
人工知能を用いた次世代IoTアプリケーションに関す
る研究

言語: eng

出版者:

公開日: 2019-06-25

キーワード (Ja):

キーワード (En):

作成者: 李, 良知

メールアドレス:

所属:

メタデータ

https://doi.org/10.15118/00009912URL

Artificial Intelligence for Emerging
Internet-of-Things Applications

Liangzhi Li

Department of Information and Electronic Engineering
Muroran Institute of Technology

This dissertation is submitted for the degree of
Doctor of Philosophy of Engineering

March 2019

Declaration

I hereby declare that this thesis is my own work and effort and that it has not been submitted
anywhere for any award. Wherever contributions of others are involved, every effort is
made to indicate this clearly, with due reference to the literature, and acknowledgement of
collaborative research and discussions.

Liangzhi Li
March 2019

Acknowledgements

It seems like yesterday when I first step into the campus of Muroran Institute of Technology.
Everything is beautiful. Even now, I can still hardly believe that I can study in such a
picturesque place. This really has been one of the happiest time in my life. I appreciate all of
you who made these years such a wonderful journey.

I am especially grateful to Prof. Mianxiong Dong, for putting a lot of effort into my
research. You gave me numerous opportunities to realize my self-worth. I really appreciate
it.

I have been privileged to have Prof. Kaoru Ota in the same laboratory. She was always
generous with her time and energy to help her students.

I have learned so much from Prof. He Li. You have always been my teacher and my
friend. Thank you for accompanying me, through all the happy times and all the hard times.

I acknowledge all the help from the thesis committee. Your valuable comments and
suggestions are of great significance for me.

I owe a debt of gratitude to Xiaoyi, Chaofeng, Zhaola, Jianwen, Xiting, Zujun, Luyao,
Axita, Songhe, Caijuan, Zhenzhen and all my friends and colleagues in Muroran IT. Thanks
for everything you have done.

I would like to express my sincerest appreciation to my parents for their invariable
understanding and support. They have tried their best to give me everything I need and have
sacrificed so much in this process.

I would also like to thank my exceedingly patient and supportive wife, Zhaofeng, who is
by my side right now, watching me writing this document. For you, I have countless words
treasured in my heart.

I dedicate this dissertation to all of you. Thank you.

Liangzhi Li
March 2019

Abstract

There have been more and more Internet-of-Things (IoT) applications emerged in the recent
few years, e.g., connected robots, Internet-of-Vehicles, IoT-enabled Smart Grid, IoT-based
Sensing, etc. These new-generation IoT applications are potential to totally revolutionize
people’s everyday life. However, before that, a series of new artificial intelligence (AI) meth-
ods are needed to efficiently analyze the big, heterogeneous IoT data, and automatically give
reliable decisions, accurate predictions, or quick yet correct feedbacks. In the dissertation, the
author focused on the design and implementation of some novel deep learning approaches,
in order to address various challenging problems in several emerging IoT applications.

First, the author proposes a view-invariant Convolutional Neural Network (CNN) Model
for the scene understanding tasks of connected disaster-handling robots. In this system,
two individual CNNs are used to, respectively, propose objects from input data and classify
their categories. The author attempts to overcome the difficulties and restrictions caused by
disasters using several specially-designed multi-task loss functions. The most significant
advantage in this work is that the proposed method can learn a view-invariant feature with
no requirement on RGB data, which is essential for harsh, disordered and changeable
environments.

Second, the author adopts AI methods to implement intelligent decision-making for
autonomous vehicles. A human-like driving system is proposed to give autonomous vehicles
the ability to make decisions like a human. In this method, a decision-making system
calculates the specific commands to control the vehicles based on the abstractions. The
biggest advantage of this work is that the author implements a decision-making system which
can well adapt to real-life road conditions, in which a massive number of human drivers exist.

Third, the author focuses on the electrical load forecasting task for the Internet-of-Energy.
An IoT-based deep learning system is introduced to automatically extract features from
the captured data, and ultimately, give an accurate estimation of future load value. One
significant advantage of this method is the specially designed two-step forecasting scheme,
which significantly improves the forecasting precision. Also, the proposed method is able to
quantitatively analyze the influences of some major factors.

viii

At last, the author introduces a new AI method to address the efficiency and privacy
problems in the Internet-of-Sensors. The author adopts the state-of-the-art edge computing
method to solve the crowdsensing problem with the real-time sensing data. A distributed
deep learning model is adopted to extract features from the captured data, which is not only
a compression process to reduce the communication cost, but an encryption procedure for
privacy protection.

Table of contents

List of figures xiii

List of tables xv

Nomenclature xvii

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Internet-of-Things (IoT) . 1
1.1.2 Artificial Intelligence (AI) and Deep Learning 1

1.2 AI for Emerging IoT Applications . 3
1.2.1 AI for Robotic Vision . 3
1.2.2 AI for Vehicle Control . 4
1.2.3 AI for Smart Grid . 5
1.2.4 AI for Crowdsensing . 6

1.3 Originality and Contributions . 7
1.4 Organization . 8

2 Fundamentals and Related Work 11
2.1 Scene Understanding . 11

2.1.1 Object Detection and Localization 11
2.1.2 Object Classification . 12

2.2 Autonomous Decision-making . 12
2.3 Electrical Load Forecasting . 13

2.3.1 IoT-enabled Smart Meter Systems 13
2.3.2 Time-series Forecasting Methods 14

2.4 Intelligent Sensing and Analysis . 15
2.4.1 Current Crowdsensing Approaches 15
2.4.2 Opportunities in Edge Computing 15

x Table of contents

2.4.3 Deep Learning for Crowdsensing 16

3 Artificial Intelligence for Internet-of-Robots 19
3.1 System Overview . 19

3.1.1 Notation and Problem Definition 19
3.1.2 System Framework . 19
3.1.3 3D Data Encoding . 20

3.2 3D Object Proposal . 22
3.2.1 ODLN Model . 22
3.2.2 Learning with Multi-task Loss Function 23

3.3 3D Object Classification . 26
3.3.1 VTCN Model . 26
3.3.2 View-subclass Definition . 26
3.3.3 Learning View-invariant Features 27
3.3.4 Proof of the Training Efficiency 30

3.4 Performance Evaluation . 33
3.4.1 ODLN Performance . 33
3.4.2 View-invariance Test . 35
3.4.3 p Value Selection . 36
3.4.4 Classification Performance of VTCN 38
3.4.5 Disaster Adaptability . 38
3.4.6 Robotic Simulation . 39

4 Artificial Intelligence for Internet-of-Vehicles 41
4.1 System Overview . 42

4.1.1 Problem Definition and System Framework 42
4.1.2 3D Perception and Abstraction . 43

4.2 Decision Making . 46
4.2.1 Decision Model . 46
4.2.2 Decision-making Strategy . 48
4.2.3 Network Training Scheme . 50
4.2.4 Influence Analysis . 52

4.3 Performance Evaluation . 54
4.3.1 Decision-making System Evaluation 54
4.3.2 Influence Analysis and Visualization 56

Table of contents xi

5 Artificial Intelligence for Internet-of-Energy 57
5.1 Forecasting System: Concept and Design 58
5.2 Influence Analysis . 62
5.3 Performance Evaluation . 64

6 Artificial Intelligence for Internet-of-Sensors 67
6.1 Crowdsensing System: Concept and Design 68
6.2 Human-driven Crowdsensing . 70
6.3 Performance Evaluation . 72

6.3.1 Demonstration for System Validity 72
6.3.2 Numerical Simulation . 73

7 Conclusion and Future Works 77
7.1 Intelligent Robots . 77
7.2 Intelligent Vehicles . 77
7.3 Intelligent Energy . 78
7.4 Intelligent Sensing . 78

References 81

List of figures

3.1 Robotic for Disaster Scenarios. 20
3.2 Framework of the Proposed Scene Understanding Method. 21
3.3 3D Scene Representation[41]. (a) Original point cloud. (b) 2D colored

representation. (c) 3D volumetric representation (resolution = 0.02 m). . . . 21
3.4 Network Architecture of ODLN. 24
3.5 3D Scene[41] Labeling(resolution = 0.02 m). (a) Auxiliary labeling. (b)

Manual amendment. (c) Actual proposal result using ODLN. 24
3.6 View-subclass Division and the Input of VTCN. 27
3.7 Comparison of 3D Object Proposal Methods. 34
3.8 Results of View-invariance Experiment. 35
3.9 Results of p Value Selection Experiment. (a) The regularized loss curves

with different settings of p and learning rate. (b) The computational cost of
different p values. 36

3.10 Comparison Results of Classification Experiments. (a) Input data only
contains depth information. (b) Input data contains both depth and RGB
information. 37

3.11 Simulated Disaster Scenarios for System Evaluation. 39
3.12 Robotic Scene Understanding Simulation. 40

4.1 Differences between traditional "correct" self-driving and the proposed
human-like driving. 42

4.2 Framework of the proposed self-driving system. 43
4.3 The perception and abstraction of road condition. (a) Road simulation using

the open racing car simulator (TORCS). (b) Generated abstraction using the
proposed road perception method. 44

4.4 Road scene encoding and representation [59]. (a) The original scene captured
by the RGB camera. (b) The point cloud captured by the depth sensor. (c)
3D encoding. 45

xiv List of figures

4.5 Architecture of the decision-making network. 48
4.6 Repulsive force and security enforcement. 50
4.7 Generated driving scenarios for network training. 52
4.8 Performance evaluation in driving simulation. (a) Comparison results of

average driving speed. (b) Comparison results of average driving accidents. 54
4.9 The visualization results of unit influence. 56

5.1 The load forecasting and analysis system based on IoT-enabled sensors and
devices. 58

5.2 Urban electrical load in China (sampled every five minutes). 59
5.3 The framework of the proposed load forecasting system. 61
5.4 The generated heatmap for influence analysis. 64
5.5 Evaluation results of the forecasting methods. (a) Forecasting results (12

predictions in 60 minutes). (b) Comparison of forecasting precision. (c) Com-
parison in an IoT-enable building. 65

6.1 The proposed edge computing based crowdsensing system. 68
6.2 The framework of the edge computing based deep learning system. 69
6.3 The communication data size and the numbers of unit operations in a deep

model. 71
6.4 The energy cost and privacy risk of different calculation levels. (a) The

calculation and communication cost of each calculation level. (b) The privacy
risk of each calculation level. 73

6.5 Network traffic and latency of the demonstration application. 74
6.6 The comparison results of energy consumption. 75
6.7 The comparison experiments on privacy-preserving. (a) The results of output

data similarity. (b) The results of privacy-protection efficiency. 75
6.8 Simulation results of load balance. (a) Edge devices directly upload the raw

data for further process. (b) Edge devices and edge nodes participate in the
pre-process of the captured data, using the proposed ECD model. 76

List of tables

2.1 Features Comparison of Crowdsensing Methods. 16

5.1 Features Comparison of Forecasting Systems. 61

Nomenclature

Roman Symbols

A An input abstraction set

B Biases of proposed network, B = {B1,B2, ...,Bη}

F The repulsive force

L The loss functions of deep models

P Set of ground-truth speed labels, P = {px1, ..., pxn}

p Parameter of Minkowski distance

T Set of ground-truth 3D-box labels T = {tx1, tx2, ..., txn}

T Set of ground-truth steering labels, T = {tx1 , ..., txn}

U The repulsive potential

W Weights of proposed network, W = {W1,W2, ...,Wη}

X Set of Input data

Y Set of ground-truth category labels, Y = {yx1, ...,yxn}

Greek Symbols

η Positive scaling factor

λ Term weights used in functions

θ A layer of the deep learning network

Subscripts

xviii Nomenclature

i subscript index

j subscript index

k subscript index

Other Symbols

Bθ Bias matrix of layer θ , Bθ = (b1
θ
,b2

θ
, ...,bm

θ
)

cθ Neuron number of layer θ

hθ (xi) Output of layer θ

J(W ,B) Loss function of proposed network

Wθ Weight matrix of layer θ , Wθ = (w1
θ
,w2

θ
, ...,wm

θ
)

Acronyms / Abbreviations

5G 5th Generation wireless systems

AI Artificial Intelligence

AMI Advanced Metering Infrastructure

CNN Convolutional Neural Network

cvRMSD coefficient of variation of the Root Mean Square Deviation

DCEN Daily Consumption Estimation Network

DMN Decision-Making Network

DPA Direct Perception Approach

ECD Edge Computing based Deep model

FoV Field of View

GPU Graphics Processing Unit

HW Holt-Winters method

ILFN Intra-day Load Forecasting Network

IoT Internet of Things

Nomenclature xix

LiDAR Light Detection And Ranging

MAPE Mean Absolute Percentage Error

NBV Next-Best-View

ODLN Object Detection and Localization Network

PCL Point Cloud Library

PLC Power Line Communication

PMU Phasor Measurement Unit

RCUN Toad Condition Understanding Network

RGB A color model where the Red, Green, and Blue light are combined to represent a
broad range of colors.

RLM Reinforcement Learning Method

RMSD Root Mean Square Deviation

ROS Robot Operating System

RPF Repulsive Potential Field

SGD Stochastic Gradient Descent

SIC Scale-Insensitive Convolutional

TCRE Total Consumption Relative Error

TORCS The Open Racing Car Simulator

VI View-Invariant

VTCN View-invariant Three-dimensional Classification network

WSN Wireless Sensor Network

Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Internet-of-Things (IoT)

IoT, just as its name implies, means the internet of all things, including refrigerators, bulbs,
air-conditioners, vending machines, and some emerging concepts, such as robots, vehicles,
smart grid, smart sensors, etc. All of them can be connected to and organized as a complicated
yet efficient network, where the data are shared among the participants. According to some
statistic results[55], currently, there are 7 billion connected IoT devices in the world, and the
number is predicted to be almost 21.5 billion by 2025.

Connection brings more captured data and more automatic control. If we can fully utilize
this trend for future, IoT can bring a revolutionary change to our everyday life. However, the
mapping from various, heterogeneous, and extremely complicated data to specific control
commands is hard to clarify and need lots of research efforts. This is especially challenging in
the newly-emerged areas, e.g., Internet-of-Robots, Internet-of-Vehicles, Internet-of-Energy,
and Internet-of-Sensors, as they bring about much more complex data than ever before. The
existing automatic analysis methods, such as artificial intelligence tools, are not yet ready for
these new problems. The author focuses on the artificial intelligence area and attempts to
use deep learning methods to address a series of problems in the emerging IoT applications,
which will be detailed in this dissertation.

1.1.2 Artificial Intelligence (AI) and Deep Learning

One huge challenge in AI is that, the output result can be influenced by numerous factors. As
we know, a simple three-layered neural network with only one hidden layer can approximate

2 Introduction

any continuous nonlinear functions with any precision. Therefore, a deep neural network
having multiple hidden layers has a strong ability in modeling the load forecasting problem
under complicated conditions. Deep learning [27] is one of the deep neural networks. It
belongs to unsupervised learning methods, which are able to determine which features are es-
sential and which features can be omitted without manpower. As a result, it has a satisfactory
robustness and an excellent generalization ability. Layer-by-layer data mapping and feature
extraction are adopted in deep learning methods to improve the precision of forecasting and
classification, which brings huge success in various research fields, e.g. pattern recogni-
tion, classification, clustering, dimensionality reduction, forecasting, recommendation, and
information retrieval [43].

Traditional neural networks learn new patterns by calculating and tuning the weights.
The algorithms for adjusting weights in shallow networks is usually very simple and limited
in learning ability. Hinton and David Rumelhart proposed the back-propagation algorithm,
adding a hidden layer in neural networks, which addressed the representation problem of
perceptron and achieved much better performance. However, with the increase of network
layers, deep networks frequently encounter overfitting problems, which result in poor general-
ization ability and bad performance, even compared with some shallow networks. Moreover,
the vanishing gradient is also a severe problem in deep networks [17]. When sigmoid is used
as the activation function, the back-propagation gradient decays to one quarter of original
value with every propagation between two layers. Therefore, the weights near input end
receive little back-propagated training signals. Neural networks with multiple hidden-layers
are easily trapped in local optima, instead of global optima. And with the increase of net-
work layers, non-convex objective function become progressively complex and local optima
increase exponentially, which makes it extremely difficult to train deep networks [17].

To address the training problem of deep networks, Hinton proposed the strategy to pre-
train the network layer-by-layer in advance and conduct fine-tuning to the existing weights
[27]. But this method cannot fundamentally solve the training problem of deep networks.
The main reason is, when the sigmoid activation function is close to saturation region, the
function changes too slowly and its derivative approaches zero, which results in the vanishing
gradient. In 2010, Glorot Bengio used ReLU function to train a neural network, and found it
can not only reach a lower error rate, but have a better sparsity [21]. This finding meets the
rules of biological brain that there are only one to four percent of total neutrons activated at a
time [44]. To solve the overfitting problem, Hinton proposed a novel training strategy calling
"dropout" in 2012 [28]. Its main principle is, in each iteration, each neutron is forbided to
perform the forward and backward calculation with a certain probability p. So the network
structure changes in every iteration of the training process, which brings a better robustness.

1.2 AI for Emerging IoT Applications 3

Deep networks can, to a great extent, avoid overfitting with "dropout". The incidence of
some unexpected situations that the final output changes significantly with a small fluctuation
of the input data, which is common for the traditional training method, decreases greatly. In
addition, ReLU also zeroes the outputs of several neurons, which results in sparse networks,
and, as a result, decreases the interdependence between parameters and reduces the incidence
of overfitting.

With the further research in the pre-process of the raw data and several other novel
approaches, such as ReLU and Dropout, both the vanishing gradient problem and the local
optima problem can be effectively avoided [17]. Furthermore, the Graphic Processing Units
(GPU) which have powerful parallel computing ability are widely used in network training,
as a result, even a network with huge amount of data can get trained in an acceptable time.

As a result, deep learning becomes one of the most effective and efficient AI tools
for various tasks, due to its strong feature extraction and analysis ability, especially for
extremely-huge data. In this research, the author exploits a series of different designs and
implementations of deep learning models, in order to adapt the intelligent IoT systems to
various areas, which be introduced below.

1.2 AI for Emerging IoT Applications

1.2.1 AI for Robotic Vision

As an emerging area and a new IoT application, connected robots have became a great
substitute for human in a lot of tasks. However, robotic will still face huge problems without
good enough visual abilities. In this research, the author aims to enhance their powers in
vision using AI methods. This work is focused on the disaster-handling robots as they are in
most dangerous and complicated environments, and need much more efforts in their vision
module.

Disaster is a persistent challenge to the human world. In recent years, lots of new
technologies have emerged to improve our responses to various disasters. Although many
encouraging researches have been made, one grave problem remains unsolved, i.e., how to
safely explore damaged architectures or other dangerous areas. In fact, there are so many
tragedies caused by secondary disasters that people cannot overlook this problem any more.
Robotic, which is a great substitute for humans to carry out dangerous tasks, becomes the
first choice in these scenarios.

Since robots require a sufficient understanding of the surrounding environment before any
movements, scene understanding ability is of great importance for robots to be competent

4 Introduction

for these tasks. However, traditional 2D methods struggle in such situations, because they
give little space information, which is very important for robots to move around and interact
with the world. Therefore, 3D perception will become a vital topic in robotic for disaster
management. While many approaches have been proposed in the field of 3D object detection
and recognition, all these researches cannot be applied to the disaster-handling robots directly,
due to some limitations existing in such situations. To our best knowledge, few researchers
are working on this problem.

The obstacles lying between the disaster-handling robots and existing 3D scene under-
standing methods mainly include the following facts. Firstly, most of the existing approaches
require the RGB information as well as the depth image. Although depth sensors are able to
output stable and robust 3D images regardless of illumination conditions, it is very difficult
for RGB cameras to take a picture in lower light situations [31], which, however, is very
common in many disaster scenarios. Also, RGB cameras can hardly obtain consistent images
in different illumination conditions. Therefore, all the 3D scene understanding methods
requiring RGB data are not suited for disaster-handling robots. Secondly, the Field of View
(FOV) of robots is very limited when exploring the damaged house. Many objects, e.g.
furniture and electronics, maybe tilted or even overturned due to some external forces. In
this situation, the on-board sensors may get the objects’ image from some uncommon or
unanticipated view. Since it is very difficult to recognize the objects from some specific
views [39], the performance of traditional methods is usually unsatisfied. Another problem
is, learning-based perception systems require a great number of data in their training process,
which is a huge challenge for traditional standalone approach [2].

