotation 

angles outputted by the neural network for new training data. 

According to Fig. 5.3.5, the angles applied in the experiment and the angles 

outputted by the neural network are in very good accordance with each other. 

The relative errors are suppressed to 0.05% or less. This means that the network 

was satisfactorily trained and the relationship between the angles applied to the 

sensor in the experiment and the measured polarization states was correctly 

determined. In order to test the trained neural network, we provided the third 

measurement data as test data to the network. The polarization state is provided 

as input to the network. Figure 5.3.6 shows the comparison between the 

calculated angles and the angles that were applied in the experiment, which were 

used as test data. 
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Fig. 5.3.6. Rotation angles of the sensor applied in the experiment and rotation 

angles outputted by the neural network for new test data. 

As can be seen from Fig. 5.3.6, the sensor’s rotation angle of the third 

measured polarization state applied in the experiment and the angle obtained 

using the trained neural network are very consistent with each other. Since the 

angles applied in the experiment and the calculated angles are in good 

agreement, we determined the measurement range to be from 0 to 180º. Then, 

the strains, which is shown in Fig. 5.3.7, were calculated using the rotation angles 

in the measurement range with Eq. (3.3.3) and (3.3.4). The measurement range 

of strains that corresponds to the range of rotation angles is calculated to be 

0~2.0×105 μɛ. Hence, we can obtain the strains accurately with the proposed 

measurement method and the data processing method of the neural network. 
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Fig. 5.3.7. Comparison between strains applied in the experiment and calculated 

strains. 
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6. Conclusions 

In the study, we developed a polarization strain sensor system which is low-cost 

and miniaturized compared with previous polarimetric sensor systems in which 

the birefringent or high polarization-maintaining fibers are used. In the sensor 

system, the sensor is a commercially available plain single-mode fiber that is 

wound into a coil shape, and a laser diode light source and a polarization analyzer 

are used. In the experiment, the sensor is rotated by pulling the invar wire 

connected to the sensor. When the sensor is rotated, changes in the polarization 

state of light transmitting in the fiber is measured using the polarization analyzer. 

Then, we obtain the rotation angle of the sensor using the movement distance of 

the invar wire to calculate the strains that were actually applied in the experiment. 

By comparing the calculated strains and the strains applied in the experiment, we 

demonstrated that they are in good agreement with each other. The results also 

verified that the developed sensor system can be used to measure strains. In 

addition, in order to perform multipoint measurement of strains using the 

developed sensor system, it is necessary to solve the problems that occur in 

multipoint measurement. That is, when multiple sensors are connected in series, 

the front sensor has an effect on the rear sensor. When the first sensor rotates, 

the polarization of the incident light entering the second sensor changes even if 

the second sensor does not rotate. This will result in a failure to correctly 

determine the rotation angles of the second sensor once both sensors are rotated. 

Moreover, once the two sensors are connected in the experiment, the incident 

light entering the second sensor cannot be directly measured. To solve this 

problem, we proposed calculating an arbitrary optical path using the Jones 
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matrices of two rotated wave plates. When we obtain two Jones matrices 

representing an optical path, we can calculate the polarization state of the 

transmitted light of the optical path using the polarization state of the incident light 

of the optical path. In the experiment, we used the calculated polarization state 

instead of the actually measured polarization state to obtain the strains applied in 

the experiment. The measured values of the strains are in good agreement with 

the calculated values of the strains, and this demonstrated the feasibility of this 

method using the Jones calculus. In this way, the polarization state of the light 

entering the second sensor (the polarization state of the transmitted light from the 

first sensor) can be obtained with the proposed method even if the first sensor 

rotates when the multipoint measurement is performed. Thus, multipoint strain 

measurements can be achieved by the proposed method using the time delay of 

the reflected pulses of a series of sensors. 

In this study, we measured the change in the polarization state of the light when 

the strains were applied. As mentioned before, the polarization state is 

represented by the Stokes parameters. Thus, a set of strains corresponds to 

three sets of Stokes parameters. When multiple sensors are connected in series 

for multipoint measurement, the experimental data will become very huge and it 

will be very difficult to perform data processing with function fitting. Considering 

this problem, we decided to use a three-layer feedforward neural network for data 

processing. We take the polarization state measured in the experiment as input 

and the rotation angle of the sensor as an output to the neural network. The 

angles outputted by the designed neural network agree well with the angles 

applied in the experiment. In order to verify the trained neural network, we use 
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another set of experimental data as test data and input the polarization state to 

the trained neural network to calculate its corresponding rotation angle. And the 

angles outputted by the trained network are almost the same as the angles used 

as the test data. However, errors occur at some angles. The reason for the errors 

is considered to be that all experiments were done manually. Then, we performed 

learning again using the average values of the two sets of experimental data as 

training data. The third set of data is then provided as test data to the trained 

network. This time, the rotation angles outputted by the neural network are very 

consistent with the rotation angles used as the test data. These results verified 

that we can use the developed sensor system and a neural network for strain 

measurement. Due to the multi-input and multi-output data processing 

capabilities of neural networks, we believe that the multipoint measurement of 

strains can be performed on this basis. As an application of the developed sensor, 

it is considered to be useful for measuring landslides. In the experiment, we 

rotated the sensor by pulling the invar wire. Then, if the other end of the invar 

wire is connected to a stake fixed on the slope, the invar wire will also be pulled 

when the landslide moves the stake. In this way, it is considered that the extent 

of the landslide can be determined from the rotation angle of the sensor. 

Therefore, it is believed that the sensor system developed in this study can be 

used to detect landslides.  
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