Therefore, to solve these problems, the author desires to propose a Convolutional Neural
Network (CNN) based robotic 3D scene understanding method to improve robots’ feasibility
and adaptability in disaster scenarios.

1.2.2 AI for Vehicle Control

Internet-of-vehicles makes it possible to share information among the connected vehicles.
A new, eye-catching concept has emerged, i.e., autonomous vehicles. In recent years,
autonomous vehicles have become a popular topic, not only in the field of research but also
in the application domain. Many encouraging approaches and prototypes have been made.
However, the existing self-driving strategies focus too much on the "correctness", and, to
some extent, overlook the human personality and social intelligence [77]. For example,
during the road testing on February 14th, 2016, a Google autonomous car crashed into a
municipal bus, which does not give way to the car but is predicted to slow or stop by the
self-driving system. Google believes this accident is due to some misunderstanding and can

1.2 AI for Emerging IoT Applications 5

be used as a valuable experience for the self-driving system [103]. They also state that their
cars will have the knowledge that the larger vehicles are more unwilling to yield, and some
software adjustments will be made to avoid this type of collision in the future.

In some complex conditions, autonomous vehicles should have the ability to perform
human-like decisions and judgments, in which both correctness and social intelligence are
essential. Undoubtedly, traffic regulations must be observed. But beyond that, predictions and
understandings are also required. From determining whether the car behind is going to yield
to avoiding a driver who seems drunk or tired, human drivers do these speculations all the
time behind the wheel. Since human drivers will exist for a long time to come, self-driving
systems with poor human understanding ability may struggle in the road testing, not to
mention practical applications. Indeed, in most accident reports of self-driving vehicles, it
is the human drivers that should bear the main responsibility. Therefore, to improve the
self-driving performance in real-life road conditions, where most vehicles are in the hands
of human drivers, the author desires to design an autonomous driving system which can
understand complicated road conditions and, based on that, make human-like decisions.

1.2.3 AI for Smart Grid

Smart grid, as a newly-emerged IoT application and a power system for the future, has
recently received lots of attentions. Although many encouraging research works have
emerged in the relevant area, one grave problem remains unsolved, i.e., electrical load
forecasting. An accurate estimation of future load variation is of great significance for
competitive and deregulated electricity markets, where the load prediction is an important
guidance, both for power companies and electricity consumers, to make decisions and
operations [99].

The major obstacle in load forecasting is the numerous impact factors. There are so many
possible influences that it is extremely difficult to find a meaningful relationship between
load variation and these factors. In fact, even the acquisition of necessary data is not an easy
case until quite recently. The emerging of smart meter infrastructures [1], efficient sensing
methods [47], and IoT technologies [7] give us a chance, for the first time, to record and
analyze possible influences on a large scale. With several equipped sensors, smart meters can
be used to independently capture various environment data. Also, they can obtain the shared
data from IoT-enabled devices. All these data will be uploaded to the central controller.
Then a massive number of data can be accumulated for further analysis. However, it is
still a challenging problem to handle the data, due to the complex and variable influences,
especially the diverse weather conditions. Indeed, most existing time-series forecasting
approaches [26] have some limitations when applied to electrical load prediction. The

6 Introduction

classical statistical methods are criticized for their limited abilities in handling non-linear
data; and the computational intelligence methods are facing problems like inappropriate
hand-crafted features, limited learning capacity, inadequate learning, inaccurate estimation,
insufficient guiding significance, etc.

To solve these problems, the author desires to utilize the state-of-the-art deep learning
methods [43] to automatically extract features from the historical data, and give an accurate
estimation of future load value.

1.2.4 AI for Crowdsensing

With the rapid development of IoT, many applications have emerged to process the real-time
sensing data, analyze its contents, find the hidden patterns, and ultimately, give the right
labels or predict the future trends. In the other hand, crowdsensing is an economic and
efficient approach to collect data on an extensive scale, and can be used as a scalable and
stable method for some costly and complicated tasks in the IoT research. It has become a hot
topic in recent years. The progressive development of miniaturized sensing and computing
devices, especially the explosive growth of mobile phones, tablets, and wearables, gives
significant prominence to the crowdsensing [104]. Both the academia and the industry
have recognized its values, for example, to conduct the data collection with no large-scale
investment. Many companies have utilized crowdsensing to acquire data at relatively low
cost, in order to support their online service based on the captured data, some of the most
notable examples being Facebook, Google and Uber. However, the boom of crowdsensing
also brings about two grave problems.

First, the crowdsensing applications create a huge number of data, which poses significant
communication and computational costs for the existing cloud infrastructure [32]. Compared
with the centralized servers, the user-end devices have limited batteries and computing
abilities. Therefore, existing crowdsensing systems usually put the heavy computation tasks
into the centralized servers, such as the data processing and analysis. As a typical scenario
in current cloud applications, the major part of the computational burden is usually shifted
to the centralized servers, resulting in the rapid increase of communication frequency and
server calculation load. The former brings significant traffic to the cloud infrastructure; and
the latter one leads to overwhelming, sometimes unbearable, load to the centralized servers.

The other concern is about the respect of crowdsensing contributors. In fact, it has
been a long time since the users are excluded in the crowdsensing process. Although most
service guarantees the right to know and to decide, it is very difficult for users to truly get
involved in the processing loop, e.g., to what extent the privacy should be protected, to what
amount the device power can be consumed, etc. The compromise between data uploading,

1.3 Originality and Contributions 7

which may cause the privacy leaks [65], and local computing, which will result in the energy
consumption of the mobile devices, is merely decided by the service providers, rather than
the actual device users.

To address these problems, the author desires to adopt the state-of-the-art edge computing
and deep learning methods to balance the workloads in the cloud, and give the control of
crowdsensing process back to the users. Edge computing pushes calculation tasks away
from the central points to the logical boundaries of the cloud; and deep learning is a good
choice to conduct the data processing task, simultaneously considering the user privacy and
communication cost.

1.3 Originality and Contributions

The main innovations and contributions of this dissertation include:
• The author proposes a scene understanding method requiring only depth information

instead of unstable RGB data, which gives robotic the ability to work in extreme
conditions. Two different 3D encodings are used for object proposal and classification,
respectively, to further improve the performance of scene understanding. A view-
invariant module, which can extract similar features from different views on a same
object and adapt robotic for disordered environments, is designed. The author works
out a multi-task learning method. In addition, the author also designs a fast optimization
method to accelerate the optimization process of complex loss functions.

• The author works out an autonomous decision-making system to imitate human drivers’
social intelligence, which can better adapt the self-driving vehicles to the real-life road
conditions. An efficient training scheme is designed for self-driving systems, which
can significantly improve the quality and speed of data collection, and alleviate the
tedious and time-consuming manual labeling process. The author finds an approach to
analyze the reason that the deep learning system makes specific decisions. As far as I
know, this is one of the first attempts in the self-driving area. In our opinion, this kind
of analysis is of big significance to testing and validating autonomous driving systems.

• An IoT-enabled load forecasting system based on the state-of-the-art deep learning
technologies is proposed. Compared to the traditional time-series analysis methods,
the proposed method can perform accurate prediction without hand-crafted features.
The author designs an ingenious two-step forecasting scheme, which forecasts the daily
total consumption at first, and based on that, predict the intra-day load variation. This
method can significantly improve the forecasting precision, which is demonstrated
in the experiment section. The author works out an analysis method of possible

8 Introduction

influence factors. To my best knowledge, this is the first attempt to gain insight into
the relationship between the factors and the actual load, which, we believe, will play
a tremendous role in selecting attribute combination and deploying smart meters,
especially for the smart grids in some countries with vast territory and varied climates.

• A distributed deep model is proposed for the sensing problem. The proposed model can
fully utilize the edge computing resource, and reduce the calculation load of the cloud
servers. The author transforms the crowdsensing task into a hierarchical computing
problem, and allocate different layers to different computing nodes. With the proposed
method, crowdsensing contributors obtain the right to decide the balance between
the privacy protection and energy saving. The author works out a dynamic learning
model for the changing sensing tasks. In this model, the higher layers can be flexibly
modified in the centralized servers, while keeping fixed lower layers in the edge nodes
and devices.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 gives the fundamentals and
related works of several intelligent IoT applications, including robotic vision, autonomous
vehicles, smart grid, and crowdsensing. Chapter 3 proposes a CNN-based robotic 3D scene
understanding method for the Internet-of-Robots, as well as several loss functions to perform
multi-task learning. An optimization algorithm is also presented to improve the learning
speed. Chapter 4 gives a human-like autonomous driving system for the Internet-of-Vehicles,
which can imitate human drivers’ social intelligence, in order to better adapt the self-driving
vehicles to the real-life road conditions. This chapter also includes an efficient training
scheme to improve the quality and speed of data collection, and a feasible visualization
approach to analyze the possible influence factors in the decision-making process, which
can help in the testing and validating of autonomous driving systems. Chapter 5 shows
an IoT-based electrical load forecasting method for the smart grid, which can significantly
increase the prediction precision for daily total consumption. In this chapter, the author
also proposes an analysis method to find the relationship between the influences and the
electrical load, and design a heatmap generation method to show the specific impacts of each
attribute on forecasting results. Chapter 6 introduces an edge computing based crowdsensing
method for the Internet-of-Sensors, which can adopt the available computing resources in the
whole network, both in the cloud and in the edge side, to ensure the load balance and reduce
communication cost. The author also gives a specially-designed deep model to transform the

1.4 Organization 9

crowdsensing problem into a hierarchical task for better data security. Finally, conclusions
are drawn in Chapter 7.

Chapter 2

Fundamentals and Related Work

2.1 Scene Understanding

2.1.1 Object Detection and Localization

This is an old topic emerging with the boom of 2D image processing, detection, segmentation
and classification. It is a prerequisite of the object classification in images and scenes, where
lots of objects exist and mix together in a complicated way. A simple and effective method
to solve this problem is the exhaustive search, i.e. searching all possible locations with all
possible scales, which is called sliding window. Dalal and Triggs [15] use a conventional non-
maximum suppression to run with detection windows to detect object instances. Harzallah
et al. [24] apply SVM for each sliding window to select a few candidate regions, and use a
score function on these regions to give out the final results.

However, the traditional methods working well in 2D images cannot be directly adopted
in 3D images. Much more work needs to be done for 3D object proposal applications. Gupta
et al. [22] extends Multiscale Combinatorial Grouping (MCG) framework [3] to 3D, and
use RGB-D contours to calculate object candidates using features of depth and color images.
Song and Xiao [83] present a CNN model taking a 3D volumetric scene as input to predict
the object boundaries.

The author desires to develop a CNN based object detection and localization network,
and adopts a single model for both two tasks. The focus of this research is a multi-task loss
function, which makes the proposed method significantly different from existing ones.

12 Fundamentals and Related Work

2.1.2 Object Classification

With the rise of artificial intelligence, object classification has become a booming research
area in recent years. Lots of encouraging approaches [53] have been proposed in this field,
especially for 2D images. Krizhevsky et al. [40] design a deep CNN model and achieve
amazing classification accuracy. They use a novel regularization method called "dropout" to
reduce overfitting which frequently happens in deep learning. Their model is proved very
effective and becomes one pioneer in CNN based object classification methods. Szegedy et al.
[89] present a large CNN architecture and set a new state-of-the-art for object classification.
They introduce a carefully crafted design which can increase the size of network and keep
the computational budget constant.

Again, traditional 2D methods meet frustrations in 3D world, due to the unique structure
and characteristics of 3D data. Many researchers try to address this problem from various
angles. Socher et al.[80] adopt two CNN models to extract low-level features from RGB
and depth data separately, and an RNN model to combine these two parts and learn high-
order features. The research of Shi et al. [78] is the most similar work with the proposed
method. They also achieve a rotation invariant representations for 3D shape. The difference
is they adopt a row-wise max-pooling layer to change the low layer features extracted by the
convolutional layers, while the author implements view-invariant during learning process
using specially-designed loss functions. The view-invariant ability improves the precision
and adaptability of the proposed method in some extreme conditions.

2.2 Autonomous Decision-making

With the rapid development of computer vision, engineering, networking, etc. [10, 8, 85, 86,
45, 46, 64, 63], the newly-emerged autonomous vehicle has become a feasible and promising
technology. However, the driving decision-making is still a research area under development.
Although many researchers have proposed their theories and implementations [4, 33, 19, 81],
there are lots of problems to be resolved. Currently, most of the driving decision-making
systems can be categorized into two major paradigms, i.e., behavior reflex approaches and
abstraction calculation approaches.

Behavior reflex approaches directly map the input images to several pre-defined driving
commands. LeCun et al.[60] propose an obstacle avoidance system for mobile robots. This
system is trained from end to end to map raw input images to control commands. A CNN
model is used in this system to learn the mapping relationship between images and driver’s
steering angles. And the mobile robot achieves an excellent performance in obstacle detection
and path navigation. Hadsell et al.[23] work out a self-supervised learning method for mobile

2.3 Electrical Load Forecasting 13

robots with long-range vision. In this system, a deep CNN model is trained to extract
informative and meaningful features from captured images, and predict the transferability of
the input scene. The classifier is real-time and can obtain obstacles and paths from 5 to 100
m.

Abstraction calculation approaches abstract the road condition to some representations
for better understanding and calculation. Chen et al.[9] map the input scene to several key
perception indicators which are directly related to the affordance of current road condition,
and adopt a simple controller to control the self-driving vehicles. Simulation results demon-
strate their system can generalize well to real driving images. However, their controller logic
is oversimplified for real-life road conditions. Xiong et al.[100] combine deep reinforcement
learning and safety-based control, and propose a self-driving and collision avoidance system,
which can learn the driving policy in a stable and familiar environment. This is an inter-
esting attempt, but their research is not complete and sufficient enough for a truly feasible
autonomous driving system.

The proposed decision-making system belongs to the abstraction calculation approaches.
And the most significant difference between our method and these existing approaches is, we
put our emphasis on the human-like thinking ability. The proposed system has a complete
and sophisticated control logic. Also, we combine the decision-making with the security
control to make an efficient and secure self-driving system.

2.3 Electrical Load Forecasting

2.3.1 IoT-enabled Smart Meter Systems

Smart meter is a modernized electrical device that records the energy consumption and
uploads it to the utility for billing and further analysis. The most cutting-edge smart meters
not only have a two-way communication ability, but are equipped with real-time sensors
which can gather the data of relevant factors. This kind of electricity meter is a vital part of
advanced metering infrastructure (AMI), a system keeping the whole smart grid connected
and informed. With AMI, the utility can obtain necessary data from the client-side, and push
notifications and recommendations to the clients. Connected smart meter is a fundamental
component for the future smart grid, and also a cornerstone of this research. Many researchers
are working on this area [54].

IoT, as a hot topic in recent years, is a good approach to implement connected AMI
systems. However, like any other applications using IoT technologies, the underlying network
to connect smart meters must be carefully investigated. Some researchers find it necessary to

14 Fundamentals and Related Work

clarify the exact capacities of existing wireless networks for the upcoming smart metering
traffic [62]. A few preliminary conclusions have been drawn, including decreasing the
communication interval and equipping phasor measurement units (PMUs).

In addition, an efficient distributed communication architecture has been proposed for
the connection of smart meters [35], which can leverage data processing locally. Besides,
with a carefully selected control centers [48], the cost of deployment and communication can
be significantly decreased.

2.3.2 Time-series Forecasting Methods

Although time-series forecasting is a topic with a long history, it is still an open problem due
to its complexity. The existing approaches are of two main types, namely, statistical methods
and computational intelligence methods.

The statistical method is an obvious and natural solution when dealing with a series of
numbers, including many algorithms with different design principles [67]. There is a famous
exponential smoothing method called Holt-Winters (HW). HW is a good choice when the
time-series shows both trend and seasonality. Two sub-models are included in HW, i.e.,
additive model for data with additive seasonality, and multiplicative model for data with
multiplicative seasonality.

Although many classical statistical methods have emerged over the past few decades,
they are currently disfavored due to their limited abilities in handling complicated nonlinear
relationships. Computational intelligence, one of the hottest topic in current academia,
becomes a key technology to accurately analyze and forecast time-series data. And, among
all these computational intelligence methods, deep learning is in evidence [14]. Deep learning
is a newly developed and fast-growing class of machine learning algorithms. A deep network
has multiple hidden layers between input and output layers, in order to model complicated
non-linear relationships. With enough training materials, which usually are labeled data,
the parameters in a deep network can be well trained to extract complex features from large
data. Therefore, deep learning methods have been successfully applied in lots of fields,
including scene understanding, natural language processing, self-driving, audio recognition,
etc. Because of its strong automatic feature extraction and pattern recognition ability, deep
learning based methods are extremely suitable for electrical load forecasting, where lots of
influences exist. The most similar approach with the proposed method is short-term deep
neural network (SDNN) model [72]. This model contains three steps, i.e., data preprocessing,
network training and forecasting. The historical weather conditions and load values are used
as the network input. Compared to the aforementioned deep learning based approaches, the

2.4 Intelligent Sensing and Analysis 15

proposed method adopts a specially designed two-step forecasting scheme, and takes into
account various influences to analyze their impact.

2.4 Intelligent Sensing and Analysis

2.4.1 Current Crowdsensing Approaches

Crowdsensing is a technology and a trend to utilize the rapidly-developing sensing and
computing ability of Internet-of-Sensors, to gather, process, calculate, and analysis the data
generated by the environment, society, and other sources. Crowdsensing is usually for the
public affairs or some wide-range commercial applications.

The first problem in crowdsensing is how to persuade users to participate in the projects,
and encourage them to make contributions positively on data collection and sharing. Several
incentive mechanisms are proposed for this purpose [56, 47]. The prime principle is to design
a trading model, in which all captured data has a value and can be sold to some companies.
There are two mainstream mechanisms, i.e., auction and lottery. The former one is the most
common mechanism in crowdsensing. The bidders are the users who have the mobile sensing
devices, and the auctioneers attempt to buy the data from the bidders. The latter one focus on
the even distribution of the winning positions, and the winner is decided by a probability.

Another important concern is the sensing cost. There have been some researchers working
in this area to reduce the overall sensing cost while ensuring data quality. A novel way is to
leverage the temporal and spatial relationship between the data captured in different areas,
in order to decrease the essential number of allocated sensing tasks [98]. A prediction
framework is proposed to predict the data of unsensed area with the captured data in some
selected areas.

Communication cost is also a consideration. The rapidly growing crowdsensing applica-
tions impose heavy burdens on the existing network. Therefore, the performance of these
applications may deteriorate in some scenarios because of the overwhelming communication
requests. A congestion-ware paradigm is worked out for dense crowdsensing to ensure load
balancing and reliable communication among mobile devices [88].

2.4.2 Opportunities in Edge Computing

In the era of big data and mobile computing, an extensive number of applications have
emerged and become important solutions in a lot of areas, such as taxi sharing, mobile
payment, social networks, etc. More and more services become computation-intensive and
cloud-based, which, however, gives a heavy workload to both the network infrastructure

16 Fundamentals and Related Work

Table 2.1 Features Comparison of Crowdsensing Methods.

Existing Approaches Proposed Approach

Load Concentrated in servers Distributed among cloud
Traffic Raw data uploading Extracted features

Analysis Need further processing Already processed
Privacy Sensitive data Irreversible data

Controllability Controlled by provider Controlled by user
Adaptability Fully applicable Available in 5G network

and the cloud servers. As a good solution, edge computing becomes popular due to its
ability to offload the computational load from central servers to the devices near the user end
[68, 92, 52, 97, 73, 5, 38, 74]. One of the most obvious advantages of edge computing is that it
can empower the edge nodes with some essential computing abilities, which can provide lower
response latency and better resource utilization rate. Another advantage is that it can balance
the workload of the cloud servers [93], decreasing the possibility that they are overloaded.
These features of edge computing structure can largely alleviate the aforementioned problem.
Several instructive examples have been presented [70, 69, 90, 58, 18, 36, 91, 25, 49]. Bilal and
Erbad [6] present an approach to improve users’ experience of video generation and streaming
with mobile edge computing. The authors work on the "edge based video generation" concept,
and desire to implement a robust and efficient video generation and streaming approach for
gaming interactive videos, multi-view videos, 360-degree videos, etc. The proposed method
makes sure that the system can conduct the computation with the edge computing framework.
Therefore, it can significantly improve the QoS of video service and give the users better
experiences when using the edge computing based applications and services. Tran et al. [94]
give another example using the edge computing approach for the video streaming. They use
the edge servers to transcode the desired videos into several different versions, which have
different resolutions or bit rates, and, therefore, differ in data size. This design can adapt
the raw videos to various devices with different internet connection speed and video playing
abilities.

2.4.3 Deep Learning for Crowdsensing

Although edge computing can partly solve the aforementioned problems in crowdsensing,
another approach is needed to process the captured data, including the compression, encryp-
tion, and analysis. The compression is for the further decrease of communication cost, the

2.4 Intelligent Sensing and Analysis 17

encryption is used for protecting the users’ privacy, and the analysis is essential to make the
captured data into full play and utilization.

The compressed sensing [87] is a representative case for data compression. Based on a
deep learning method, a binary autoencoders scheme is designed for compressed sensing,
in which a binary sensing matrix and a recover solver are jointly optimized in the network
training. Results show that the compressed sensing performs well in efficiency, and is
preferable for real-time wireless applications.

Will deep learning revolutionize crowdsensing? [42] gives preliminary answers by
implementing a prototyping deep learning engine on a mobile device SoC. Compared with
other approaches in several typical crowdsensing tasks, the deep learning based methods show
significant advantages on inference accuracy, without overburdening the mobile hardware.

Valerio et al. combine the deep learning with edge computing and crowdsensing-like
tasks [96]. They consider three scenarios, i.e., calculating all the tasks on the local devices,
calculating all the tasks on the remote cloud, or calculating the tasks on the devices and cloud
at the same time. They model a network cost function to measure the approximate total cost
for the deep learning computing. Given a desired accuracy for a specific task, their model
can be used to compute the trade-off between performance and network cost and to find the
minimum network cost.

Compared to the aforementioned deep learning based approaches, the proposed method
adopts a specially-designed hierarchical deep model, which can be well adapted to the edge
computing framework. The difference between the proposed method with other deep learning
based approach is shown in Table. 2.1. The proposed method can solve many problems
existing in the traditional approaches, such as the computing distribution, the communication
cost, and the user controllability. The main differences between this approach and the
existing ones include the following aspects. First, in the traditional solutions, the centralized
servers take all the burden of computation task, while in the proposed approach, most of
the computing resource in the cloud can be utilized, leading to a better balanced cloud
environment. Second, in cloud-based approaches, each device sends the captured data to the
centralized servers in the cloud, resulting in significant traffic to the network infrastructure,
while in this method, only the extracted features are uploaded to the upper layer, instead of
the raw data, which contains lots of redundant data. Third, as one major drawback of the
existing approaches, the user devices have to upload the sensitive data to the centralized
servers for further process, which may cause privacy leakage, while in this method, users can
decide which level of abstraction can be uploaded. The higher level the abstractions are, the
more security the user data has. However, there also have some disadvantages, for example
, the network adaptability. Unlike the traditional methods which have few requirements

18 Fundamentals and Related Work

on the network infrastructure and, therefore, are fully applicable on existing devices, the
proposed method need the basic edge computing structure which needs upgrading on the
cloud infrastructure, especially on the base stations.

Chapter 3

Artificial Intelligence for
Internet-of-Robots

In the proposed approach, robots equipped with depth sensors are sent to explore dangerous
environments, as shown in Fig. 3.1. With the ability of 3D scene understanding, robots can
deal with various conditions and give great help to disaster preparedness, relief and recovery.
Every robot is self-contained, but can also share its information and understandings with
the Internet-of-Robots. Each robot has a CNN network installed in its firmware. Robots
can upload its captured data to the nearby server for further fine-tuning, and the updated
parameters will be transferred back to the robots to improve their adaptability to their current
environments.

3.1 System Overview

3.1.1 Notation and Problem Definition

Boldface uppercase letters are used to denote matrix, e.g. Wθ , lowercase letters for vectors,
e.g. w(m)

θ
, and calligraphic-font letters represent sets, e.g. W .

Given a collection of 3D images X , the goal of scene understanding can be described as
follows. For each input image xi, the proposed method should detect and localize as many as
possible objects O , and classify them with correct labels L .

3.1.2 System Framework

Fig. 3.2 presents an overview of the proposed method. For better understanding, a brief
introduction on the main concepts is given in this section.

20 Artificial Intelligence for Internet-of-Robots

Fig. 3.1 Robotic for Disaster Scenarios.

For 3D scenes, two individual models are used to conduct the object proposal and
classification task, respectively. The objective of object proposal is to find any potential
objects in the images, and, if any, localize them with precise locations and boundaries. This
is an essential procedure for the following classification process, as classification model
can only deal with a single object and is easily confused if there are multiple objects in the
classification area. Therefore, the classification network will use the output of object proposal
to clarify what the object is. Before the introduction of these two models, an explanation on
the 3D data representations will be given, because input data must be encoded before it is
used.

3.1.3 3D Data Encoding

The first challenge of 3D computer vision is the data encoding. Generally, the raw data
captured by 3D sensors is in the form of point cloud, as shown in Fig. 3.3(a). This original
scene comes from the RGB-D Object Dataset [41], which is also one of the datasets used in
the learning and testing process. One common encoding method is to map the 3D point into
RGB space, depending on the distance between the sensor and each point, as shown in Fig.
3.3(b), which is called the 2D colored representation. Another method is to transform the
point cloud data into 3D volumetric representation, as shown in Fig. 3.3(c).

Currently, both methods have their advocates. However, according to [84], a CNN model
trained with 2D-encoded data can obtain a significantly better performance in classification
tasks than the one trained with 3D representation. This is mainly because that the advantages
of 2D representation is very useful in classification tasks, e.g., the availability of well-
trained network and the high resolution of 2D images. Therefore, input images are encoded

3.1 System Overview 21

Fig. 3.2 Framework of the Proposed Scene Understanding Method.

(a) (b) (c)

Fig. 3.3 3D Scene Representation[41]. (a) Original point cloud. (b) 2D colored representation.
(c) 3D volumetric representation (resolution = 0.02 m).

to 2D representation in the proposed classification model. However, in object detection
and localization task, the author finds 3D volumetric representation is more preferable, as
introduced in [51], owing to its excellent ability of preserving 3D spatial information. For
this reason, 3D volumetric encoding is used in the detection and localization task. It is
another difference between this job and existing approaches that the author selects different
representations for different tasks, instead of using one same representation in all applications.

22 Artificial Intelligence for Internet-of-Robots

3.2 3D Object Proposal

3.2.1 ODLN Model

Object proposal is very important for the whole scene understanding process, because it can
greatly decrease the recognition area and accelerate the classification network. A CNN-based
Object Detection and Localization Network (ODLN) is proposed in this section to accurately
propose potential object candidates for subsequent calculations. As previously mentioned,
the author desires to propose a scene understanding method without the requirement of
RGB data which is full of uncertainty. As a result, it is very difficult to work out a selective
search scheme like [95] and [83], in which color information is indispensable for similarity
calculation. Therefore, the author designs a region selection method which is very similar
with sliding window. By constantly selecting all possible regions in FOV, all objects could
be included in at least one region, and get imported into ODLN for further calculation. The
author also adopts an auxiliary labeling method to help people mark a massive number of raw
data and improve the practicability of supervised learning. The region selection algorithm
and auxiliary labeling method are presented in Algorithm 1. Several hand-crafted features
[11] are used to perform auxiliary labeling on initial dataset, these features are learnt with
SVM. Fig. 3.5 shows the effects of the auxiliary labeling method and the proposed ODLN
model. Although the hand-crafted features are outperformed by self-learning ODLN, it can
save people lots of time by labeling the scene data automatically, especially when a large
dataset is used for learning. The templates used for region selection include 10 cuboids in
different sizes.

The network architecture of ODLN is presented in Fig. 3.4. There are two specially-
designed modules and three ordinary convolutional layers behind the input layer, following by
two individual sub-networks which will output detection and localization results respectively.

The input of ODLN is the volumetric representation of 3D objects in each region with
their labels. The objective of ODLN is to judge whether there is a single object in the input
region, and its exact boundaries and orientation.

Inspired by [76] and [89], the author designs the Scale-Insensitive Convolutional (SIC)
module. There are three convolutional kernels with different size in one SIC module, which
can extract the features from the input data in different scale. SIC module gives ODLN the
ability to cope with 3D objects in various sizes.

Two sub-networks are behind the convolutional networks for detection and localization.
The detection network outputs a value between [0,1] representing the possibility y that there
is a single object in current region. The localization network is to predict the object’s center
point {x,y,z}, dimensions {ℓ,w,h} and Euler angles {α,β ,γ}, as shown in lower right corner

3.2 3D Object Proposal 23

Algorithm 1: Region Selection and Object Proposal
Input: 3D Scene Data S , Region Templates T
Output: Object Proposals P
proposal_list = null;
for v ∈S do /* Traversal of voxels. */

for t ∈T do /* Try all Templates. */
if is_auxiliary_labeling then

/* Perform auxiliary labeling */
Compute

Score(v) = λ1ψpointcloud +λ2ψ f rees pace

+λ2ψheightprior +λ2ψheightcontrast
(3.1)

if Score(v)> threshold then
Append v to proposal_list.

else /* Imported to ODLN Model. */
Score(v),Location(v) = ODLN← v ;
if Score(v)> threshold then

Append Location(v) to proposal_list.

return proposal_list;

of Fig. 3.4. Both sub-networks have two fully-connected layers for further analysis and
abstracting on the features originate from the lower layers. Specially, the author designs a
multi-task loss function to train two sub-networks at a same time, which is detailed in 3.2.2.

In short, 3D data in every possible region is imported into ODLN with their labels, which
have the information including whether the region has an object and its locations. After
forward propagation, ODLN can use the calculated values, their labels and the proposed loss
function to adjust weights and optimize the network. During this process, ODLN can be
gradually trained into a desirable network.

3.2.2 Learning with Multi-task Loss Function

Given n input data X = {x1,x2, ...,xn} in ODLN, there are several different labels for
each input data xi, i.e., ground-truth labels Y = {yx1,yx2, ...,yxn} and 3d-box labels T =

{tx1, tx2, ..., txn}, where t ∈ {x,y,z, ℓ,w,h,α,β ,γ} standing for locations, dimensions and
orientations respectively. In regard to the possible labels, y ∈ {y∗1,y∗2, ...,y∗m} and t should be
real values. Specially, in the detection subnetwork of ODLN, m = 2 and y∈ {0,1}. hcls(xi) is

24 Artificial Intelligence for Internet-of-Robots

3D
 In

pu
t

SI
C

M
od

ul
e

1

C
on

v
1

SI
C

M

od
ul

e
2

C
on

v
2

C
on

v
3 Detection

Network

Localization
Network

Softmax
Loss

Smooth
L1 Loss

Conv

Conv

Conv
Conv

Fig. 3.4 Network Architecture of ODLN.

(a) (b) (c)

Fig. 3.5 3D Scene[41] Labeling(resolution = 0.02 m). (a) Auxiliary labeling. (b) Manual
amendment. (c) Actual proposal result using ODLN.

the output of Softmax classification layer, and hloc(xi) is the one of Smooth L1 Localization
layer.

Inspired from the Multi-task Loss in [83] and [20], the author designs a loss function for
ODLN as follows.

J(W ,B,X ,Y ,T) =λ1Jcls(W ,B,X ,Y)

+λ2Jloc(W ,B,X ,T)+λ3Jdec(W)
(3.2)

where Jcls, Jloc and Jdec are sub-loss functions for different objectives, and λ1, λ2 and λ3 are
weights to custom the relative importance of each term.

3.2 3D Object Proposal 25

Jcls is the softmax loss function for measuring the accuracy of the final detection result,
i.e. whether a region owns one single object or not. It can be expressed as

Jcls(W ,B,X ,Y)

=−1
n

[
n

∑
i=1

m

∑
j=1

1{yxi = y∗j} log
eh(j)

cls (xi)

∑
m
φ=1 eh(φ)cls (xi)

]

=−1
n

[
n

∑
i=1

1

∑
j=0

1{yxi = y∗j} log p(yxi = y∗j |xi;W ;B)

]

=−1
n

[
n

∑
i=1

yxi log(hcls(xi))+(1− yxi) · log(1−hcls(xi))

]
(3.3)

where h(j)
cls (xi) varies from 0 to 1, according to the possibilities that there is one single object

in this region.
Jloc is utilized to predict the object’s localization. Essentially, it is a regression of objects’

boundary. According to the smooth L1 loss in 2D bounding-box regression method of Fast
R-CNN[20], Jloc is defined as

Jloc(W ,B,X ,T) =

∑
t∈{x,y,z,ℓ,w,h,α,β ,γ}

1
n

n

∑
i=1

smoothL1(h
(t)
loc(xi)− txi)

(3.4)

and

smoothL1(z) =

{
0.5z2, |z|< 1

|z|−0.5, |z| ≥ 1
(3.5)

where t represents the coordinates of the object’s center point {x,y,z}, dimensions {ℓ,w,h}
and Euler angles {α,β ,γ}.

Jdec(W) is a weight decay term which penalizes large values of the parameters to decrease
the magnitude of the weights W and help prevent over-fitting. It is computed by the following
function.

Jdec(W) =∥W ∥2
2 (3.6)

The proposed loss function takes object’s detection and localization into account at a
same time, which is a huge advantage compared to the common-used loss functions. As a
result, the output of ODLN can be directly used as the input of object classification network.
The performance of ODLN is evaluated in 3.4.1.

26 Artificial Intelligence for Internet-of-Robots

3.3 3D Object Classification

3.3.1 VTCN Model

A View-invariant 3D Classification network (VTCN) is proposed in this section. As men-
tioned above, 2D encoded image is adopted as the input of network. The depth value can be
transformed to RGB data using the following formula.

depth 7→
(h,s,v)

(0∼360,1,255)
7→ (r,g,b) (3.7)

Therefore, VTCN has a similar structure with common 2D image classification CNN models,
e.g. AlextNet [40], which is used as the prototype of the proposed VTCN model. To develop
a classification model used in disordered and extreme scenarios, the author desires to develop
a view-invariant CNN model for feature extraction. The author gains inspiration from [12]
and proposed a new method which can be used with 3D data. A View-invariant (VI) Module
consisting of two fully-connected layers is added between the 6th and 7th layer of AlexNet
model. The author also presents a new object category subdivision method to give VTCN the
ability to deal with multi-view images. With the well-learnt low-layer features brought by
AlexNet, the high-layer features can get fine-tuned using 3D data in 2D representation. This
learning process is conducted using specially-designed loss functions.

The class subdivision method and learning process will be detailed below, respectively.

3.3.2 View-subclass Definition

One of the most significant differences between VTCN and other methods is, one object
category is not regarded as one single class. As is known to us, even a same object looks
very different in different views. For example, it is very difficult to recognize a can if the
viewpoint is directly below it. There would be even greater difficulties for robots with only
depth information. Given these facts, the author subdivides the existing object categories
into several "view-subclasses", which will be the ground-truth label imported into VTCN
model, as shown in Fig. 3.6.

So how to definite a view-sub-class? Interestingly, this is very similar to robotic view
planning problem. In view planning methods, a next-best-view (NBV) is generated during
each iteration of model reconstruction, then the depth sensor is moved to NBV to conduct the
next scan. In the same way, several NBVs can be generated for each object category and each
of them is used as a cluster center for one view-sub-class. Fortunately, the author has worked

3.3 3D Object Classification 27

Fig. 3.6 View-subclass Division and the Input of VTCN.

out an efficient robotic view planning method in [50], which can be directly used in VTCN.
Because this algorithm is not the main topic, it will merely be given a brief introduction.

At first, NBV candidates are generated at all possible viewpoints in the whole working
space, using the hierarchical generation and filtration algorithm proposed in the author’s past
work [50]. And they are evaluated using the score function presented below.

N(p) = ω1 volume(p)+ω2 overlap(p) (3.8)

where volume(p) represents the number of newly-observed voxels, overlap(p) is the coin-
cidence region between the new view and existing views. These two terms can control the
number and orientation of the view-sub-class for each object category. N(p) is the view
point’s score. And, the view with highest N(p) score is selected as a new view-subclass.

After the sub-class centers are generated, they are extend to the whole working space.
All of the viewpoints will be subjected a view-sub-class, depending on their similarities with
the class centers. Given the points set P obtained in view v, the similarity function can be
described as

Similarity =
Pv

⋂
Pcenterν

Pv
⋃

Pcenterν

(3.9)

Then every view belongs to a center ν , which owns a view-sub-class, with the highest
similarity score.

3.3.3 Learning View-invariant Features

Suppose there are n object view-subclasses, then the input data of VTCN can be defined as{
X = {X1,X2, ...,Xn}

Xi = {x(1)i ,x(2)i , ...,x(im)i }

⇒X =

{
{x(1)1 ,x(2)1 , ...,x(1m)

1 }, ...,{x(1)n , ...,x(nm)
n }

} (3.10)

28 Artificial Intelligence for Internet-of-Robots

where X is the set of all input samples, and Xi is the set of all the views of one sin-
gle view-subclass. Each view-subclass has im elements. Then the total number of in-
put data SIZE(X) = ∑

n
i im. The labels of input images can be represented by Y =

{yX1,yX2, ...,yXn}.
Like Eq. (3.2), the loss function can be written as

J(W ,B,{Xi},Y) = λ1Jcls(W ,B,{Xi},Y)

+λ2Jview(W ,B,{Xi})
+λ3Jdec(W) (0≤ i≤ n)

(3.11)

The difference is that Eq. (3.11) needs {Xi} as the view-subclass information to learn
view-invariant features.

Similarly, Jcls(W ,B,{Xi},Y) can be described as

Jcls(W ,B,{Xi},Y)

=−1
n

[
n

∑
i=1

im

∑
r=1

ccls

∑
j=1

1{yxi = y∗j} log
eh(j)

cls (x
(r)
i)

∑
m
φ=1 eh(φ)cls (x

(r)
i)

]

=−1
n

[
n

∑
i=1

im

∑
r=1

ccls

∑
j=1

1{yx = y∗j} log p(yx = y∗j |x
(r)
i ;W ;B)

] (3.12)

where ccls is the neuron number of final layer, i.e., the total number of output features. And,
Jdec(W) is same with Eq. (3.6).

Then, the key problem is how to design a view-clustering function to give VTCN the
ability to extract similar features from different views of a same object. Therefore, the
differences in a view-sub-class Xi should be calculated and deteriorated during the learning
process. Based on these assumptions, we define

Jview(W ,B,{Xi})

=
1
pn

[
n

∑
i=1

im

∑
r=1
∥ hvim(x

(r)
i)−hvim(Xi) ∥p

p

]

=
1
pn

[
n

∑
i=1

im

∑
r=1

ccls

∑
k=1

(h(k)vim(x
(r)
i)−h(k)vim(Xi))

p

] (3.13)

and

h(k)vim(Xi) =
1
im

im

∑
r=1

h(k)vim(x
(r)
i) (3.14)

3.3 3D Object Classification 29

where hvim is the output of VI Module.
So the main objective is to optimize the following function

(Ŵ ,B̂) = arg
W ,B

minJ(W ,B,{Xi},Y) (3.15)

It is extremely difficult to perform this function on the entire dataset. Therefore, a batch
Stochastic Gradient Descent (SGD) strategy is adopted in network learning, i.e. perform the
optimization on a batch sampled from the whole dataset in each iteration. Although SGD has
been proved successful on the functions like Jcls and Jdec, some more work is needed before
it can be applied to the newly proposed Jview function. The stochastic and back-propagation
method of Jview should be figured out to improve the computational efficiency.

Define bt is one batch and

Hθ ,bt =

hθ (x1)

hθ (x2)
...

hθ (xnb)

 (3.16)

is a matrix consisting of all the outputs of layer θ in a batch. So the right-hand side of Eq.
(3.13) can be expressed as

Jview(W ,B,Xbt) =

∥ Hvim,bt−hvim(Xbt)11×nb ∥
p
p

pnb

(3.17)

where
Hvim,bt =WvimHvim-1,bt +Bvim11×nb (3.18)

w.l.o.g., assume that the average of feature is consistent during one iteration, and define
AVG = hvim(Xbt)11×nb Then

∇Jview =

[∂Jview(W ,B,Xbt)

∂Wvim
∂Jview(W ,B,Xbt)

∂Bvim

]

=

[(Hvim,bt−AVG)p−1

nb

∂Hvim,bt

∂Wvim

(Hvim,bt−AVG)p−1

nb

∂Hvim,bt

∂Bvim

] (3.19)

30 Artificial Intelligence for Internet-of-Robots

Finally, the derivative of weights W and biases B of the last layer in VI Module can be
expressed as

∂Jview(W ,B,Xbt)

∂Wvim

=

sign(Hvim,bt−AVG)

nb
Hvim-1,bt , p = 1

(Hvim,bt−AVG)p−1

nb
Hvim-1,bt ,otherwise

(3.20)

and

∂Jview(W ,B,Xbt)

∂Bvim

=

sign(Hvim,bt−AVG)

nb
, p = 1

(Hvim,bt−AVG)p−1

nb
,otherwise

(3.21)

The weights and biases are updated as

Wvim :=Wvim− lr
∂Jview

∂Wvim

Bvim := Bvim− lr
∂Jview

∂Bvim

(3.22)

where lr is the learning rate. Then the stochastic is back-propagated to the lower layers.
After a number of iterations, the loss function can convergence and give VTCN the ability to
extract view-invariant features.

In addition, ∥ hvim(x
(r)
i)− hvim(Xi) ∥p

p is the Minkowski distance of order p between
hvim(x

(r)
i) and hvim(Xi). When p = 1, Minkowski distance degenerates into Manhattan

distance, and when p = 2, it becomes Euclidean distance. For better learning efficiency, the p
value should be carefully selected. Therefore, an experiment is conducted in 3.4.3 to explore
the relationship between p value and the training performance.

3.3.4 Proof of the Training Efficiency

Since Eq.(3.17) is the core component of the proposed loss functions, a formal proof should
be provided in order to guarantee its training efficiency on different experiment datasets.
The derivation of Eq.(3.17) has been presented in Section 3.3.3, however, the p value still
has uncertain effect on the learning speed. Therefore, a detailed proof on the relationship

3.3 3D Object Classification 31

between the p value and the training efficiency will be given. First, the following three
lemmas are needed to prove the final theorem.

Lemma 1. The convergence rate of the gradient descent method using different types of
distances will follow

ManhattanDistance >EuclideanDistance

>ChebyshevDistance
(3.23)

Proof. This lemma can be expressed as the following statement. For two arbitrary points
P(x0,y0) and Q(x1,y1), when P→ Q,

dM(DP,DQ)≥ dO(DP,DQ)≥ dQ(DP,DQ) (3.24)

where D is an arbitrary point.
Without loss of generality, we can assume D is the origin point O(0,0). Define x0 > y0 > y1

and x0 > x1, then

dM(OP,OQ) = x0 + y0− x1− y1

dO(OP,OQ) =
√

x2
0 + y2

0−
√

x2
1 + y2

1

dQ(OP,OQ) = x0− x1

(3.25)

First, compare dM(OP,OQ) with dO(OP,OQ). We can start with the comparison between√
x2

0 + y2
0−

√
x2

1 + y2
1 and

√
(x0− x1)2 +(y0− y1)2. Then we can get

√
x2

0 + y2
0−

√
x2

1 + y2
1 <

√
(x0− x1)2 +(y0− y1)2

< |x0− x1|+ |y0− y1|
(3.26)

Therefore, dM(OP,OQ)≥ dO(OP,OQ).
Second, compare dO(OP,OQ) with dQ(OP,OQ)

x0− x1√
x2

0 + y2
0−

√
x2

1 + y2
1

=

√
x2

0 + y2
0 +

√
x2

1 + y2
1

x0 + x1 +
(y0−y1)(y0+y1)

x0−x1

(3.27)

Since P→ Q, we can get x0→ x1 and y0→ y1 with a same approaching speed. Therefore,
Eq.(3.27)≤ 1. Therefore, dO(OP,OQ)≥ dQ(OP,OQ) ■

32 Artificial Intelligence for Internet-of-Robots

Lemma 2. There exists an intermediate point that enables us to express the Minkowski
distance with the Euclidean distance. In other words, for two arbitrary points P(x0,y0) and
Q(x1,y1), there exists a point M(xm,ym) to make

dp(P,Q) = dO(P,M)+dO(M,Q) (3.28)

Proof. Without loss of generality, we can assume Q is the origin point O(0,0). Then

dp(O,P) = (xp
0 + yp

0)
1
p (3.29)

When 1 < p < 2, we can get xp
0 + yp

0 < (x0 + y0)
p. Therefore, dp(O,P)< |x0|+ |y0|.

We need to prove that there always exists a point M(xm,y0) which makes

xm + y0 = (xp
0 + yp

0)
1
p (3.30)

Because

(xm + y0)
p =

p

∑
i=0

Ci
pxi

myp−i
0 (3.31)

so it can be expressed as

xp
1 +

p−1

∑
i=1

Ci
pxi

myp−i
0 = xp

0 (3.32)

With the Intermediate Value Theorem, we can know Eq.(3.30) and (3.32) are valid.
When p > 2, we have (xp

0 + yp
0)

1
p < (x2

0 + y2
0)

1
2 .

Similarly, we can prove that there exists a point M(x0,ym) to make (xp
0 + yp

0)
1
p = (x2

0 +

y2
m)

1
2 . ■

Lemma 3. Lemma 2 is valid for spaces with more than two dimensions. In other words, the
distances can be projected into lower-dimension spaces.

Proof. We have x = (x1, · · · ,xn)
T , y = (y1, · · · ,yn)

T and dp(x,y) = [∑n
i=1(xi− yi)

p]
1
p .

We need to prove that there exists a point ξ = (ξ1, · · · ,ξn)
T to make

dp(x,y) = d0(x,ξ)+do(y,ξ) (3.33)

i.e., [n

∑
i=1

(xi− yi)
p
] 1

p
=
[n

∑
i=1

(xi−ξi)
2
] 1

2
+
[n

∑
i=1

(yi−ξi)
2
] 1

2 (3.34)

3.4 Performance Evaluation 33

which can be expressed as

n

∑
i=1

(xi− yi)
p =

{[n

∑
i=1

(xi−ξi)
2
] 1

2
+
[n

∑
i=1

(yi−ξi)
2
] 1

2

}p

(3.35)

Similarly, using the Intermediate Value Theorem, we know that there exists ξ = (ξ1, · · · ,ξn)
T

to make this equation true. ■

Lemma 4. Lemma 1 is also valid for spaces with more than two dimensions.

Proof. It can be deducted using Lemma 2 and 3. ■

Theorem 1. For the proposed loss function Jview(W ,B,{Xi}), the training efficiency can
be improved by decreasing the p value, i.e.,

∇Jp
view
≥ ∇Jp+1

view
(3.36)

Proof. It can be deducted using Lemma 1, 2, 3 and 4. ■

According to the theorem, a smaller p value will increase the back-propagated stochastic
and improve the optimization efficiency, which is also demonstrated in the experiment 3.4.3.
On the other hand, a larger p value, resulting in a smaller stochastic, may also stable the
learning process. Therefore, it is reasonable to set a small p in the early stage of training
to get higher efficiency, and gradually increase p for stable convergence. The above proof
guarantees that the proposed method can get a good learning speed with different datasets.

3.4 Performance Evaluation

To fully reach the potentiality of the proposed networks, several existing datasets combined
with the newly-scanned 3D data are utilized in the training and testing process. The proposed
networks are complicated enough to contain more than one dataset without under-fitting. The
adopted datasets include NYU Dataset v2 [61], A large dataset of object scans[13], RGB-D
Object Dataset [41], Bigbird dataset [79] and SceneNN dataset [30].

3.4.1 ODLN Performance

The proposed ODLN not only detect objects in images, but localize them with exact position,
dimension and orientation. To compare ODLN with some existing approaches, the following

34 Artificial Intelligence for Internet-of-Robots

Fig. 3.7 Comparison of 3D Object Proposal Methods.

formulas are adopted to evaluate the performance.

Recall =
TP

TP+FN
(3.37)

Precision =
TP

TP+FP
(3.38)

where TP, FP and FN mean true positive, false positive and false negative, respectively.
It is common for the performance experiments of object proposal methods to present the
relationship between Recall and Precision, because both Recall and Precision change with
the settings of proposed object number.

In this experiment, all of the detection methods take 950 labeled 3D scenes, which
contains 53 object categories, as the training material, and 50 raw point cloud data as the test
set. Fig. 3.7 shows the comparison of ODLN and representative existing approaches, e.g.
Sliding Shapes [82], SVM method [57] trained on Point Cloud & 3D Model Dataset and [57]
trained on only Point Cloud. To demonstrate the adaptability for disaster scenarios, there
are two versions of dataset prepared for the experiment: one normal dataset and its variant
in which the brightness of RGB images is turned down and a part of depth information is
removed manually. The first row in Fig. 3.7 presents the results of the normal dataset, and
the second row presents the results of the variant dataset. Five categories are selected in the
experiment, i.e., chair, bed, sofa, table and toilet.

As shown in Fig. 3.7, ODLN method performs better in the variant dataset. It is mainly
because the author desires to design a method not relying on instable RGB data from the

3.4 Performance Evaluation 35

Fig. 3.8 Results of View-invariance Experiment.

beginning, and the proposed ODLN is not affected by the missing of RGB data. However, the
incomplete depth data do give some impact on its performance. But still, it can outperform
others in these difficult situations. Of course, ODLN does not show much advantage in the
normal dataset, especially compared with Sliding Shapes method. But in my opinion, the
normal dataset is too idealized and have little practical significance, considering the disaster
scenarios.

3.4.2 View-invariance Test

A demonstrating test is conducted to validate the effect of VI Module in VTCN model. As
shown in Fig. 3.8, nine views of bunny model are selected in this experiment. They belong
to three different view-subclasses. Therefore, there will be nine features extracted from these
views, and each set of three should be similar. The first row of Fig. 3.8 shows each scan view
of the bunny model. The second row is the 2D representation of obtained 3D data, which is
also the input of VTCN model. The third and fourth row present their features before and
after the process of VI Module, respectively. The features are sampled out from the 4096
outputs of VTCN’s last layer. It can be seen that, without VI Module, the features looks

36 Artificial Intelligence for Internet-of-Robots

(a)

(b)

Fig. 3.9 Results of p Value Selection Experiment. (a) The regularized loss curves with
different settings of p and learning rate. (b) The computational cost of different p values.

very different even in a same view-subclass, while with VI Module, views in one subclass
become consistent and generate fairly alike features. To further figure out the differences,
their variance is calculated using the following formula.

σ = (Fa−Fb)
T (Fa−Fb) (3.39)

The last row of Fig. 3.8 shows the variance curves of the features before and after the process
of VI Module. Compared with the blue dotted line, the red one is smooth and steady, which
gives a good proof to the proposed view-invariance method.

3.4.3 p Value Selection

A set of experiment is designed to find the appropriate p value in the Minkowski distance
for the loss function of VI Module. As discussed in 3.3.3, the setting of p value is very
important for the training efficiency. To clarify the relationship between them, several tests

3.4 Performance Evaluation 37

LSVM DPa VTCN1 VTCN2 Hum
0%

20%

40%

60%

80%

100%

P
re

c
is

io
n

Depth Only

(a)

FCNN CRNN CNNF NSVM Hum
0%

20%

40%

60%

80%

100%

P
re

c
is

io
n

Depth + RGB

(b)

Fig. 3.10 Comparison Results of Classification Experiments. (a) Input data only contains
depth information. (b) Input data contains both depth and RGB information.

are conducted using different settings. As expected, their results follow a specific rule. Fig.
3.9(a) presents four representative curves. A regularized loss is adopted in this experiment to
measure the learning speed with different settings fairly.

Ji,reg =

∣∣∣∣∣J
(1)
i

J(1)i

,
J(2)i

J(1)i

, · · ·

∣∣∣∣∣ (3.40)

where i represents the identifier number of each experiment with different p values. It can be
seen, with the increase of p value, the learning process slows down significantly even with a
larger learning rate. However, on the other hand, they are also more stable with a larger p
when close to the convergent point.

Fig. 3.9(b) shows the relationship between computational cost and p values. The
computational cost is defined as the complexity of calculation. Several unit operations are
added in optimization algorithm to give out a uniform measure for estimated computational
cost, whose value is defined in 0∼50. As shown in Fig. 3.9(b), the estimated cost increases
with the p value, but not changes drastically as supposed. Therefore, the selection of a larger
p is feasible because of the acceptable extra computational cost.

The results in this section are consistent with the author’s theories and give us a helpful
guide to select p values. A mathematical proof is presented in the appendix, in order to
find the precise relationship between p value and training efficiency, and guarantee the
adaptability of the proposed system in various datasets.

38 Artificial Intelligence for Internet-of-Robots

3.4.4 Classification Performance of VTCN

A comparison experiment is performed to evaluate the classification performance of the
proposed VTCN with several state-of-the-art methods. In this experiment, there are 53
categories of 3D labeled objects in the training and testing dataset. For each category, there
are 100 instances in the training set, and 10 instances in the testing set. The results are
shown in Fig. 3.10. Two set of experiments are designed. Although one same dataset is
adopted in all experiments, one set is conducted without RGB information. The left figure
presents the performance of depth-only methods, including Linear SVM [41], DPano[78],
and the proposed VTCN method; the right one shows the RGBD methods, i.e., Fus-CNN
[16], CNN-RNN [80], CNN-Features [75], and Kernel SVM [41]. The proposed VTCN
method is tested without VI Module (VTCN1) and with VI Module (VTCN2), respectively,
in order to present the performance difference between with and without the view-invariant
ability. For better understanding, a manual classification test is also performed. It can be seen
that the proposed method improves a lot with the view-invariant ability of VI Module, and
outperforms other depth only methods significantly. Although with similar view-invariant
feature, VTCN can still outperform DPano method. However, different from the proposed
approach, DPano adopts a row-wise max-pooling layer to change the low layer features
extracted by the convolutional layers, which needs a semi-panoramic view of the objects.
This solution can lead to serious problems in some actual scenes, which will be discussed
in Section 3.4.5. But in this test, DPano has been given the necessary views to perform the
recognition. Still, its precision is lower than the proposed methods, because VTCN further
refines the object category using the view-subclass algorithm. The performance of VTCN
is slightly inferior to RGBD methods, however, the author believes, the actual conditions
of disaster scenarios do limit the acquisition of RGB data. It is worthwhile to leave out the
unstable color data and work on the 3D information for a scene understanding method, which
is more robust and adaptable.

3.4.5 Disaster Adaptability

Although the above evaluations have indicated the performance of four different approaches
and clearly demonstrate the advantage of the proposed method in common scene understand-
ing tasks, the author finds it is necessary to conduct an additional experiment for the disaster
scenarios, because the extreme conditions of the disaster scenes may be a huge challenge to
the perception methods. In order to simulate the disaster scenarios, the author works out a
new dataset consisting of more than 300 scenes. These scenes are selected from the adopted
datasets, which have been introduced in Section 3.4. All of these images are made highly

3.4 Performance Evaluation 39

(a) (b) (c)

Fig. 3.11 Simulated Disaster Scenarios for System Evaluation.

disordered and broken, and only contains the depth information, as shown in Fig. 3.11, which
is very similar to some dark, extreme disaster situations.

The author adopts the complete scene understanding system, including the trained ODLN
and VTCN presented in Section 3.4.1 and 3.4.4, without extra training process. The new
dataset is merely used as the test data. The objective is to evaluate the system performance
in simulated disaster scenes. The system will first use ODLN to find possible objects, and
then use the VTCN to recognize them. The classification precisions are recorded as the final
result. With VI Module, the proposed system can achieve 55.61% in this test, while without
VI module, it is 47.71%. As comparison, the author also combines ODLN, VTCN with
several other approaches for the same test data. The ODLN&Linear SVM[41] is 30.39%,
the ODLN&DPano[78] is 37.16%, the SVM[57]&VTCN(with VI module) is 18.33%. Due
to the difficult situation, the results are generally not very high. However, the combination of
VTCN, ODLN and VI module does bring a significant improvement to the precision, which
can give a boost to the development of disaster robotic. In addition, since the system cannot
obtain the complete depth information of the objects, DPano method has no sufficient view
to perform panoramic recognition, therefore, its performance on this dataset is not very good,
if compared to its precision in Section 3.4.4.

3.4.6 Robotic Simulation

Robot Operating System (ROS) [66] is adopted as the simulation environment in this experi-
ment. As shown in Fig. 3.12, a mobile robot moves along a path and takes three scans. The
understanding results are generated by a system using the proposed method. To validate the
feasibility of the proposed method in dark scenes, only depth data is imported into the system.
It can be seen, the proposed method is able to output correct labels for most objects. In Fig.
3.12(b), the proposed system successfully recognizes the table with a confidence of 0.849,
and the lamp with 0.424. It also generates several candidates with different confidences. For

40 Artificial Intelligence for Internet-of-Robots

(a) (b)

(c) (d)

Fig. 3.12 Robotic Scene Understanding Simulation.

example, in Fig. 3.12(c), the system gives some labels to the desk in yellow zone including
desk, table, cabinet, etc. Among them, desk is with the highest confidence, and becomes the
final output label. The total precision is 91.0% with 10 runs. The results demonstrate that the
proposed method is stable and robust, and can be well applied to complicated indoor scenes.
In addition, the author also uses some existing approaches to perform the same task under the
same condition. In fact, this is a similar test, compared to the one in Section 3.4.5, with more
ordered environment and lower difficulty. The results are listed below. The ODLN&Linear
SVM[41] is 35.62%, the ODLN&DPano[78] is 67.64%, the SVM[57]&VTCN(with VI
module) is 41.81%.

Chapter 4

Artificial Intelligence for
Internet-of-Vehicles

The autonomous vehicle, as an emerging and rapidly growing field, has received extensive at-
tention for its futuristic driving experiences. Although the fast developing Internet-of-Vehicles
and AI methods have given a huge boost to self-driving research, existing autonomous driving
vehicles do meet with several avoidable accidents during their road testings. The major
cause is the misunderstanding between self-driving systems and human drivers. To solve this
problem, a new decision-making system is proposed in this work for autonomous vehicles.
As shown in Fig. 4.1, the proposed system prefers to thinking like a human, while traditional
approaches make decisions according to the software settings.

In order to simplify the complexity of the decision-making system, a scene understanding
subsystem is adopted to generate the abstractions from the raw input. This system only takes
the 3D data from the light detection and ranging (LiDAR) sensor, which is able to generate
stable and robust images in both light and dark environments. With the work experience in
Chapter 3, a LiDAR-only scene understanding and abstraction method is used as a component
of the proposed system. In this method, RGB data is only used in the detection of nearby
lane markings, which can always be covered by the headlight. And only depth information is
needed in the detection and classification of other objects, e.g. cars, buses, trunks, etc.

In this chapter, the author focuses on the autonomous decision-making system for the
Internet-of-Vehicles and implement it on the basis of a deep learning model.

42 Artificial Intelligence for Internet-of-Vehicles

？
“Correct”

Self-driving

Human
Driver

He may
yield.

Maybe not.
Let’s wait.

？
Human-like
Self-driving

I needn’t
yield.

That car
can wait.

I needn’t
yield.

That car
can wait.

Human
Driver

The car
behind

should give
way to me.

Fig. 4.1 Differences between traditional "correct" self-driving and the proposed human-like
driving.

4.1 System Overview

4.1.1 Problem Definition and System Framework

Given a collection of road scene images X , which are captured by on-board sensors during
driving and consist all necessary information regarding the road condition at a certain moment,
the goal of the proposed self-driving system can be described as below. For each input scene
X , the perception subsystem will recognize as many as possible vehicles on the road and
give them accurate labels. Then the decision-making subsystem should give out some advice
Dh regarding the speed and steering, according to the abstraction A of current road condition,
and, ultimately, generate the precise driving command d f in, considering the security policy.

We introduce the system framework in Fig. 4.2 to give a brief description of the proposed
system. As can be seen, the vehicles use the CNN models to respectively perform the
detection and recognition task, then the abstraction results will be transferred to the decision-
making system. As for the markings, they are processed by several simple edge detection
methods. For brevity, they are omitted in the dissertation.

After the perception process, the decision-making network calculates the driving decisions
based on these abstractions. The decision-making model is the focus of this research, and it
will be given a detailed introduction in Section 4.2. In addition, an influence analysis module
is included in the model to clarify the specific relationship between the road conditions and
the output decision.

4.1 System Overview 43

sensor

controller

Vehicle

Perception

Abstraction

Decision
Making

Self-driving Systems

Data
Encoding

Recognition
Results

Security Enforcements

CNN

DNN

Vision
Dataset

Scene

Object

DrivingDecision DatasetScenario
Generation

Scenarios
Decisions

Fig. 4.2 Framework of the proposed self-driving system.

4.1.2 3D Perception and Abstraction

One major characteristic of the abstraction calculation approaches is that the abstraction of
the road condition is generated before making driving decisions. In this procedure, a robust
and efficient 3D perception method is essential to obtain the accurate understanding of the
input images, which is captured by the sensors equipped on the self-driving vehicles. This
task is also called scene understanding, one hot topic in computer vision area. However, as
mentioned above, the traditional methods struggle in the perception and abstraction of road
images, due to their dependences on unstable RGB data. We propose a specially-designed
perception method to understand the input scenes, in order to improve the performance of
vehicle perception, and work out an abstraction approach for simplified road representation.
The road data comes from two sources: the famous vision dataset for autonomous driving
KITTI [59] and the open racing car simulator (TORCS). KITTI provides a great number
of real-world road scenes, which is captured by a real car equipped with a laser scanner
and a GPS localization system. And TORCS is a fully customizable car racing simulation
environment, where lots of cars and road types are available. Both KITTI and TORCS are
adopted in the benchmarking and simulation tests.

In short, the main purpose of the proposed perception and abstraction method is to
understand the captured road images and generate a simplified representation for the following
decision-making process. As shown in Fig. 4.3, the ego car in TORCS is equipped with depth
sensors and can send the depth images to the scene understanding network in real time, and

44 Artificial Intelligence for Internet-of-Vehicles

(a) (b)

Fig. 4.3 The perception and abstraction of road condition. (a) Road simulation using the open
racing car simulator (TORCS). (b) Generated abstraction using the proposed road perception
method.

then the current road condition is abstracted by the proposed scene understanding method for
the planar representation, which can be directly imported into the decision-making model.
The perception and abstraction method is detailed below.

We propose the road condition understanding network (RCUN) to understand the road
scenes, and adopt the famous Alex model [40] as the recognition network, and its modified
version, which is compatible with 3D input data, as the vehicle proposal network. The major
difference between RCUN and other perception methods is that the author utilizes different
data encodings in these two models. The original raw data generated by the depth sensors is
in the point cloud format, which is shown in Fig. 4.4(b). There are two ways to process these
data. The first one is to map these data into RGB space, using the Point Cloud Library (PCL)
[71], and obtain the 2D colored representation. The other one is the 3D representation, in
which the point cloud data is transformed into volumetric encoding, which could be imported
into computational models with 3D spatial information preserved, using Octomap [29], as
shown in Fig. 4.4(c). The reason for this design is based on the following facts.

These two approaches have their advantages and disadvantages. One huge superiority
of 2D representation is that there have been extensive research works regarding 2D image
descriptors and feature engineering, which is of great help in the designing of 2D-encoded
scene understanding models. And also, tremendous 2D image datasets have been published,
and even more well-trained models relying on these datasets have been made available, on
whose basis the author can establish own models. According to [102], low-layer features
are not specific to one particular task or dataset and can be applied to many other networks.
Similar to the physiological visual mechanism of the human, neurons of lower layers merely

4.1 System Overview 45

(a)

(b)

(c)

Fig. 4.4 Road scene encoding and representation [59]. (a) The original scene captured by the
RGB camera. (b) The point cloud captured by the depth sensor. (c) 3D encoding.

deal with the most specific and simplest tasks, which are usually homogeneous between
many different applications. Therefore, the existing models are adopted as the basis of the
proposed model with further fine-tuning, learning abstract features in high-layers once again
and improving the training speed and network precision of the newly-designed model. On
the contrary, works on 3D images are yet to be developed and improved. Few large-scale 3D
image databases or effective trained models have been proposed. Another advantage of 2D
representation is its high resolution. Due to some restrictions in principle and implementation,
the volumetric representation must be encoded in a lower resolution (0.02 m in Fig. 4.4(c)),
whereas 2D representations can preserve image details well. On the other hand, the volumetric
representation also has some advantages. Unlike 2D encoding, 3D representation can
indicate the 3D spatial information of the original scene, which is highly valuable for some
applications. Therefore, the author designs the system with two data encoding types, which
are respectively for the 3D detection and recognition.

After training, these two networks are able to perform the proposal and recognition tasks.

46 Artificial Intelligence for Internet-of-Vehicles

4.2 Decision Making

After obtaining the abstraction of road conditions, the system can work on the corresponding
driving decisions. Compared to behavior reflex approaches, which directly map the input
images to several pre-defined driving commands, the proposed method, using the abstractions
instead of original images to calculate reactions, is much simplified in the inherent logic and
structure, and as a result, is much more trainable and can achieve higher network precisions.

The generated abstraction is shown in Fig. 4.3(b), however, the abstraction data is still
a bit complicated to be inputted into the decision-making network, due to the massive
possibilities of relative vehicle positions. For further simplification, the author defines lots of
grids all over the necessary road area, and then each vehicle can be subjected to one grid,
which can be represented by one numerical value. This method gives a huge convenience for
data encoding and network input because only a fixed number of girds exist in the interested
zone of the road. We give these grids two attributes to reflect the type and speed of the
vehicle on the road and adopt the girds as the input matrix of the proposed network. More
precisely, each grid has two attributes, including one discrete attribute value, representing
the specific vehicle type including sedan, bus, trunk, ego vehicle, none, unobservable, etc.,
and one continuous value, representing the vehicle current speed. If there is no vehicle in a
grid, then its speed attribute is set to zero. As shown in Fig. 4.7(a), the blue car is the ego
vehicle, and all the grids are labeled with a specific vehicle type and corresponding vehicle
speed. Notably, although the on-board sensors improve a lot in the visual performance
nowadays, it is not possible to obtain accurate road conditions in all grids. Especially, the
vehicle perception system may fail to output an exact result, due to the occlusion. In this
situation, the unknown or indefinite grids are labeled with "unobservable" and painted blue
in the figure.

In this section, the author will detail the proposed decision-making system, and also
introduce an analysis method to clarify the relationship between the road factors and the final
decision.

4.2.1 Decision Model

We propose a six-layer decision-making network (DMN) to learn human decision-making
behaviors, as shown in Fig 4.5. The input is the generated abstractions of road conditions.
And the main objective is to make driving decisions based on these input data. The proposed
model contains five hidden layers and one output layer. There are 1028 neurons in each of
the first two layers, and 512 in each of the following three layers. This is a simple design
because the author focuses on the data engineering and network learning process. We believe,

4.2 Decision Making 47

using an effective training scheme, the proposed method can extract sufficient information
from the well-processed input data, even with a simple model. Due to the superior feature
extraction ability of deep model, the author demonstrates that six layers are enough to obtain
the relationship between road condition and driving decisions.

The distinctiveness is that the author designs the DMN as a two-part structure. Two
individual sub-networks are adopted to respectively calculate the speed and steering com-
mands. Since the low-level features are usually similar in neural networks, the first three
fully-connected layers are shared between two sub-networks for training efficiency. There
are two more layers in each sub-network to extract the high-level features, which is highly
correlated to the target of each sub-network.

There are n input abstractions A = {a1,a2, ...,an} in DMN, with their correspond-
ing labels ai, including the speed labels P = {pa1, pa2, ..., pan} and steering labels T =

{ta1 , ta2, ..., tan}. t ∈ {t∗1 , t∗2 , t∗e } are the possible labels, representing left and right lane chang-
ing or keeping the current lane, and p should be real values representing the possible vehicle
speed. hspd(ai) and hstr(ai) are the results of each layer.

According to the multi-task loss introduced in [83] and [20], the loss function is defined
as follows.

L = λ1Lspd +λ2Lstr (4.1)

where the loss functions, including Lspd and Lstr, are adopted for different goals, and their
parameters, including λ1 and λ2, are pre-defined to give them respective weights according
to their importance.

Lspd is utilized to calculate the acceleration or deceleration commands and it is a regression
of desired vehicle speed. Using the smooth L1 loss [20], Lspd can be defined as

Lspd =
1
n

n

∑
i=1

smoothL1(hspd(ai)− pai) (4.2)

Lstr is calculated using the softmax function. It is adopted to compute the steering
commands, i.e. changing lanes or not. It can be expressed as

Lstr =−
1
n

[
n

∑
i=1

3

∑
j=1

1{yai = y∗j} log
eh(L)str (ai)

∑
3
φ=1 eh(φ)str (ai)

]
(4.3)

where h(j)
str (ai) varies from 0 to 1, according to the momentum to change to different lanes.

48 Artificial Intelligence for Internet-of-Vehicles

In
pu

t

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3

Abstractions Sharing Layers

L
ay

er
 4

L
ay

er
 4

L
ay

er
 5

L
ay

er
 5

Speed

Steering

Speed Network

Steering Network

Fig. 4.5 Architecture of the decision-making network.

Algorithm 2: Decision-making Logic
Input: Current Road Condition c
Output: Driving Decisions d f in

/* Make decisions constantly. */
while IsDriving do

A = GenerateAbstractions(c)
Dh = ComputeAdvices(A)
Ds = CollisionAvoidance(A)
/* Examine Dh in confidence order */
for dspd

h ,dstr
h ∈Dh do

dspd
f in = dspd

h +dspd
s , dstr

f in = dstr
h +dstr

s

d f in = (dspd
f in ,d

str
f in)

d f in = RegulationsChecking(d f in)
/* Final Security Check. */
if isSafeDriving(d f in) = True then

output(d f in)
break

KeepSafeDriving()

Also, the SGD strategy is adopted in this work to perform network training and the
output results of the proposed network are regarded as driving advice Dh for the final
decision-making strategy, which is detailed in the next section.

4.2.2 Decision-making Strategy

The whole process of the proposed decision-making system is presented in Algorithm 2. As
mentioned above, at first, the RCUN model generates abstractions of the inputted images
regarding current road conditions. And then DMN model can calculate and output the

4.2 Decision Making 49

human-like decisions. Although these decisions are already very reasonable, they are still not
yet fully adaptable for actual driving situations, due to the security reasons. We combine the
driving advice generated by DMN with a safety enforcement method, namely the repulsive
potential field (RPF) [100]. RPF is a famous method used for robotic path planning. Its main
objective is to control the robots to safely reach destinations while avoiding collisions. RPF
mainly relies on the repulsive force of possible obstacles, which is very suitable for driving
safety control. In detail, the author regards all other vehicles and both road edges as the
obstacles and then calculate their repulsive forces. The repulsive potential formula can be
expressed as

Urep(o) =

1
2

η(
1

d(o)
− 1

d
), d(o)≤ d

0 , d(o)> d
(4.4)

where o represents the obstacle object, d(o) is the distance between the obstacle and ego
vehicle, η is a positive scaling factor. And, d is a pre-defined constant value representing for
the maximum obstacle distance. Any obstacles beyond the distance d are neglected. Having
the repulsive potential formula, the repulsive force can be expressed as

Frep(o) =−∇Urep(o)

= η(
1

d(o)
− 1

d
)(

1
d2(o)

)∇d(o)

= η(
1

d(o)
− 1

d
)(

1
d2(o)

)
o− e
∥ o− e ∥

(4.5)

As shown in Fig 4.6, the objects in red color are regarded as the obstacles, including two
edges and two vehicles in front of the ego car. The orange lines represent the repulsive force,
and the yellow coordinate represents the driving decisions. It can be seen that the repulsive
force and the ego car form an angle θ , and the forces are respectively exerted on the steering
and speed axis. Then, the RPF security enforcement can be written as

dspd
s =−

objects

∑
o
∥ Frep(o) ∥ sin(θo) (4.6)

dstr
s =−

objects

∑
o
∥ Frep(o) ∥ cos(θo) (4.7)

In addition, since the steering command is a discrete value, several thresholds are set to
discretize dstr

s .
We design the final decision-making equation as below.

50 Artificial Intelligence for Internet-of-Vehicles

Edge1 Edge2

Ego Car

θ2

θ1

Vehicle1
Vehicle2

Steering

Speed

Fig. 4.6 Repulsive force and security enforcement.

d f in = ω1dh +ω2ds

s.t. ω1 +ω2 = 1
(4.8)

where d f in is the calculated final decision, dh and ds represent the human-like driving advice
and safety enforcement, respectively, and ω1, ω2 are the custom weights. In addition,

dh = [dspd
h ,dstr

h]

ds = [dspd
s ,dstr

s]
(4.9)

are the output of DMN and RPF. As shown in Algorithm 2, after the final decision is
generated, it is regularized to follow the traffic regulations, for example, driving along the
lane, and examined with some final security check, which is defined according to local
situations. Ultimately, the system can give out a safe and human-like driving decision.

4.2.3 Network Training Scheme

As the proposed decision-making system is based on a machine learning model, an important
problem is how to obtain sufficient learning materials for the underlying neural network. One
traditional way is, obviously, to record actual human driving behaviors, using either a real car

4.2 Decision Making 51

Algorithm 3: Scenarios Generation
Input: Desired Scenarios Number n; Vehicle Type (including "none") V and their

Propotions PV ; Vehicle Type R, their Propotions PR and Speed Distribution
in each road type DS

Output: Simulation Scenarios S
scenario_list = null
while length(scenario_list)< n do

/* Generate a road r. */
r = RandomRoad(R,PR)
/* Try all available positions. */
for grid ∈ r do

/* Generate a new vehicle v. */
v = RandomVehicle(V ,PV)
if ExistCarInFront(v) is False then

/* Assign vehicle speed v. */
v.speed = RandomSpeed(v,r,DS)

else
/* Adjust v according to the speed of vehicles in front.
*/
v.speed = SpeedAdjust(r)

r.append([v,grid])
scenario_list.append(r)

return scenario_list

or a custom gaming simulation environment. However, it is very inefficient to conduct such
data acquisition task, which usually needs several months to get adequate road scenarios and
driving decisions, even for a small-scale dataset.

We implement a novel generation strategy of training material to efficiently create
driving scenarios for human reaction recording, as shown in Algorithm 3. At first, the road
type is randomly selected from several templates according to the pre-defined occurrence
possibilities. Then the vehicles are also generated in a similar way and get assigned to
random grids of the newly generated road. Each vehicle will be set with a specific speed
value, and be adjusted to be as realistic as possible. Some generated scenarios are shown
in Fig. 4.7 as an example. The type and relative position of the vehicles are all randomly
selected, on the basis of some common situations, traffic rules, driving habits, etc. The last
step is to import these scenarios into some driving environments, such as the TORCS, and
record the driving decisions of test drivers. To improve the sense of reality and interactivity,
some peripheral equipment can be used to emulate the actual driving experience, e.g. steering

52 Artificial Intelligence for Internet-of-Vehicles

(a) (b) (c) (d)

Fig. 4.7 Generated driving scenarios for network training.

wheel and pedals. Before each scenario, a brief buffer time is available for the test drivers to
get familiar with the current road condition.

Compared to some commonly used data recording methods, the proposed scheme has a
significant advantage at the efficiency, and more importantly, the representativeness of the
generated scenarios. In fact, there are a large number of unnecessary testing scenarios in
the continuous driving process. Therefore, the proposed scheme can avoid this problem by
generating discontinuous scenarios.

4.2.4 Influence Analysis

We find it essential to figure out why the proposed neural network can make human-like
reactions to various road conditions. Which parts of the input abstractions play a key role
in the final decision? What is the network focused on among all the input values including
the vehicle types and speed in every road grid? Indeed, it is not easy to accurately visualize
the specific influences of the input units in a neural network. In this section, the author
implements an ingeniously-designed visualization method to analyze the mechanisms behind
the proposed decision-making network. There are two major benefits of this analysis method.
The first one is that, with an intuitive heatmap, self-driving researchers can easily find the
specific areas and information which the decision-making system is really interested in. And
as a result, researchers can find ways to improve the accuracy or clearness of these valuable
data, e.g., increasing the resolution of the back depth sensor, refining the vehicle category
of the road perception system, improving the accuracy of velometer, etc. The other benefit
is, the generated heatmap is an important criterion reflecting whether the decision-making
network is overfitting or not. Since the network architecture is defined according to subjective

4.2 Decision Making 53

Algorithm 4: Influence Analysis
Input: Trained Network N, Specific Road Abstraction A
Output: Visualized Unit Influences

/* Check all the unit values in both two input channels. */
for att ∈ [vehicle_type,vehicle_speed] do

influences_vector = null;
original_output = hN(A)
for u ∈Aatt do

/* Modify the unit value. */
if att is vehicle_type then

A _new = ChangeType(A ,u)
else

A _new = ChangeSpeed(A ,u)
new_output = hN(A _new)
/* Compute the impact of the changed unit value. */
influence = new_output−original_output
influence = Normalize(influence)
influences_vector← influence

/* Generate the visualization. */
Visualize(influences_vector)

experience, it is possible that the deep network is designed with too many layers or neurons.
In this situation, if no enough training material is available, the network will suffer the
overfitting problem. Although an overfitted network performs well from the perception
of training loss, it may easily fail in some other road conditions. It is very difficult to
judge the overfitted networks using simple precision tests. However, the overfitted networks
show inexplicable and meaningless heatmaps in most cases. By examining the generated
influence maps carefully, researchers can find some symptoms of the overfitting problem.
This algorithm is introduced below.

In a trained network, the influence of one input u, which is a single value in the input
vector, to the output of layer θ is presented below

hN
θ (u) =

{
Wθ hθ (u)+bθ , θ ≥ 2

Wθ u+bθ , θ = 1
(4.10)

Notice that, with a fixed Wθ and bθ , the output of every layer in the neural network, including
the final output, is only related to the input u. Therefore, the contribution of each input
values can be inferred using Algorithm 4. In the beginning, each vector unit of both two

54 Artificial Intelligence for Internet-of-Vehicles

1 3 5 7 9
Player Number

40

60

80

100

120

A
ve

ra
g

e
 S

p
e

e
d

 (
K

P
H

)

DMN RLM DPA Human

(a)

2

4

6

8

10

1 3 5 7 9
Player Number

0.00

0.02

0.04

0.06

0.08

A
v
e

ra
g

e
 A

c
c
id

e
n

t
(1

0
-2

)

DMN RLM DPA Human

(b)

Fig. 4.8 Performance evaluation in driving simulation. (a) Comparison results of average
driving speed. (b) Comparison results of average driving accidents.

attributes, i.e. grid type and vehicle speed, will be checked for the influence calculation. Its
value is modified with a minor adjustment, and the difference between the original and new
output results is calculated to reflect the contribution of this grid. The numerical results are
normalized and transformed into heatmaps.

An experiment is conducted in Section 4.3.2 to demonstrate this analysis method.

4.3 Performance Evaluation

Several experiments are conducted in this section to evaluate the performance of the proposed
self-driving system. First, the author carries out a driving simulation to test the abilities
of decision-making method. Then a visualization of unit influences is presented, using the
strategy described in Section 4.2.4.

4.3.1 Decision-making System Evaluation

The best way to evaluate the performance of driving systems is to conduct the road tests in a
simulation environment. As mentioned above, TORCS is a common choice for the testing
platform in driving simulations. Therefore, the author also adopts TORCS in this experiment
for better comparability. In this section, the focus problem is the rationality and security
of generated driving decisions, while the scene understanding ability is not the emphasis.
Therefore, the exact abstractions of the road conditions are directly passed to the self-driving
methods by the TORCS platform, rather than the scene understanding methods. Then, the

4.3 Performance Evaluation 55

key problem is the experiment design, which should give a comprehensive test on both the
advance speed and driving security.

The testing details are introduced below. First, the author selects and modifies an existing
roadmap in TORCS, which is a two-lane street with a total length of 15,000 meters, making
clearer lane markers and richer roadside views. Then, an autonomous vehicle, controlled by
different self-driving methods, is added to the track as player Ego. Up to eight human players
are also included in the same track, so the self-driving vehicle must take other players into
account when driving on the road. There are nine test settings with different human numbers
for one self-driving method, and ten tests are conducted for each test setting. The vehicle
speed and total accident number are recorded during these tests. Fig. 4.8 presents the average
results of vehicle speed and accident number. Four driving methods are adopted for player
Ego, i.e., the proposed DMN method, the reinforcement learning method (RLM) [100], the
direct perception approach (DPA) [9], and manual driving (Human), which is set for better
understanding.

It can be seen that, in Fig. 4.8(a), with the increase of player number, all the testing
vehicles show slower average speed. Among the self-driving methods, the proposed DMN
shows an obvious advantage beyond other two methods, due to its intelligent decision-making
ability. The RLM method is implemented by us according to the principle introduced in
the original paper. It is a novel design, but does not consider the human driving behaviors
and social intelligence. Therefore, it is slightly inferior in this test with human participants.
DPA is focused on the driving perception, and only has a simple driving logic, which mainly
cares about the security rules. So it does not perform well in the speed testing. Unexpectedly,
the increase of player number has little influence on the human driver, possibly because the
human drivers have the social intelligence ability and prefer to aggressive driving strategies.
Fig. 4.8(b) presents the results of security testing, i.e., the average accident number. Contrary
to the speed testing results, DPA outperforms other methods because the security regulations
are carried out rigorously in DPA. And the proposed DMN has the second best security
performance, due to the safety enforcement and, more importantly, the human-like decision-
making ability. RLM also considers the safety requirement, but is outperformed by DMN due
to the lack of social intelligence. Because the road conditions are directly sent to self-driving
systems, they can easily beat the human driver in this testing, which, of course, is different
with the real-life driving environment, where the road conditions must be understood and
abstracted by the perception system. However, as a performance evaluation, these results
can sufficiently demonstrate the feasibility and stability of the proposed decision-making
method.

56 Artificial Intelligence for Internet-of-Vehicles
V

eh
ic

le
 T

yp
e

A
tt

ri
bu

te
V

eh
ic

le
 S

pe
ed

A
tt

ri
bu

te

Speed
Network

Steering
Network

Input
Abstraction

Scene A Scene B

Speed
Network

Steering
Network

Input
Abstraction

Fig. 4.9 The visualization results of unit influence.

4.3.2 Influence Analysis and Visualization

As it has been demonstrated that the proposed self-driving system is able to perform sound
and safe decisions, an additional experiment is conducted to clarify the relationship between
the road conditions and the driving decision. Fig. 4.9 shows the visualization results of two
randomly generated scenarios. The input abstractions are presented in the first column of
Scene A and B in Fig. 4.9, and the second and third column give out the unit contributions to
the speed decision network and steering decision network. The output decision of Scene A is
to keep the current lane and pick up speed; the decision of Scene B is to deceleration and
move away from the front truck. It can be seen that, in Scene A, DMN notices there is an
extensive free area in front of ego-car. DMN also judges that the cars in neighbor lanes are
unlikely to change lanes, and, therefore, have little impact on the final decision. In Scene B,
DMN decides not to change lane because of the unknown area in the top-right corner, which
is reflected in the vehicle-type channel in the steering network. Instead, DMN prefers to slow
down and keep the speed slightly slower than the front truck.

Interestingly, the visualized unit contributions give us deep insights into the mechanism
of the decision-making neural network. We find several interesting results after the unit
contributions are transformed into heatmaps. These results are reasonable and explainable.
The way DMN considers its decisions is so similar to the human mind that, the author
believes, it can achieve more amazing performance with a larger dataset. The experiment
results demonstrate that the proposed method does have the ability to perform human-like
decisions and adapt well to various road conditions.

Chapter 5

Artificial Intelligence for
Internet-of-Energy

Electrical load forecasting is still a challenging open problem due to the complex and variable
influences, e.g. weather and time. Although, with the recent development of Internet of
Things (IoT) and smart meter technology, people have obtained the ability to record relevant
information on a large scale, traditional methods struggle in analyzing such complicated
relationships for their limited abilities in handling non-linear data. In this chapter, the author
introduces an IoT-based deep learning system to automatically extract features from the
captured data, and ultimately, give an accurate estimation of future load value.

The IoT-enabled system is implemented in an urban area of south China, as shown in
Fig. 5.1. Smart meters are adopted to record and upload electrical and background data, with
specially-designed sensors and IoT-enabled devices. They are deployed in every electricity
consumption unit, and share their information with the control center. Ultimately, a large
dataset is obtained in seven years from 2010 to 2016, including all conceivable factors. Then
the data is used for the network training and influence analysis in this work. As IoT and
smart meters both have the ability of bidirectional communication, the recommendations and
decision made by the control center can be sent to the demand side. The IoT infrastructure
in Fig. 5.1 is an important part of the proposed system. The smart meters can connect to
all the IoT-enabled sensors, gadgets and appliances in the electricity unit, for example, the
smart homes. The proposed system can deal with all these data, and based on that, perform
accurate load forecasting.

58 Artificial Intelligence for Internet-of-Energy

Control
Center

IoT‐enabled
Devices

Smart
Meters

PLC (IEEE 1901)
ZigBee (IEEE 802.15.4)

Fig. 5.1 The load forecasting and analysis system based on IoT-enabled sensors and devices.

5.1 Forecasting System: Concept and Design

When starting with the research of electrical load, the author wonders what on earth are the
possible influences. And which factors do have a role in the load variation? The author
decides to begin with the analysis of historical record, and tries to find some inspirations.
Fig. 5.2 presents an electrical load record of a large city in south China. The data is sampled
every five minutes, from January 2014 to June 2016. As can be seen, there are some obvious
patterns in the load variation. On one hand, these records reflect an annual periodicity. The
power load peaks between June and October every year, and hits bottom around February,
which has significant seasonal characteristics. On the other hand, there is also an obvious
daily periodicity, i.e., the load value keeps high in the daytime, and drastically drops down at
night.

Although with some simple data analysis like this, the presented load patterns can lead to
a few preliminary conclusions, it is very difficult to truly understand the complex relationship
between the power consumption and influence factors. In fact, weather and some other factors
play much more parts in electrical load variation, and also in more complicated ways, which
is far beyond the capacity of humanity and traditional load forecasting methods. Besides, the
author empowers the smart meters with the ability to communicate with other IoT-enabled
devices in the system, leading to more extensive input attributes. As shown in Fig. 5.1, the
IoT infrastructure is a fundamental component, because it monitors the factors and sends

5.1 Forecasting System: Concept and Design 59

Date

2014
2015

2016 Tim
e

0h

6h

12h

18h

24h

Lo
ad

 (1
09

W
)

6

9

12

Fig. 5.2 Urban electrical load in China (sampled every five minutes).

the data to the control center. The IoT infrastructure consists of the IoT-enabled devices,
including the smart meters, gadgets and appliances, and the communication network. For
economy and reliable communication, the author adopts Power Line Communication (PLC),
which can transfer low bit-rate data with low costs [101], and ZigBee, which can exchange
data wirelessly within a 100m range such as in a home or building, as the communication
network. And smart meters, just as the sink nodes in the wireless sensor network (WSN), are
responsible for collecting data from the household devices and sensors, and uploading the
data to the control center every 30 seconds. The captured data is extremely complicated and
contains lots of useful information. The author desires to learn these patterns with a deep
learning based system to give out an accurate estimation of the future electrical load.

As mentioned above, the author notices that several researchers have attempted to utilize
deep learning in load forecasting, but many of them are facing a problem of low precision.
Frequently, the existing approaches give inaccurate daily consumptions even when they have
the ability to predict short-term load precisely. It is a serious problem because many partici-
pants of electricity markets regard the daily consumption value as an important reference for
decision-making. A too large estimation may lead to energy waste, while a too small value
can possibly cause an insufficient supply. The author adopts a specially designed two-step
forecasting scheme to address this problem.

The framework of the proposed load forecasting system is presented in Fig. 5.3. In
the proposed method, two individual models are used to respectively predict the daily

60 Artificial Intelligence for Internet-of-Energy

consumption and intra-day variation, i.e., daily consumption estimation network (DCEN)
and intra-day load forecasting network (ILFN). There are two major reasons that the author
designs the two-step forecasting scheme. One reason is, the estimation value of DCEN is not
only a helpful guidance for electrical companies and consumers, but an important input to
ILFN model, which takes the daily consumption value as a reference and also a limitation.
Therefore, with the proposed scheme, the estimated variation can be much closer to the
actual load values. The other reason is that electrical load is influenced by various factors,
which is usually in unit of days, such as the daily maximum or minimum temperature, daily
precipitation, daily sunshine duration and, of course, the date. And, the relevant data is also
most often obtained in the unit of days. Based on these facts, the author concentrates all
the possible factors at the DCEN model to accurately predict the daily consumption, and
only adopts several basic factors to support the intra-day forecasting, in order to simplify the
network structure.

There are ten hidden layers in the proposed DCEN model. Layer one and layer two each
has 4096 neurons, layer 3∼5 each has 2048 neurons, and layer 6∼10 each has 1024 neurons.
The author envisaged implementing DCEN as an extremely complicated model to hold and
analyze the super large data. However, the author found that the data engineering is a more
efficient way for this task. With well-selected input, even a common deep model can extract
sufficient features and give meaningful information for the load forecasting. This will be
demonstrated in the experiment section.

As mentioned above, the key problem in DCEN model is the selection and preprocessing
of the input data. A massive number of data is acquired by the proposed IoT system. Among
them, the following data are picked as the input. As the most instructive reference, the
daily consumption of past 7 days is selected; to reflect any periodic characteristics, the time
relevant attributes are also adopted, including the date, the Chinese lunar date, day of the
week; as the most important and complicated data, weather relevant attributes are of great
significance to the DCEN model, including the temperature, air pressure, vapor pressure,
precipitation, evaporation, wind speed and sunshine duration. These data are preprocessed to
give out the maximum, minimum and average values, and then normalized to generate the
final inputs, which include 7 electrical attributes, 3 time relevant attributes and 22 weather
relevant attributes.

After obtaining the daily consumption data, ILFN model is adopted to estimate the
intra-day load variations. ILFN is also a classic deep model with five hidden layers. And each
layer has 512 neurons. The difference is that ILFN needs fewer input attributes, compared to
DCEN model, because all the possible influences have been handled by DCEN, and most of
them can be neglected in ILFN. The input only includes several basic factors and the recent

5.1 Forecasting System: Concept and Design 61

DCEN Model

ILFN Model

D
ai

ly
 T

ot
al

C
on

su
m

pt
io

n

Network Training Practical Application

Influence
Analysis

IoTDataset

Factors

Dataset

Electric

Results

All Possible Factors

Electrical Record

Recent Load Variation

Basic Factors

Smart Meters

Intra-day Load

Daily Total Consumption

Historical Factor Record

Basic Records

Fig. 5.3 The framework of the proposed load forecasting system.

Table 5.1 Features Comparison of Forecasting Systems.

Existing systems IoT-enabled system

Data source On-board sensors IoT devices
Granularity Community House / Room
Data scope Limited sensors Extended by devices

Controllability Controlled by provider Controlled by residents
Deploy cost Expensive sensors Low-cost sharing
Adaptability Fully applicable Available in IoT network

load variation. In detail, the input data includes the estimated daily consumption value, the
time relevant attributes, the load values in the last five time units and some relevant readings.
DCEN and ILFN are performed for each electrical consumption unit for more nuanced and
accurate forecasting. This is mainly benefited by the lower-granularity data from IoT-enabled
system. Table 5.1 gives the comparison between traditional systems and the IoT-based
system. It can be seen that, the proposed system is able to monitor the detail information of
the residents’ house, and give solid data support for the forecasting system. These valuable
data can be a useful addition to the records captured by the on-board sensors, such as the

62 Artificial Intelligence for Internet-of-Energy

operation log of smart appliances, which can be important reference for the residents’ energy
usage habits. As one of the most important factor, some detailed weather condition data
can only be captured by the households sensors, such as the indoor temperature, sunshine
duration and indoor air quality, which differentiate in every house but have a strong effect on
the energy consumption.

5.2 Influence Analysis

We need to go a step further than merely implementing a forecasting system. Although the
proposed DCEN and ILFN model can make accurate predictions, it is no doubt necessary
to figure out the mechanism behind the network structure, rather than simply leaving it as a
black box. The author starts with clarifying the focus of the system, in other words, what the
system really concerns among all the input attributes, including the historical load, weather
factors, and time relevant information. This is very important not only for this research, but
for other load forecasting applications in different area, because the analysis of forecasting
mechanism can serve as a useful guidance for system design. For example, the 32 attributes
the author selects in the proposed instance are probably not suitable for other smart grids,
especially the Chinese lunar date, which is only of significance to some area in China. So
how to find the "right" attributes for a specific area? Influence analysis is an efficient way
to perform this task. In the stage of system design, researchers can push all the possible
factors into a prototype system, and after adequate training, analyze the contributions of
each attribute. Ultimately, the researchers are able to obtain the accurate combination of
possible factors. It is an economy solution to know the factors that truly matters before the
large-scale deployment of smart meters and sensors. Besides, following the trend of IoT,
an increasing number of devices will be IoT-enabled. Therefore, the smart meters will get
much more complicated input data in the future, and the influence analysis will play a key
role in discriminating the value of various data source. In addition, influence analysis can
also be used as a technical measure for the network overfitting, which is a common and
serious problem in the training process, but with few effective measuring means for a long
time. Overfitting frequently occurs when the deep model is too complicated while having
insufficient input data. An overfitted model may have good statistical results on the training
materials, but usually perform poorly on actual applications, due to its overreacts to the minor
fluctuations. Through influence analysis, researchers can obtain some information regarding
whether the overfitting occurs or not. It is mainly because that, an overfitted network usually
extracts meaningless features from the raw data, which are impossible to comprehend in
most cases. On the contrary, well-trained networks analyze the data in a human-like way.

5.2 Influence Analysis 63

This difference can become an effective standard of distinguishing the overfitted networks
from normal ones.

For these purposes, the author designs a novel visualization method to analyze the
contributions from each input attribute to the final output. The author notices, a trained
network have fixed parameters, including weights and biases. Therefore, the final output
is merely related to the input. And if we change one input unit of an input attribute, the
output result will also be changed, which gives a way to infer the contribution of one single
input attribute. The analysis algorithm is explained below. First, each attribute in each input
sample is fine-tuned to generate new output results. Then each new output value is compared
with the former results to show their own contributions. At last, the normalized differences
are presented in heatmap form.

An example of the proposed influence analysis is shown in Fig. 5.4. The analysis is
conducted with a well-trained network. For simplicity, only some relevant attributes, which
have significant influence on the final forecasting result are presented in the figure, including
the date, the Chinese lunar calendar date, the day of the week, the temperature and the air
pressure. The influences are shown in color. And the red areas have bigger influences than
the blue areas. Since all the attributes are normalized and get changed at a same extent, the
generated heatmap can give an intuitive representation regarding which parts of the attributes
give the most influence to the forecasting results.

Among all the presented heatmaps, the temperature attribute has the most significant
effect on the final output, according to the highlighted zone around 25 Celsius degree in the
temperature channel. As can be seen, the highlighted zone is converged around 25 degree,
which is mainly because 25 degree is a sensitive cut-off point to determine whether to use
the air conditioner. When the temperature is lower than 25 degree, there is no cooling needs.
On the other hand, when the temperature is much higher than 25 degree, the cooling needs
always exist, and a minor temperature change has little influence on the power consumption.
Traditionally, there is no demand for heating in south China. Therefore, low temperature
also has little influence on the electrical load. The author is very surprised at the rationality
and interpretability when the author sees the visualization results for the first time. And,
not only the temperature but other attributes show meaningful heatmaps. For example,
the date channel and lunar date channel both have highlighted zones around several legal
holidays, when the factories are usually closed and, as a result, the electrical load drops
down. Lunar date is a traditional calendar in China, and many holidays are based on lunar
date. Therefore, the author sets the attribute of lunar date to reflect some specific periodical
patterns in China. In the week channel, the influence value of weekends is higher than the
one of weekdays, because the weekends are also rest days for many industries. As for the air

64 Artificial Intelligence for Internet-of-Energy

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Date

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Lunar
Calendar

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Week

0℃

4℃

8℃

12℃

16℃

20℃

24℃

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Temp

95

98

100

102

104

Air
Pressure

Fig. 5.4 The generated heatmap for influence analysis.

pressure, according to several existing research, there is a strong inverse correlation between
the air pressure value and electrical load. It is because that the lower air pressure frequently
results in the oppressive weather, which fuels the increase in cooling needs. Besides the
channels presented in the figure, the author also analyzes the influence of historical load data,
i.e., the daily consumption of past 7 days. Their normalized influence values are 0.07, 0.011,
0.009, 0.007, 0.005, 0.008 and 0.007, respectively for the past days from yesterday to 7 days
ago. It can be seen, the closest point in time has the most significant effect on the forecasting
result.

As expected, the visualization results demonstrate that, the proposed system can draw
rational conclusions with intelligible inferential process. The analysis method enables
researchers to select attribute combinations and judge overfitting networks.

5.3 Performance Evaluation

To show the actual forecasting performance of the proposed method and demonstrate the
effectiveness of the specially designed two-step forecasting scheme, several simulations are

5.3 Performance Evaluation 65

0 20 40 60
Time (min)

7.0

7.5

8.0

8.5

L
o
a
d
 (

1
0

9
W

)

Actual Load

ILFN+DCEN

ILFN

(a)

ILFN
&DCEN

ILFN
Only

Short-term
DNN

Holt
Winters

0

1

2

3

4

5

E
rr

o
r

(%
)

MAPE

CVRMSD

TCRE

(b)

Extensive
Data

Smart Meter
Only

1

2

E
rr

o
r

(%
)

MAPE

CVRMSD

TCRE

(c)

Fig. 5.5 Evaluation results of the forecasting methods. (a) Forecasting results (12 predictions
in 60 minutes). (b) Comparison of forecasting precision. (c) Comparison in an IoT-enable
building.

conducted in this section. The input is the actual record of an urban area in China. The author
creates an instance [34] of the proposed models, and train the system with the input data. As
shown in Fig. 5.5(a), the author performs two forecasting tests in a period of one hour. The
red line indicates the forecasting results which are generated with both of the proposed DCEN
and ILFN models, the green line represents the results generated with only ILFN model, and
the dotted line is the actual load value. It can be seen that, although both forecasting lines
are close to the truth value, the green line shows some offset as a whole, when the two-step
forecasting is not adopted. More precisely, nearly all prediction values in the green line are
bigger than the actual value, leading to an inaccurate daily total consumption, which is much
bigger than the truth value. In contrary, the red line is well distributed in both sides of the
dotted line, which may result in a more accurate total consumption. A quantitative analysis
experiment is performed to give a precise performance comparison between these two tests,
also with another two existing approaches, i.e. the state-of-the-art deep learning based SDNN
model [72] working on the same 32 attributes including electrical data, time relevant data
and weather data, and the classical HW method working with merely electrical record.

Three mathematical indexes are adopted to quantitatively measure their performance.
Fig. 5.5(b) gives the comparison result. The mean absolute percentage error (MAPE) is a
famous measure of forecasting precision in statistics. MAPE is scale-independent, and is
favored when compare predict accuracy between different datasets. The root mean square
deviation (RMSD) is another accuracy index, but can only be used to compare prediction
errors of different models for a same dataset, as it is scale-dependent. RMSD is normalized
with the mean value of the measurements, namely, coefficient of variation of the RMSD
(cvRMSD). In addition, the author designs a new measure named total consumption relative

66 Artificial Intelligence for Internet-of-Energy

error (TCRE) to show the effect of the proposed two-step forecasting scheme. TCRE is
calculated using the actual daily consumption value and the sum of all estimations in one
day. All of these three measures express as percentages.

In Fig. 5.5(b), the first group represents the result of the proposed two-step approach,
the second group indicates the prediction without DCEN model, the third group is the
SDNN model, and the last group represents the HW method. As can be seen, even without
DCEN, the proposed method can achieve a state-of-the-art performance similar to SDNN.
However, it is significantly outperformed by the proposed two-step approach in the measure
of TCRE. These numerical results once again demonstrate the necessity and effectiveness
of the proposed two-step forecasting method. Compared to other approaches, the proposed
method performs much better in the prediction precision of both intra-day load variation and
daily total consumption.

To demonstrate the effect of the extensive data from IoT-enabled devices, the author
performs an additional comparison experiment in a residential building in the same city.
As shown in Fig. 5.5(c), the first group is the results of the proposed method using lower-
granularity data, which is monitored per house; while the second group represents the results
using higher-granularity data, which is captured as the whole building. We can see the first
group outperforms the second one in all of the three indexes. This improvement can be
attributed to the differences of temperature, humidity, sunshine duration, indoor air quality
among the rooms in the building. Through IoT-enabled devices, the system obtains the
ability to accurately forecast the energy consumption for every electrical unit, and as a result,
improve its prediction precision of the total consumption.

Chapter 6

Artificial Intelligence for
Internet-of-Sensors

With the proliferation of Internet-of-Sensors devices, crowdsensing has become an appealing
technique to collect and process big data. Meanwhile, the rise of 5th generation wireless
systems (5G), especially the new cellular base stations with computing ability, brings about
the revolutionary edge computing. Although many approaches regarding the mobile crowd-
sensing have emerged in the last few years, very few of them are focused on the combination
of edge computing and crowdsensing.

In this chapter, the author designs an edge computing based deep learning system for
universal crowdsensing tasks, as shown in Fig. 6.1. The right part is the network architecture,
in which three edge nodes are connected to the central cloud, i.e., the cellular base station, the
wired router and the gateway in the buildings. Through these network nodes, various edge
devices can be connected to the cloud, e.g., mobile phones, sensors, smart meters, electrical
appliances, etc., which is very common in the current IoT age. The difference between
this method and existing crowdsensing approaches is that the author successfully adapts the
state-of-the-art deep learning model to the edge computing framework. As a result, with the
proposed deep model, the captured data is directly processed in the edge devices and edge
nodes, as is shown in the left part of Fig. 6.1. And only the irreversibly extracted features
are uploaded to the centralized servers. Although the centralized servers in the cloud end
have strong computing abilities, the author attempts to push the computing task to the user
end. On the one hand, this scheme can keep the sensitive data in the user side and prevent
the unauthorized access to the user privacy; on the other hand, it can also reduce the huge
computing load of the centralized servers and fully utilize the computing resource in the
cloud edge.

68 Artificial Intelligence for Internet-of-Sensors

Fig. 6.1 The proposed edge computing based crowdsensing system.

6.1 Crowdsensing System: Concept and Design

In this work, the author attempts to adapt the deep learning methods into the edge computing
environment, with the following reasons. As mentioned above, edge computing is for the load
balance of the cloud network, and there are two reasons the author chooses deep learning in
the system. First, the crowdsensed data should ultimately be processed using some analysis
methods, and deep learning is one of the most successful approaches to perform this task.
Second, due to the hierarchical structure of deep learning models, it can well meet the
requirement of edge computing. Deep learning is able to give both cost-efficiency and
privacy protection to the crowdsensing system.

The main principle is to utilize the hierarchical deep model, and allocate its computation
tasks to available resources in the cloud, including the centralized servers, the edge nodes,
and devices. As shown in Fig. 6.2, an edge computing based deep (ECD) model is proposed
for the crowdsensing task. ECD model is mainly characterized in its distributed nature and
dynamic framework, which are both essential for the contemporary edge environment.

Fisrt, to adopt the deep learning in the edge computing area, the deep model must have
the potentials for distributed operation. Same with all other deep models, the ECD model
also has a large number of layers, as shown in Fig. 6.2. One obvious solution is to allocate the
layers to all possilbe computing nodes. More precisely, the lower layers can be assigned to the
edge of the cloud, and the higher layers can be assigned to the centralized servers. Because
the activations, which are the output of each layer, require unidirectional transmission, each

6.1 Crowdsensing System: Concept and Design 69

Fig. 6.2 The framework of the edge computing based deep learning system.

computing node must send the calculation results to the next logically adjacent node. The
edge devices, including the mobile phones, deployed sensors, vehicles, and other devices
which capture the raw data, are responsible for the first part of the crowdsensing task. As the
nearest devices to the users, they should be exclusively under the control of their holders.
According to the decision of the users, the edge devices can either calculate for a few lowest
layers by themselves and send out the extracted features, or totally leave the calculation away
and directly push the raw data to the network. It is a key feature of the proposed human-driven
design to empower the users with the power to make decisions, which will be detailed in the
next section. The edge nodes, including cellular base stations, gateways, and routers, will
handle the calculating of several intermediate layers, which is also a big difference with the
existing deep learning based crowdsensing approaches. In the next generation of the network
infrastructure, the edge nodes will be greatly enhanced in their computing ability, therefore,
they will become an extremely important resource for cost-efficient services. The output of
the edge nodes is uploaded to the central part of the cloud, i.e., the centralized server, for the
calculation of higher layers and final analysis. Although the servers have powerful hardware
to perform parallel computing, they are likely to be overloaded due to the extremely large
sensing data captured by numerous device. However, with the feature extraction in the lower
layers, the burden of centralized servers can significantly decrease.

Through the aforementioned one-way communication scheme, the ECD model obtains
the basic distributing ability, however, it needs more to be fully adaptable to the edge
computing architecture. The dynamic structure is another important piece of puzzle for this.
Because one same deep model cannot handle all crowdsensing tasks, the ECD model in the
proposed system should have the ability to be fitted into different objectives. On the other

70 Artificial Intelligence for Internet-of-Sensors

hand, the upgrade frequency of the edge hardware is usually very low, so it is very difficult to
frequently change the lower-layer structures. Therefore, the proposed system is implemented
with a flexible framework, which is adaptable for various crowdsensing tasks, while keeping
the lower layers relatively stable. The lower layers are integrated into the firmware and only
updated with a low frequency, and the higher layers are implemented as the software installed
in the centralized servers and keep adaptable for different tasks.

The service provider can deploy several sub-models with different lower layers for some
typical kinds of crowdsensing tasks, such as the image classification, 3D scene understanding,
road condition monitoring, audio recognition, network control [37], etc. A well-trained
sub-model can be used for most of the subtasks in the same category, as their low-level
features are very similar.

6.2 Human-driven Crowdsensing

Following the trend of human-driven design, the author attempts to empower the users with
the right to decide the balance between energy consumption and privacy protection. On the
one hand, users may prefer their devices can output more abstracted features, which is more
secure but costs more energy; on the other hand, users may prefer to save the energy of their
devices and leave the computing task to the outside devices, which can lead to some privacy
concerns. The major reason is that the reconstruction from the output features to the original
input deteriorates with the increase of the forward propagation progress. Therefore, there
is a trade-off between efficiency and security. The author believes, this dilemma should be
decided, or at least partly directed, by the users. In other words, it must be guaranteed that the
users can decide that to what level the deep model should be calculated on their own devices,
which common users may not be very experienced in but have enough motivation to have the
choice. With the human-driven design, service providers can give some recommendations
or a changeable security level for the users, just like all the similar solutions integrated
in mainstream operating systems or mobile applications for other security problems. As
mentioned above, it must be guaranteed that the users can decide that to what level the
deep model should be calculated on their own devices. Due to the characteristic of the deep
learning model, the smallest calculation unit, which can be assigned to different computing
nodes, is the layer. Therefore, the best way to control the calculation level is to select the
desired layer numbers for calculation.

The author models the aforementioned dilemma as an optimization problem, and defines
the solution set as B = {b1,b2, · · · ,bn}, where n represents the maximum number of the
layers for calculation. As there are two main factors regarding the energy consumption of

6.2 Human-driven Crowdsensing 71

Fig. 6.3 The communication data size and the numbers of unit operations in a deep model.

edge devices, i.e., the network communication Scomm
bi

and deep model computation Scomp
bi

, the
author also defines their energy consumption values as P(Scomm

bi
) and P(Scomp

bi
) respectively.

In fact, given a specific model, both P(Scomm
bi

) and P(Scomp
bi

) have fixed values. A common
deep model, shown in Fig. 6.3, is used as an example. The first few layers in this model
are shown in the figure. The input data is image files with 1000× 1000 pixels in three
channels. The data column in the left part represents the output size of each layer, which
is also the packet size for network communication. The ops column in the right part is
for the unit operation number, which is a rough approximation of the calculation cost. To
quantify the P() function, the author conducts several tests on various devices, and find
the relationship between P(Scomm

bi
), P(Scomp

bi
) and exact power consumption. As shown in

Fig. 6.4(a), the author defines a regularized energy cost, in terms of Joule. The dotted
black line represents the energy consumption resulted from the calculation, and the red line
represents the communication cost. It can be seen the computing cost gradually increase
with the calculation level, while the communication cost significantly drops down due to the
decrease of output data size.

In addition to the energy consumption, the privacy protection Spriv
bi

is another important
factor to consider in the proposed human-driven crowdsensing system. It is very difficult to
accurately measure the risks of the possible privacy leak. A more obvious way is to calculate
the consequences if the uploading data are captured by unauthorized devices. There is some

72 Artificial Intelligence for Internet-of-Sensors

approaches to reconstruct the input data with the output results, such as the intermediate
features or even the final results. These approaches can start with a random generated noise
data, calculate its output, and compare it with the objective feature, then these methods can
optimize the generated input gradually, and, ultimately, get the data which maybe similar to
the original input. Due to the characteristic of the deep learning models, it is not possible find
the exact initial input from the output, and the more abstract the features are, the less similar
the inferred input is. Therefore, the author defines a data similarity index P(Spriv

bi
) to measure

the sensitivity of the output data. This index measures the degree of similarity between
the reconstruction of the output feature and the raw captured data. Because the extracted
features are not exactly reversible to the specific input, therefore, the output data with lower
reconstruction similarity has a better security, and it can keep the users’ privacy even if it is
leaked to someone else. This point is especially notable in image processing tasks, where the
activations of the higher layers are much more abstracted and illegible than the ones of the
lower layers. In addition, there are lots of ways to measure the similarity, for example, the
Euclidean distance, etc. Fig. 6.4(b) gives an example regarding the relationship between data
similarity and calculation level. In conformance with the estimates, the similarity decreases
with increasing calculation level.

Given P(Scomm
bi

), P(Scomp
bi

) and P(Spriv
bi

), an utility function is defined as

U = λ1(P(Scomm
bi

)+P(Scomp
bi

))+λ2P(Spriv
bi

), (6.1)

in order to make a comprehensive evaluation on different solutions. The weights λ1 and λ2

are set by the users to reflect the individual orientation. The solution with smallest U value is
presented to the users as an instructive recommendation.

6.3 Performance Evaluation

6.3.1 Demonstration for System Validity

The author first uses a small testbed to demonstrate the validity of the proposed system, i.e., it
is a feasible solution to divide the deep model into several parts and allocate them to different
computational resources, and it works well with actual hardware. The testbed consists a
central server, an edge server, and a mobile device. The edge server has a wireless network
interface card for wireless access and an Ethernet network interface connected to the central
server. The author uses the Raspberry Pi as the edge server, which is fully capable of forward
propagation.

6.3 Performance Evaluation 73

0 1 2 3 4 5 6 7
Calculation Level

0.0

0.2

0.4

0.6

0.8

1.0

R
e
g
u
la

ri
z
e
d
 C

o
s
t

Cal
Comm

(a)

0 1 2 3 4 5 6 7
Calculation Level

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
im

ila
ri
ty

Privacy Risk

(b)

Fig. 6.4 The energy cost and privacy risk of different calculation levels. (a) The calculation
and communication cost of each calculation level. (b) The privacy risk of each calculation
level.

The author implements one image classification application. The user captures an image,
and attempts to know the information of the image. In the testbed, the author installs the
classification model in the mobile phone, edge server, and the central server. The mobile
device consistently captures images and calculates for the results using the available resources.
The author compares the performance between the common solution, i.e., directly uploading
the raw data, and the proposed method. The results are shown in Fig. 6.5. Fig. 6.5(a) gives the
traffic change during actual deep learning based tasks. Compared with the original method,
the proposed ECD approach consumes less network traffic. After 10 seconds, the traffic
size of the original method have achieved three times larger than the proposed method. In
the meantime, according to Fig. 6.5 (b), the ECD can keep a similar performance with the
original method in the response latency. It can be seen that the proposed method outperforms
the original solution in the network traffic while keeping a similar latency.

6.3.2 Numerical Simulation

In this simulation, two servers, ten edge nodes and 100 mobile devices are deployed to serve
as the edge computing system. The mobile devices keep performing sensing tasks and upload
the data to the cloud. The adopted deep model is used for image recognition, and all the
collected data is in the form of image. The data size is measured in megabyte.

As shown in Fig. 6.6, the author tests the energy saving performance with several different
strategies, and present their consumption changes with increasing captured data size. The two

74 Artificial Intelligence for Internet-of-Sensors

0 2 4 6 8 10
Time (s)

0

3

6

9

12

T
ra

ff
ic

 (
M

B
)

Original
ECD

(a)

0 2 4 6 8 10
Time (s)

600

800

1000

1200

1400

1600

L
a
te

n
c
y
 (

m
s
)

Original
ECD

(b)

Fig. 6.5 Network traffic and latency of the demonstration application.

black curves are the simulation results of the proposed ECD method, with λ1 = 0.8,λ2 = 0.2
and λ1 = 0.2,λ2 = 0.8, respectively. The green line represents the average strategy, i.e.,
always calculate for the average layers in the edge devices. The blue line is the maximum
strategy, in which the edge devices are responsible for all lower layers; while the orange line
represents the strategy in which the edge devices directly upload the raw captured data. And
the last one, the red line, is a random select strategy, i.e., the calculation level is randomly
selected in each run. It can be seen that the proposed ECD model has a significant advantage
in energy efficiency. When λ2 is set with a large weight value, the ECD model shows an
obvious orientation on the cost saving. As a result, it achieves better performance than the
one with a larger λ1. On the contrary, when λ1 is set to 0.8, the ECD model cares more
about the user privacy. Fig. 6.7 (a) gives the comparison results of data similarity. And the
deep model with a larger λ1 value, "ECD2" bar in the figure, prefers safety over the energy
efficiency. Of course, the "max" bar shows a huge lead in this test, because it calculates for
all the lower layers and is able to output the most abstract features. In addition, the author
also presents the privacy-protection efficiency in Fig. 6.7 (b), in order to measure the "value"
of unit energy consumption. It can be seen, the proposed method has the highest efficiency
in improving the effect of privacy protection with one unit of energy consumption.

Another simulation is conducted to demonstrate the performance of the ECD model in
balancing the computing load, as shown in Fig. 6.8. The difference between left and right
sub-figures is that the edge devices and edge nodes simply send the raw data to the centralized
servers for further computing in the left, while in the right one both edge devices and nodes
play a part in the computing task. The z axis represents the hardware usage. We can see the

6.3 Performance Evaluation 75

0 20 40 60 80 100
Data Size (M)

0

20

40

60

80

100

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

ECD(0.8,0.2)

ECD(0.2,0.8)

avg

max

raw

random

Fig. 6.6 The comparison results of energy consumption.

ECD1 ECD2 avg max rand
0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
im

ila
ri

ty

(a)

ECD1 ECD2 avg max rand
0.0

0.1

0.2

0.3

0.4

Pr
iv

ac
y-

pr
ot

ec
tio

n
Ef

fic
ie

nc
y

(b)

Fig. 6.7 The comparison experiments on privacy-preserving. (a) The results of output data
similarity. (b) The results of privacy-protection efficiency.

servers in the left carry most of the calculation burden, which results in the steep surface in
the left. On the contrary, with the ECD model, all the computing resource in the right can
participate in the process of the captured data, and the load surface is flat and balanced.

76 Artificial Intelligence for Internet-of-Sensors

(a) (b)

Fig. 6.8 Simulation results of load balance. (a) Edge devices directly upload the raw data
for further process. (b) Edge devices and edge nodes participate in the pre-process of the
captured data, using the proposed ECD model.

These numerical results once again demonstrate the necessity and effectiveness of the
proposed hierarchical deep model. Compared to other approaches, the proposed ECD model
performs much better in energy consumption, privacy security and load balancing.

Chapter 7

Conclusion and Future Works

A series of approaches are proposed in the dissertation for several emerging Internet-of-
Things (IoT) applications, including Internet-of-Robots, Internet-of-Vehicles, Internet-of-
Energy, and Internet-of-Sensors. In this chapter, the author will give their conclusions, as
well as their limitations and future works.

7.1 Intelligent Robots

In Chapter 3, a CNN-based robotic 3D scene understanding method is proposed. The most
significant advantage of the method is its view-invariant ability and no requirement on
RGB data, which are essential in disordered and extreme disaster scenarios. The author
proposes several loss functions to perform multi-task learning process on the proposed
models. And the author also works out an optimization algorithm to improve the learning
speed. The simulations demonstrate that the proposed method is effective, and outperforms
many state-of-art approaches in several comparison experiments.

A limitation of the proposed system is that a big size of labeled data are still necessary in
the training process. Therefore, in the future work, the author will work on the automatic
labeling problem to further decrease the system cost.

7.2 Intelligent Vehicles

In Chapter 4, a human-like autonomous driving system is proposed. This system mainly
includes two parts, i.e. a road scene perception method and an empirical decision-making
network. One obvious difference with the existing approaches is that it can imitate human
drivers’ social intelligence, which can better adapt the self-driving vehicles to the real-life

78 Conclusion and Future Works

road conditions. In addition, the author implements an efficient training scheme to improve
the quality and speed of data collection, and alleviates the tedious and time-consuming
manual labeling process. The author also finds a feasible approach to analyze the possible
influence factors in the decision-making process, which can help in the testing and validating
of autonomous driving systems. The experimental results prove that the proposed method is
efficient, and shows meaningful analysis results in the visualizations of unit influence.

Future work includes developing a more efficient optimization method to decrease the
time cost of the training process. Also, some information may be extracted from RGB data,
even when it is incomplete and unstable, which can be a useful supplement to the proposed
method. In addition, the author will extend this work by conducting more driving testings in
order to further expand the dataset for network training.

7.3 Intelligent Energy

In Chapter 5, an IoT-based electrical load forecasting method is proposed. A huge advantage
of the method is its two-step forecasting scheme, which significantly increases the prediction
precision for daily total consumption. Another major difference is that, the author adopts
deep learning methods to learn complicated patterns form all the possible influences, and
achieves a state-of-the-art forecasting performance in the evaluations. In addition, the author
also proposes an analysis method to find the relationship between the influences and the
electrical load, and designs a heatmap generation method to show the specific impacts of each
attribute on forecasting results. This analysis method is also of much guiding significance
for the smart grids in other countries, especially for the ones with vast territory and varied
climates. The results prove its effectiveness.

One limitation is that, in the proposed system, a huge number of data needs to be
transferred on the communication network, which can bring a big challenge to the existing
infrastructures. One feasible solution is to adopt edge servers near the client side for better
computing balance and less communication cost, which is also included in future works.

7.4 Intelligent Sensing

In Chapter 6, the author proposes an edge computing based crowdsensing method, which can
adopt the available computing resources in the whole network, both in the cloud and in the
edge side, to ensure the load balance and reduce communication cost. The author also adopts
a specially-designed deep model to transform the crowdsensing problem into a hierarchical
task, which is not only an effective data processing and analysis approach, but gives users

7.4 Intelligent Sensing 79

the right to control the crowdsensing process. The experimental results well prove that it can
provide better performance while considering and keeping users’ privacy.

In the future, it is necessary to test the compatibility of the proposed framework in
different cloud environments, especially the calculation efficiency on various 5G base stations.

References

[1] Alahakoon, D. and Yu, X. (2016). Smart electricity meter data intelligence for future
energy systems: A survey. IEEE Transactions on Industrial Informatics, 12(1):425–436.

[2] Alsheikh, M. A., Niyato, D., Lin, S., p. Tan, H., and Han, Z. (2016). Mobile big data
analytics using deep learning and apache spark. IEEE Network, 30(3):22–29.

[3] Arbeláez, P., Pont-Tuset, J., Barron, J. T., Marques, F., and Malik, J. (2014). Multiscale
combinatorial grouping. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 328–335.

[4] Atia, M. M., Liu, S., Nematallah, H., Karamat, T. B., and Noureldin, A. (2015). Integrated
indoor navigation system for ground vehicles with automatic 3-d alignment and position
initialization. IEEE Transactions on Vehicular Technology, 64(4):1279–1292.

[5] Barbarossa, S., Ceci, E., Merluzzi, M., and Calvanese-Strinati, E. (2017). Enabling
effective mobile edge computing using millimeterwave links. In 2017 IEEE International
Conference on Communications Workshops (ICC Workshops), pages 367–372.

[6] Bilal, K. and Erbad, A. (2017). Edge computing for interactive media and video
streaming. In 2017 Second International Conference on Fog and Mobile Edge Computing
(FMEC), pages 68–73.

[7] Cetin, K. S. and O’Neill, Z. (2017). Smart meters and smart devices in buildings: a
review of recent progress and influence on electricity use and peak demand. Current
Sustainable/Renewable Energy Reports, 4(1):1–7.

[8] Chen, C., Luan, T. H., Guan, X., Lu, N., and Liu, Y. (2017). Connected vehicular trans-
portation: Data analytics and traffic-dependent networking. IEEE Vehicular Technology
Magazine, 12(3):42–54.

[9] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015a). Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2722–2730.

[10] Chen, C., Zhu, S., Guan, X., and Shen, X. S. (2014). Wireless sensor networks:
Distributed consensus estimation. Springer.

[11] Chen, X., Kundu, K., Zhu, Y., Berneshawi, A. G., Ma, H., Fidler, S., and Urtasun, R.
(2015b). 3d object proposals for accurate object class detection. In Advances in Neural
Information Processing Systems, pages 424–432.

82 References

[12] Cheng, G., Zhou, P., and Han, J. (2016). Learning rotation-invariant convolutional neu-
ral networks for object detection in vhr optical remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 54(12):7405.

[13] Choi, S., Zhou, Q.-Y., Miller, S., and Koltun, V. (2016). A large dataset of object scans.
arXiv:1602.02481.

[14] Coelho, I. M., Coelho, V. N., da S. Luz, E. J., Ochi, L. S., Guimarães, F. G., and Rios,
E. (2017). A gpu deep learning metaheuristic based model for time series forecasting.
Applied Energy.

[15] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE.

[16] Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller, M., and Burgard, W. (2015).
Multimodal deep learning for robust rgb-d object recognition. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 681–687. IEEE.

[17] Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009). The
difficulty of training deep architectures and the effect of unsupervised pre-training. In
AISTATS, volume 5, pages 153–160.

[18] Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., and Mizutani, K.
(2017). State-of-the-art deep learning: Evolving machine intelligence toward tomorrow?s
intelligent network traffic control systems. IEEE Communications Surveys Tutorials,
19(4):2432–2455.

[19] Galben, G. (2011). New three-dimensional velocity motion model and composite
odometry-inertial motion model for local autonomous navigation. IEEE Transactions on
Vehicular Technology, 60(3):771–781.

[20] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1440–1448.

[21] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Aistats, volume 15, page 275.

[22] Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learning rich features
from rgb-d images for object detection and segmentation. In European Conference on
Computer Vision, pages 345–360. Springer.

[23] Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller,
U., and LeCun, Y. (2009). Learning long-range vision for autonomous off-road driving.
Journal of Field Robotics, 26(2):120–144.

[24] Harzallah, H., Jurie, F., and Schmid, C. (2009). Combining efficient object localization
and image classification. In 2009 IEEE 12th International Conference on Computer
Vision, pages 237–244. IEEE.

References 83

[25] He, S., Dong, M., Ota, K., Wu, J., Li, J., and Li, G. (2017). Software-defined efficient
service reconstruction in fog using content awareness and weighted graph. In GLOBECOM
2017 - 2017 IEEE Global Communications Conference, pages 1–6.

[26] Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A. J.,
Lloret, J., and Massana, J. (2014). A survey on electric power demand forecasting: Future
trends in smart grids, microgrids and smart buildings. IEEE Communications Surveys
Tutorials, 16(3):1460–1495.

[27] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

[28] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

[29] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
Octomap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous
Robots, 34(3):189–206.

[30] Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K., Yu, L.-F., and Yeung, S.-K.
(2016). Scenenn: A scene meshes dataset with annotations. In International Conference
on 3D Vision (3DV).

[31] Imani, Z. and Soltanizadeh, H. (2016). Person reidentification using local pattern
descriptors and anthropometric measures from videos of kinect sensor. IEEE Sensors
Journal, 16(16):6227–6238.

[32] Jayaraman, P. P., Gomes, J. B., Nguyen, H. L., Abdallah, Z. S., Krishnaswamy, S., and
Zaslavsky, A. (2015). Scalable energy-efficient distributed data analytics for crowdsensing
applications in mobile environments. IEEE Transactions on Computational Social Systems,
2(3):109–123.

[33] Ji, J., Khajepour, A., Melek, W., and Huang, Y. (2016). Path planning and tracking
for vehicle collision avoidance based on model predictive control with multi-constraints.
IEEE Transactions on Vehicular Technology, PP(99):1–1.

[34] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14, pages
675–678, New York, NY, USA. ACM.

[35] Jiang, J. and Qian, Y. (2016). Distributed communication architecture for smart grid
applications. IEEE Communications Magazine, 54(12):60–67.

[36] Kato, N., Fadlullah, Z. M., Mao, B., Tang, F., Akashi, O., Inoue, T., and Mizutani, K.
(2017a). The deep learning vision for heterogeneous network traffic control: Proposal,
challenges, and future perspective. IEEE Wireless Communications, 24(3):146–153.

[37] Kato, N., Fadlullah, Z. M., Mao, B., Tang, F., Akashi, O., Inoue, T., and Mizutani, K.
(2017b). The deep learning vision for heterogeneous network traffic control: Proposal,
challenges, and future perspective. IEEE Wireless Communications, 24(3):146–153.

84 References

[38] Kiani, A. and Ansari, N. (2017). Toward hierarchical mobile edge computing: An
auction-based profit maximization approach. IEEE Internet of Things Journal, 4(6):2082–
2091.

[39] Kong, Y., Ding, Z., Li, J., and Fu, Y. (2017). Deeply learned view-invariant features for
cross-view action recognition. IEEE Transactions on Image Processing, 26(6):3028–3037.

[40] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[41] Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A large-scale hierarchical multi-view rgb-d
object dataset. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 1817–1824. IEEE.

[42] Lane, N. D. and Georgiev, P. (2015). Can deep learning revolutionize mobile sensing?
In Proceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, pages 117–122. ACM.

[43] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

[44] Lennie, P. (2003). The cost of cortical computation. Current biology, 13(6):493–497.

[45] Li, H., Dong, M., and Ota, K. (2016a). Control plane optimization in software-defined
vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 65(10):7895–
7904.

[46] Li, H., Ota, K., and Dong, M. (2016b). Network virtualization optimization in software
defined vehicular ad-hoc networks. In 2016 IEEE 84th Vehicular Technology Conference
(VTC-Fall), pages 1–5.

[47] Li, H., Ota, K., Dong, M., and Guo, M. (2017). Mobile crowdsensing in software
defined opportunistic networks. IEEE Communications Magazine, 55(6):140–145.

[48] Li, H., Ota, K., Dong, M., Vasilakos, A., and Nagano, K. (2018a). Multimedia
processing pricing strategy in gpu-accelerated cloud computing. IEEE Transactions on
Cloud Computing, pages 1–1.

[49] Li, L., Ota, K., and Dong, M. (2018b). Deep learning for smart industry: Efficient
manufacture inspection system with fog computing. IEEE Transactions on Industrial
Informatics, pages 1–1.

[50] Li, L. and Xiao, N. (2015). Volumetric view planning for 3d reconstruction with
multiple manipulators. Industrial Robot: An International Journal, 42(6):533–543.

[51] Liebelt, J. and Schmid, C. (2010). Multi-view object class detection with a 3d geometric
model. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 1688–1695.

[52] Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., and Qiu, M. (2017). A scalable and
quick-response software defined vehicular network assisted by mobile edge computing.
IEEE Communications Magazine, 55(7):94–100.

References 85

[53] Liu, X., Lu, L., Shen, Z., and Lu, K. (2016). A novel face recognition algorithm via
weighted kernel sparse representation. Future Generation Computer Systems.

[54] Lloret, J., Tomas, J., Canovas, A., and Parra, L. (2016). An integrated iot architecture
for smart metering. IEEE Communications Magazine, 54(12):50–57.

[55] Lueth, K. L. (2018). State of the IoT 2018: Number of IoT de-
vices now at 7B – market accelerating. https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.

[56] Luo, T., Kanhere, S. S., Huang, J., Das, S. K., and Wu, F. (2017). Sustainable incentives
for mobile crowdsensing: Auctions, lotteries, and trust and reputation systems. IEEE
Communications Magazine, 55(3):68–74.

[57] Malisiewicz, T., Gupta, A., and Efros, A. A. (2011). Ensemble of exemplar-svms for
object detection and beyond. In 2011 International Conference on Computer Vision, pages
89–96. IEEE.

[58] Mao, B., Fadlullah, Z. M., Tang, F., Kato, N., Akashi, O., Inoue, T., and Mizutani,
K. (2017). Routing or computing? the paradigm shift towards intelligent computer
network packet transmission based on deep learning. IEEE Transactions on Computers,
66(11):1946–1960.

[59] Menze, M. and Geiger, A. (2015). Object scene flow for autonomous vehicles. In
Conference on Computer Vision and Pattern Recognition (CVPR).

[60] Muller, U., Ben, J., Cosatto, E., Flepp, B., and Cun, Y. L. (2005). Off-road obstacle
avoidance through end-to-end learning. In Advances in neural information processing
systems, pages 739–746.

[61] Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. (2012). Indoor segmentation
and support inference from rgbd images. In ECCV.

[62] Nielsen, J. J., Madueño, G. C., Pratas, N. K., Sørensen, R. B., Stefanovic, C., and
Popovski, P. (2015). What can wireless cellular technologies do about the upcoming smart
metering traffic? IEEE Communications Magazine, 53(9):41–47.

[63] Ota, K., Dong, M., Gui, J., and Liu, A. (2018). Quoin: Incentive mechanisms for crowd
sensing networks. IEEE Network, PP(99):1–6. doi: 10.1109/MNET.2017.1500151.

[64] Ota, K., Dong, M., Zhu, H., Chang, S., and Shen, X. (2011). Traffic information
prediction in urban vehicular networks: A correlation based approach. In 2011 IEEE
Wireless Communications and Networking Conference, pages 1021–1025.

[65] Pournajaf, L., Garcia-Ulloa, D. A., Xiong, L., and Sunderam, V. (2016). Participant
privacy in mobile crowd sensing task management: a survey of methods and challenges.
ACM SIGMOD Record, 44(4):23–34.

[66] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y. (2009). Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan.

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
10.1109/MNET.2017.1500151

86 References

[67] Rana, M. and Koprinska, I. (2016). Forecasting electricity load with advanced wavelet
neural networks. Neurocomputing, 182:118–132.

[68] Rimal, B. P., Van, D. P., and Maier, M. (2017). Mobile edge computing empowered
fiber-wireless access networks in the 5g era. IEEE Communications Magazine, 55(2):192–
200.

[69] Rodrigues, T. G., Suto, K., Nishiyama, H., and Kato, N. (2017). Hybrid method for
minimizing service delay in edge cloud computing through vm migration and transmission
power control. IEEE Transactions on Computers, 66(5):810–819.

[70] Rodrigues, T. G., Suto, K., Nishiyama, H., Kato, N., and Temma, K. (2018). Cloudlets
activation scheme for scalable mobile edge computing with transmission power control
and virtual machine migration. IEEE Transactions on Computers, 67(9):1287–1300.

[71] Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 1–4. IEEE.

[72] Ryu, S., Noh, J., and Kim, H. (2016). Deep neural network based demand side short
term load forecasting. Energies, 10(1):3.

[73] Salsano, S., Chiaraviglio, L., Blefari-Melazzi, N., Parada, C., Fontes, F., Mekuria, R.,
and Griffioen, D. (2017). Toward superfluid deployment of virtual functions: Exploiting
mobile edge computing for video streaming. In 2017 29th International Teletraffic
Congress (ITC 29), volume 2, pages 48–53.

[74] Sato, K. and Fujii, T. (2017). Radio environment aware computation offloading with
multiple mobile edge computing servers. In 2017 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), pages 1–5.

[75] Schwarz, M., Schulz, H., and Behnke, S. (2015). Rgb-d object recognition and pose
estimation based on pre-trained convolutional neural network features. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 1329–1335. IEEE.

[76] Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. IEEE transactions on pattern analysis and
machine intelligence, 29(3):411–426.

[77] Sheridan, T. B. (2016). Human–robot interaction status and challenges. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 58(4):525–532.

[78] Shi, B., Bai, S., Zhou, Z., and Bai, X. (2015). Deeppano: Deep panoramic representation
for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339–2343.

[79] Singh, A., Sha, J., Narayan, K. S., Achim, T., and Abbeel, P. (2014). Bigbird: A
large-scale 3d database of object instances. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 509–516. IEEE.

[80] Socher, R., Huval, B., Bath, B., Manning, C. D., and Ng, A. Y. (2012). Convolutional-
recursive deep learning for 3d object classification. In Advances in Neural Information
Processing Systems, pages 665–673.

References 87

[81] Son, Y. S., Kim, W., Lee, S. H., and Chung, C. C. (2015). Robust multirate control
scheme with predictive virtual lanes for lane-keeping system of autonomous highway
driving. IEEE Transactions on Vehicular Technology, 64(8):3378–3391.

[82] Song, S. and Xiao, J. (2014). Sliding shapes for 3d object detection in depth images. In
European Conference on Computer Vision, pages 634–651. Springer.

[83] Song, S. and Xiao, J. (2015). Deep sliding shapes for amodal 3d object detection in
rgb-d images. arXiv preprint arXiv:1511.02300.

[84] Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-view convolu-
tional neural networks for 3d shape recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 945–953.

[85] Su, Z., Hui, Y., Luan, T. H., and Guo, S. (2017a). Engineering a game theoretic access
for urban vehicular networks. IEEE Transactions on Vehicular Technology, 66(6):4602–
4615.

[86] Su, Z., Xu, Q., Hui, Y., Wen, M., and Guo, S. (2017b). A game theoretic approach to
parked vehicle assisted content delivery in vehicular ad hoc networks. IEEE Transactions
on Vehicular Technology, 66(7):6461–6474.

[87] Sun, B. and Feng, H. (2017). Efficient compressed sensing for wireless neural recording:
A deep learning approach. IEEE Signal Processing Letters, PP(99):1–1.

[88] Sun, W. and Liu, J. (2017). Congestion-aware communication paradigm for sustainable
dense mobile crowdsensing. IEEE Communications Magazine, 55(3):62–67.

[89] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

[90] Tang, F., Fadlullah, Z. M., Mao, B., and Kato, N. (2018). An intelligent traffic load
prediction based adaptive channel assignment algorithm in sdn-iot: A deep learning
approach. IEEE Internet of Things Journal, pages 1–1.

[91] Tao, M., Ota, K., and Dong, M. (2017a). Foud: Integrating fog and cloud for 5g-enabled
v2g networks. IEEE Network, 31(2):8–13.

[92] Tao, X., Ota, K., Dong, M., Qi, H., and Li, K. (2017b). Performance guaranteed
computation offloading for mobile-edge cloud computing. IEEE Wireless Communications
Letters, 6(6):774–777.

[93] Tran, T. X., Hajisami, A., Pandey, P., and Pompili, D. (2017a). Collaborative mobile
edge computing in 5g networks: New paradigms, scenarios, and challenges. IEEE
Communications Magazine, 55(4):54–61.

[94] Tran, T. X., Pandey, P., Hajisami, A., and Pompili, D. (2017b). Collaborative multi-
bitrate video caching and processing in mobile-edge computing networks. In 2017 13th
Annual Conference on Wireless On-demand Network Systems and Services (WONS), pages
165–172.

88 References

[95] Uijlings, J. R., van de Sande, K. E., Gevers, T., and Smeulders, A. W. (2013). Selective
search for object recognition. International journal of computer vision, 104(2):154–171.

[96] Valerio, L., Passarella, A., and Conti, M. (2017). Optimal trade-off between accuracy
and network cost of distributed learning in mobile edge computing: An analytical ap-
proach. In 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–9.

[97] Wang, C., Yu, F. R., Liang, C., Chen, Q., and Tang, L. (2017). Joint computation
offloading and interference management in wireless cellular networks with mobile edge
computing. IEEE Transactions on Vehicular Technology, 66(8):7432–7445.

[98] Wang, L., Zhang, D., Wang, Y., Chen, C., Han, X., and M’hamed, A. (2016). Sparse
mobile crowdsensing: challenges and opportunities. IEEE Communications Magazine,
54(7):161–167.

[99] Xiao, L., Shao, W., Wang, C., Zhang, K., and Lu, H. (2016). Research and application
of a hybrid model based on multi-objective optimization for electrical load forecasting.
Applied Energy, 180:213–233.

[100] Xiong, X., Wang, J., Zhang, F., and Li, K. (2016). Combining deep reinforcement learn-
ing and safety based control for autonomous driving. arXiv preprint arXiv:1612.00147.

[101] Yigit, M., Gungor, V. C., Tuna, G., Rangoussi, M., and Fadel, E. (2014). Power
line communication technologies for smart grid applications: A review of advances and
challenges. Computer Networks, 70:366–383.

[102] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Advances in neural information processing systems,
pages 3320–3328.

[103] Yuan, Q., Gao, Y., and Li, Y. (2016). Suppose future traffic accidents based on
development of self-driving vehicles. In Man-Machine-Environment System Engineering,
pages 253–261. Springer.

[104] Zhang, X., Yang, Z., Sun, W., Liu, Y., Tang, S., Xing, K., and Mao, X. (2016).
Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys Tutorials,
18(1):54–67.

Publications

Journals
1. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "Sustainable CNN for Robotic: An Of-

floading Game in the 3D Vision Computation," IEEE Transactions on Sustainable
Computing (TSUSC), vol. 4, no. 1, pp. 67-76, 1 Jan.-March 2019.

2. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "DeepNFV: A Light-weight Framework for
Intelligent Edge Network Functions Virtualization," IEEE Network, vol. 33, no. 1, pp.
136-141, January/February 2019.

3. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "Human in the Loop: Distributed Deep
Model for Mobile Crowdsensing," IEEE Internet of Things Journal (IOTJ), vol. 5, no.
6, pp. 4957-4964, December 2018.

4. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "Deep Learning for Smart Industry: Effi-
cient Manufacture Inspection System with Fog Computing," IEEE Transactions on
Industrial Informatics (TII), vol. 14, no. 10, pp. 4665-4673, October 2018.

5. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "Humanlike Driving: Empirical Decision-
Making System for Autonomous Vehicles," IEEE Transactions on Vehicular Technol-
ogy (TVT), vol. 67, no. 8, pp. 6814-6823, August 2018.

6. Liangzhi Li, Kaoru Ota, Mianxiong Dong, Wuyunzhaola Borjigin, "Eyes in the Dark:
Distributed Scene Understanding for Disaster Management," IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 28, no. 12, pp. 3458-3471, December
2017.

7. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "When Weather Matters: IoT-based Electri-
cal Load Forecasting for Smart Grid," IEEE Communications Magazine, vol. 55, no.
10, pp. 46-51, October 2017.

Proceeding of International Conference
1. Liangzhi Li, Kaoru Ota, Mianxiong Dong, Christos Verikoukis, "Enabling 60 GHz

Seamless Coverage for Mobile Devices: A Motion Learning Approach," IEEE Global
Communications Conference (IEEE GLOBECOM 2018), Abu Dhabi, UAE, December
9-13, 2018.

90 References

2. Liangzhi Li, Kaoru Ota, Mianxiong Dong, "Everything is Image: CNN-based Short-
term Electrical Load Forecasting for Smart Grid," The 11th International Conference
on Frontier of Computer Science and Technology (FCST-2017), Exeter, UK, June
21-23, 2017.

